
Workshop track - ICLR 2018

ANALYSIS OF COSMIC MICROWAVE BACKGROUND
WITH DEEP LEARNING

Siyu He ∗
Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213, USA
siyuh@andrew.cmu.edu

Siamak Ravanbakhsh
Computer Science Department
University of British Columbia
Vancouver, BC V6T1Z4, Canada
siamakx@cs.ubc.ca

Shirley Ho †‡
Division of Physics
Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA
shirleyho@lbl.gov

ABSTRACT

The observation of Cosmic Microwave Background (CMB) has been one of the
cornerstones in establishing the current understanding of the Universe. This valu-
able source of information consists of primary and secondary effects. While the
primary source of information in CMB (as a Gaussian random field) can be ef-
ficiently analyzed using established statistical methods, CMB is also host to sec-
ondary sources of information that are more complex to analyze and understand.
Here, we report encouraging preliminary results as well as some difficulties in us-
ing deep learning for prediction of the cosmological parameters and uncertainty
estimates from the primary CMB. This opens the way to application of deep mod-
els in analysis of the secondary CMB and joint analysis of CMB with other modal-
ities such as the large-scale structure

1 INTRODUCTION

The holy grail of field of cosmology is to understand the beginning, the evolution and content of
the Universe. The observation of Cosmic Microwave Background (CMB) has been one of the cor-
nerstones in establishing the current understanding of the Universe (Hinshaw et al., 2013; Planck
Collaboration et al., 2015). Over the past decade, a standard cosmological model has emerged: with
relatively few parameters, the model describes the evolution of the Universe and astronomical obser-
vations from a few to thousands of Megaparsecs. The observation and analysis of CMB maps offer
a demanding test of this model. CMB maps are the fluctuation of temperature maps of the photons
emitted from last scatter surface (38000 years after big bang). A demonstration of CMB maps are
shown in Fig. 1. Since the primary CMB1 is nearly purely Gaussian, we expect that all the infor-
mation about the Universe from primary CMB can be fully encoded in the angular power-spectrum.
Therefore, it is interesting to test if other novel machine learning methods such as deep learning can
in principle extract all the information directly from the CMB maps, at least as much as a traditional
angular power-spectrum analysis is capable of.

Here we present the first attempt at using advanced deep learning methods to predict cos-
mological parameters and their corresponding errors directly from the distribution of photons
in Cosmic Microwave Background. Our objective is to show we could use deep models
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1The primary CMB is sourced by the initial fluctuations of the Universe, while the observed CMB also

includes secondary fluctuations which are caused by the intervening matter impacting the photons which carry
light from the early times at last scattering surface to us
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to predict the parameters and uncertainty estimates for the predictions decently from primary
CMB maps and we can move on to more complicated CMB maps with secondary anisotropy.

Figure 1: An illustration of the input CMB
maps. The map shown is the mollview pro-
jection of the entire sphere and the upper
right small map shows the 100 deg2 sky cut
from the equator area. The small map can
be viewed as flat. The two maps shown are
CMB maps with different cosmological pa-
rameters.

2 PRELIMINARY RESULTS

We use two models: 1) an 18-layers deep residual net-
work (ResNet) (He et al., 2016) and; 2) spherical con-
volutional neural network (Spherical CNN Cohen et al.,
2017), to predict matter density Ωm and the amplitude of
the primordial power spectrum As from the CMB map.
For each model, we generate 50,000 CMB maps using
standard CMB package healpy2 which takes CMB tem-
perature angular power-spectra (generated from CAMB3)
and generates Gaussian random fields in Healpix4 for-
mats. 5 The input datasets for the two models are differ-
ent. In ResNet model, the input are 2-D images of CMB
maps, each map covering 100 deg2 of sky. We use equa-
torial projection to extract 10 deg ×10 deg maps around
the equator and assume the small patch of the sky ex-
tracted is flat. In Spherical CNN model, the input are the
whole sky images (around 41252.96 deg2) on the sphere.
Fig. 1 shows the demonstration of the CMB map input for
both models.

The ResNet prediction of (Ωm, As) shows an average rel-
ative error of (0.0078,0.0036),while for each (Ωm, As),
the ResNet predictions have a relatively small standard
deviation of (0.0023,0.0063), indicating the ResNet is
predicting quite accurately for individual images. For the
Spherical CNN model, we are unable to make a decent
prediction due to the fact that the CMB maps have a very high resolution and with current computa-
tion power we have, we need to aggressively pool to make the training computation manageable but
which will smooth out the information in the CMB maps.

PRODUCING UNCERTAINTY MEASURES. To be comparable with existing physics-based anal-
ysis, we also need the uncertainty estimate for each predicted parameter. Thus, we include vari-
ance and co-variance predictions in the loss function on top of the ResNet model and maximize
the log-likelihood. The mean relative error is (0.0033,0.0031) and the mean error prediction is
(0.0012,0.0030). The result indicates that the model can successfully learn to quantify its own un-
certainty at the time of prediction. An alternative approach to producing a measure of uncertainty is
to use a Bayesian Neural Network (BNN Neal, 2012) and report the posterior predictive. However.
our current results using Monte Carlo Dropout (Gal & Ghahramani, 2016) is not equally accu-
rate. The mean relative error is (0.0035,0.022) for (Ωm,As) while the predicted mean uncertainty is
(0.0078,0.023). The predictions for As are biased. We are investigating ways to improve the pre-
dictions using BNNs. In using MC Dropout we notice that the model has a difficulty in reducing its
training error and its test performance is also significantly affected by the dropout. As an illustration
of the result, Fig. 2 shows the mean-value predictions for (Ωm,As) for 100 images with the same
parameters but different random seeds using ResNet Model and Bayesian Neural Network model.

STANDARD APPROACH. We compare the performance of ResNet with a standard analysis
of CMB maps in cosmology. For this, we produce maximum likelihood fit for both the an-
gular power spectrum of the full maps and the 100 deg2 maps. Fig. 3 shows a demonstra-
tion of the power spectra. The full map analysis shows a relative error of (0.0003,0.0002) for

2https://github.com/healpy/healpy
3camb.info
4https://healpix.jpl.nasa.gov/
5We use a 80%,10% and 10% split of the dataset for training, validation and test, respectively. We use

data-augmentation using rotation and mirroring of the original maps.
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(a) Ωm and As predicted with error using ResNet model with -
log(likehood) loss. Each prediction is an average of 100 maps.

(b) Ωm and As predicted from Bayesian neural network with error
prediction. Each prediction is an average of 100 maps.

Figure 2: Ωm and As predicted with with error

(Ωm, As) while the analysis on the 100 deg2 maps shows a relative error of (0.02, 0.08) (Note:
We only have one map for analysis for each parameter (Ωm, As) and we are still in the pro-
cess of calculating the maximum likelihood for 100 CMB maps for each set of parameters.).

Figure 3: An illustration of the power spec-
tra. As shown from the plot, the full map ac-
tually has small noise while the patches cut
from the whole map has a large noise.

The physics analysis is doing better than our method us-
ing the whole map. This is expected since the map are
generated directly from the theory, where there is no loss
of information and the noise is very small. However, for
the small maps deep model might be doing a better job.
This is because the small map size will induce a much
more significant noise in the power spectra (note that This
is not a fair comparison yet since we only have one real-
ization of analysis for physics while 100 for deep learn-
ing. But from the one map comparison, it shows the deep
learning method is doing a good job).

3 CONCLUSION AND FUTURE PLANS

In our work, we have tested the following two never tested
hypotheses: a) the value of cosmological parameters from
the Gaussian primary CMB maps can be predicted cor-
rectly by deep learning methods; b) the estimated error of each parameters can be predicted cor-
rectly by the deep learning methods. Though a full comparison with the physics analysis in under
calculation, it’s very promising to say the deep learning method will be doing as good as in physics
analysis with the same type of input. Since primary CMB is a Gaussian random field, we can
move on to more complicated CMB maps with secondary anisotropy. The perfect analysis of the
power-spectrum does not extend secondary sources of information, where deep learning could be
very effective. Furthermore, deep architectures allow us to easily combine the CMB with other
cosmological dataset to do a joint analysis. We plan to explore these directions in the future.
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