Published as a conference paper at ICLR 2017

THIRD-PERSON IMITATION LEARNING

Bradly C. Stadie' ', Pieter Abbeel'', Ilya Sutskever!
1 OpenAl

2 UC Berkeley, Department of Statistics

3 UC Berkeley, Departments of EECS and ICSI
{bstadie, pieter, ilyasu, }@openai .com

ABSTRACT

Reinforcement learning (RL) makes it possible to train agents capable of achiev-
ing sophisticated goals in complex and uncertain environments. A key difficulty in
reinforcement learning is specifying a reward function for the agent to optimize.
Traditionally, imitation learning in RL has been used to overcome this problem.
Unfortunately, hitherto imitation learning methods tend to require that demonstra-
tions are supplied in the first-person: the agent is provided with a sequence of
states and a specification of the actions that it should have taken. While powerful,
this kind of imitation learning is limited by the relatively hard problem of collect-
ing first-person demonstrations. Humans address this problem by learning from
third-person demonstrations: they observe other humans perform tasks, infer the
task, and accomplish the same task themselves.

In this paper, we present a method for unsupervised third-person imitation learn-
ing. Here third-person refers to training an agent to correctly achieve a simple
goal in a simple environment when it is provided a demonstration of a teacher
achieving the same goal but from a different viewpoint; and unsupervised refers
to the fact that the agent receives only these third-person demonstrations, and is
not provided a correspondence between teacher states and student states. Our
methods primary insight is that recent advances from domain confusion can be
utilized to yield domain agnostic features which are crucial during the training
process. To validate our approach, we report successful experiments on learning
from third-person demonstrations in a pointmass domain, a reacher domain, and
inverted pendulum.

1 INTRODUCTION

Reinforcement learning (RL) is a framework for training agents to maximize rewards in large, un-
known, stochastic environments. In recent years, combining techniques from deep learning with
reinforcement learning has yielded a string of successful applications in game playing and robotics
Mnih et al.| (2015; 2016); Schulman et al.[(2015a); |[Levine et al.| (2016). These successful appli-
cations, and the speed at which the abilities of RL algorithms have been increasing, makes it an
exciting area of research with significant potential for future applications.

One of the major weaknesses of RL is the need to manually specify a reward function. For each
task we wish our agent to accomplish, we must provide it with a reward function whose maximizer
will precisely recover the desired behavior. This weakness is addressed by the field of Inverse
Reinforcement Learning (IRL). Given a set of expert trajectories, IRL algorithms produce a reward
function under which these the expert trajectories enjoy the property of optimality. Recently, there
has been a significant amount of work on IRL, and current algorithms can infer a reward function
from a very modest number of demonstrations (e.g,. |Abbeel & Ng (2004); [Ratliff et al.| (2006));
Ziebart et al.| (2008)); |[Levine et al.|(2011); Ho & Ermon|(2016); Finn et al. (2016)).

While IRL algorithms are appealing, they impose the somewhat unrealistic requirement that the
demonstrations should be provided from the first-person point of view with respect to the agent.
Human beings learn to imitate entirely from third-person demonstrations — i.e., by observing other
humans achieve goals. Indeed, in many situations, first-person demonstrations are outright impossi-
ble to obtain. Meanwhile, third-person demonstrations are often relatively easy to obtain.

Published as a conference paper at ICLR 2017

The goal of this paper is to develop an algorithm for third-person imitation learning. Future advance-
ments in this class of algorithms would significantly improve the state of robotics, because it will
enable people to easily teach robots news skills and abilities. Importantly, we want our algorithm
to be unsupervised: it should be able to observe another agent perform a task, infer that there is an
underlying correspondence to itself, and find a way to accomplish the same task.

We offer an approach to this problem by borrowing ideas from domain confusion|Tzeng et al.| (2014)
and generative adversarial networks (GANs) |Goodfellow et al.|(2014). The high-level idea is to in-
troduce an optimizer under which we can recover both a domain-agnostic representation of the
agent’s observations, and a cost function which utilizes this domain-agnostic representation to cap-
ture the essence of expert trajectories. We formulate this as a third-person RL-GAN problem, and
our solution builds on the first-person RL-GAN formulation by |Ho & Ermon|(2016).

Surprisingly, we find that this simple approach has been able to solve the problems that are pre-
sented in this paper (illustrated in Figure[I)), even though the student’s observations are related in a
complicated way to the teacher’s demonstrations (given that the observations and the demonstrations
are pixel-level). As techniques for training GANs become more stable and capable, we expect our
algorithm to be able to infer solve harder third-person imitation tasks without any direct supervision.

Figure 1: From left to right, the three domains we consider in this paper: pointmass, reacher, and
pendulum. Top-row is the third-person view of a teacher demonstration. Bottom row is the agent’s

view in their version of the environment. For the point and reacher environments, the camera angles
differ by approximately 40 degrees. For the pendulum environment, the color of the pole differs.

2 RELATED WORK

Imitation learning (also learning from demonstrations or programming by demonstration) considers
the problem of acquiring skills from observing demonstrations. Imitation learning has a long history,
with several good survey articles, including (Schaall, [1999;|Calinon, |2009; |Argall et al.,[2009). Two
main lines of work within imitation learning are: 1) behavioral cloning, where the demonstrations
are used to directly learn a mapping from observations to actions using supervised learning, po-
tentially with interleaving learning and data collection (e.g., [Pomerleau| (1989); Ross et al.|(2011)).
2) Inverse reinforcement learning (Ng et al., [2000), where a reward function is estimated that ex-
plains the demonstrations as (near) optimal behavior. This reward function could be represented
as nearness to a trajectory (Calinon et al.| 2007;|Abbeel et al.,[2010), as a weighted combination of
features (Abbeel & Ngl[2004; Ratliff et al.,|2006; Ramachandran & Amir,|2007; Ziebart et al., 2008;
Boularias et al.| [2011} [Kalakrishnan et al., [2013; [Doerr et al.| 2015)), or could also involve feature
learning (Ratliff et al.| [2007; |[Levine et al, 2011} Wulfmeier et al., 2015} [Finn et al., [2016; |[Ho &
Ermon, [2016).

Published as a conference paper at ICLR 2017

This past work, however, is not directly applicable to the third person imitation learning setting.
In third-person imitation learning, the observations and actions obtained from the demonstrations
are not the same as what the imitator agent will be faced with. A typical scenario would be: the
imitator agent watches a human perform a demonstration, and then has to execute that same task.
As discussed in [Nehaniv & Dautenhahn| (2001) the ”what and how to imitate” questions become
significantly more challenging in this setting. To directly apply existing behavioral cloning or inverse
reinforcement learning techniques would require knowledge of a mapping between observations and
actions in the demonstrator space to observations and actions in the imitator space. Such a mapping
is often difficult to obtain, and it typically relies on providing feature representations that captures
the invariance between both environments (Carpenter et al.|(2002); Shon et al.| (2005)); (Calinon et al.
(2007); Nehaniv| (2007); |(Gioioso et al.| (2013); |Gupta et al.|(2016)). Contrary to prior work, we
consider third-person imitation learning from raw sensory data, where no such features are made
available.

The most closely related work to ours is by [Finn et al.|(2016)); Ho & Ermon|(2016); Wulfmeier et al.
(2015), who also consider inverse reinforcement learning directly from raw sensory data. However,
the applicability of their approaches is limited to the first-person setting. Indeed, matching raw
sensory observations is impossible in the 3rd person setting.

Our work also closely builds on advances in generative adversarial networks |Goodfellow et al.
(2014), which are very closely related to imitation learning as explained in |Finn et al.|(2016); Ho &
Ermon|(2016). In our optimization formulation, we apply the gradient flipping technique from Ganin
& Lempitsky|(2014).

The problem of adapting what is learned in one domain to another domain has been studied exten-
sively in computer vision in the supervised learning setting|Yang et al.|(2007); Mansour et al.|(2009);
Kulis et al.| (2011); |Aytar & Zisserman| (2011); Duan et al.| (2012)); Hoffman et al.| (2013); Long &
‘Wang (2015). It has also been shown that features trained in one domain can often be relevant to
other domains [Donahue et al.| (2014). The work most closely related to ours is |Izeng et al.| (2014;
2015)), who also consider an explicit domain confusion loss, forcing trained classifiers to rely on
features that don’t allow to distinguish between two domains. This work in turn relates to earlier
work by [Bromley et al.[(1993)); |Chopra et al,| (2005)), which also considers supervised training of
deep feature embeddings.

Our approach to third-person imitation learning relies on reinforcement learning from raw sensory
data in the imitator domain. Several recent advances in deep reinforcement learning have made this
practical, including Deep Q-Networks (Mnih et al.||2015)), Trust Region Policy Optimization (Schul-
man et al., 2015a), A3C|Mnih et al.[{(2016), and Generalized Advantage Estimation (Schulman et al.,
2015b). Our approach uses Trust Region Policy Optimization.

3 BACKGROUND AND PRELIMINARIES

A discrete-time finite-horizon discounted Markov decision process (MDP) is represented by a tuple
M = (S, A,P,r po,7,T), in which S is a state set, A an actionset, P : S X A xS — R a
transition probability distribution, 7 : S x A — R a reward function, pp : S — R an initial state
distribution, € [0, 1] a discount factor, and 7" the horizon.

In the reinforcement learning setting, the goal is to find a policy g : S x A — R, parametrized

by 6 that maximizes the expected discounted sum of rewards incurred, n(mp) = E, [ZtT:O yie(sy)],
where so ~ po(s0), ar ~ ma(a¢|st), and s¢y1 ~ P(Si41]5¢, ar).

In the (first-person) imitation learning setting, we are not given the reward function. Instead we
are given traces (i.e., sequences of states traversed) by an expert who acts according to an unknown
policy mg. The goal is to find a policy 7y that performs as well as the expert against the unknown
reward function. It was shown in |Abbeel & Ng| (2004) that this can be achieved through inverse
reinforcement learning by finding a policy 7y that matches the expert’s empirical expectation over
discounted sum of all features that might contribute to the reward function. The work by Ho &
Ermon|(2016)) generalizes this to the setting when no features are provided as follows: Find a policy
Ty that makes it impossible for a discriminator (in their work a deep neural net) to distinguish states
visited by the expert from states visited by the imitator agent. This can be formalized as follows:

Published as a conference paper at ICLR 2017

maxmin — E., [log Dr(s)] — Ex,[log(l — Dr(s))] ()

79 Dr

Here, the expectations are over the states experienced by the policy of the imitator agent, 7y, and by
the policy of the expert, 7, respectively. D, is the discriminator, which outputs the probability of
a state having originated from a trace from the imitator policy my. If the discriminator is perfectly
able to distinguish which policy originated state-action pairs, then Dy will consistently output a
probability of 1 in the first term, and a probability of O in the second term, making the objective
its lowest possible value of zero. It is the role of the imitator agent 7y to find a policy that makes
it difficult for the discriminator to make that distinction. The desired equilibrium has the imitator
agent making it impractical for the discriminator to distinguish, hence forcing the discriminator to
assign probability 0.5 in all cases. |Ho & Ermon| (2016) present a practical approach for solving
this type of game when representing both w9 and Dp as deep neural networks. Their approach
repeatedly performs gradient updates on each of them. Concretely, for a current policy 7y traces can
be collected, which together with the expert traces form a data-set on which Dy can be trained with
supervised learning minimizing the negative log-likelihood (in practice only performing a modest
number of updates). For a fixed D, this is a policy optimization problem where — log D (s, a)
is the reward, and policy gradients can be computed from those same traces. Their approach uses
trust region policy optimization (Schulman et al.,2015a)) to update the imitator policy 7y from those
gradients.

In our work we will have more terms in the objective, so for compactness of notation, we will realize
the discriminative minimization from Eqn. (I) as follows:

maxmin Lp = CE(Dg(s;),ce, 2

naxmin L g Z (Dr(si), ce,) 2)
K3

Where s; is state 7, ¢y, is the correct class label (was the state s; obtained from an expert vs. from a

non-expert), and C'E is the standard cross entropy loss.

4 A FORMAL DEFINITION OF THE THIRD-PERSON IMITATION LEARNING
PROBLEM

Formally, the third-person imitation learning problem can be stated as follows. Suppose we are given
two Markov Decision Processes M, and M,,. Suppose further there exists a set of traces p =
{(s1,-..,5n) ", which were generated under a policy 7 acting optimally under some unknown
reward R, . In third-person imitation learning, one attempts to recover by proxy through p a policy
g = f(p) which acts optimally with respect to R, .

5 A THIRD-PERSON IMITATION LEARNING ALGORITHM

5.1 GAME FORMULATION

In this section, we discuss a simple algorithm for third-person imitation learning. This algorithm
is able to successfully discriminate between expert and novice policies, even when the policies are
executed under different environments. Subsequently, this discrimination signal can be used to train
expert policies in new domains via RL by training the novice policy to fool the discriminator, thus
forcing it to match the expert policy.

In third-person learning, observations are more typically available rather than direct state access,
so going forward we will work with observations o, instead of states s; as representing the expert
traces. The top row of Figure [§]illustrates what these observations are like in our experiments.

We begin by recalling that in the algorithm proposed by [Ho & Ermon|(2016) the loss in Equation 2]
is utilized to train a discriminator Dp capable of distinguishing expert vs non-expert policies. Un-
fortunately, (2)) will likely fail in cases when the expert and non-expert act in different environments,
since Dg, will quickly learn these differences and use them as a strong classification signal.

To handle the third-person setting, where expert and novice are in different environments, we con-
sider that D works by first extracting features from oy, and then using these features to make a

Published as a conference paper at ICLR 2017

classification. Suppose then that we partition Dp into a feature extractor D and the actual clas-
sifier which assigns probabilities to the outputs of Dr. Overloading notation, we will refer to the
classifier as Dy going forward. For example, in case of a deep neural net representation, D would
correspond to the earlier layers, and Dp, to the later layers. The problem is then to ensure that D
contains no information regarding the rollout’s domain label d, (i.e., expert vs. novice domain).
This can be realized as

maxmin Lp = Z CE(Dgr(Dr(0)), ce;)

S.t. MI(DF(Oi); dl) =0

Where MI is mutual information and hence we have abused notation by using Dg, D, and d; to
mean the classifier, feature extractor, and the domain label respectively as well as distributions over
these objects.

The mutual information term can be instantiated by introducing another classifier Dp, which takes
features produced by Dp and outputs the probability that those features were produced by in the
expert vs. non-expert environment. (See Bridle et al.|(1992); Barber & Agakov| (2005)); Krause et al.
(2010);|Chen et al.| (2016)) for further discussion on instantiating the information term by introducing
another classifier.) If o; = Dp(0;), then the problem can be written as

maxminmax Lr + Lp = Y CE(Dg(0;),cr,) + CE(Dp(0y), dy,) (3)

m9 Dr Dp

In words, we wish to minimize class loss while maximizing domain confusion.

Often, it can be difficult for even humans to judge a static image as expert vs. non-expert because it
does not convey any information about the environmental change affected by the agent’s actions. For
example, if a pointmass is attempting to move to a target location and starts far away from its goal
state, it can be difficult to judge if the policy itself is bad or the initialization was simply unlucky. In
response to this difficulty, we give Dg, access to not only the image at time ¢, but also at some future
time ¢ + n. Define 0, = Dp(o¢) and 044y, = Dp(0445). The classifier then makes a prediction
Dr(0¢,0t4n) = Co.

This renders the following formulation:

w9 Dgr Dp

maxminmaxLgr + Lp = Z CE(Dr(0i,0i4n),ce,) + CE(Dp(0;),dys,) 4

Note we also want to optimize over D, the feature extractor, but it feeds both into Dy and into Dp,
which are competing (hidden under o), which we will address now.

To deal with the competition over Dp, we introduce a function G that acts as the identity when
moving forward through a directed acyclic graph and flips the sign when backpropagating through
the graph. This technique has enjoyed recent success in computer vision. See, for example, (Ganin
& Lempitskyl 2014). With this trick, the problem reduces to its final form

max min _ Lp+Lp =Y CE(Dr(0i,0i1n) ce,) + A CE(Dp(G(0:),d,) (5)
7o Dgr,Dp,Dr Z

In Equation (3)), we flip the gradient’s sign during backpropagation of D with respect to the domain

classification loss. This corresponds to stochastic gradient ascent away from features that are useful

for domain classification, thus ensuring that D produces domain agnostic features. Equation[5|can

be solved efficiently with stochastic gradient descent. Here)\ is a hyperparameter that determines

the trade-off made between the objectives that are competing over Dr.

To ensure sufficient signal for discrimination between expert and non-expert, we collect third-person
demonstrations in the expert domain from both an expert and from a non-expert.

Our complete formulation is graphically summarized in Figure

Published as a conference paper at ICLR 2017

o oLg
Ota4, 26,
F
N N dLg
N aeg Loss Lg
Input o = — o
t+d 1 | gL o Expert vs
& g Non-expert
§ @ B. LaEt:eI
> > Eo
Us
N
— .y / TRPO
[_\ — 5 /" Domain Label vr(ol
. Feature Extractor F N = ’
Input ot w - /
-dlp —
36, dalp /\ Lossly ¢

a0 —

Figure 2: Architecture diagram for third-person imitation learning. Images at time ¢ and ¢ + 4 are
sent through a feature extractor to obtain F'(o;) and F'(o;14). Subsequently, these feature vectors
are reused in two places. First, they are concatenated and used to predict whether the samples are
drawn from expert or non-expert trajectories. Second, F'(o;) is utilized to predict a domain label
(expert vs. novice domain). During backpropogation, the sign on the domain loss Lp is flipped
to destroy information that was useful for distinguishing the two domains. This ensures that the
feature extractor F' is domain agnostic. Finally, the classes probabilities that were computed using
this domain-agnostic feature vector are utilized as a cost signal in TRPO; which is subsequently
utilized to train the novice policy to take expert-like actions and collect further rollouts.

5.2 ALGORITHM
To solve the game formulation in Equation (5), we perform alternating (partial) optimization over
the policy 7y and the reward function and domain confusion encoded through Dr, Dp, DF.

The optimization over Dgr,Dp,Dr is done through stochastic gradient descent with
ADAM [Kingma & Bal(2014).

Our generator (7y) step is similar to the generator step in the algorithm by (Ho & Ermon, [2016). We
simply use — log Dp, as the reward. Using policy gradient methods (TRPO), we train the generator
to minimize this cost and thus push the policy further towards replicating expert behavior. Once the
generator step is done, we start again with the discriminator step. The entire process is summarized
in algorithm 1.

6 EXPERIMENTS

We seek to answer the following questions through experiments:

1. Is it possible to solve the third-person imitation learning problem in simple settings? L.e.,
given a collection of expert image-based rollouts in one domain, is it possible to train a
policy in a different domain that replicates the essence of the original behavior?

2. Does the algorithm we propose benefit from both domain confusion and velocity?

3. How sensitive is our proposed algorithm to the selection of hyper-parameters used in de-
ployment?

4. How sensitive is our proposed algorithm to changes in camera angle?

5. How does our method compare against some reasonable baselines?

Published as a conference paper at ICLR 2017

Algorithm 1 A third-person imitation learning algorithm.

1: Let CE be the standard cross entropy loss.
2: Let G be a function that flips the gradient sign during backpropogation and acts as the identity
map otherwise.
3: Initialize two domains, E and N for the expert and novice.
Initialize a memory bank (2 of expert success and of failure in domain E. Each trajectory w € €2
comprises a rollout of images 0 = 01, ..., 0, . .. 0y, a class label ¢, and a domain label d,.
Initialize D = Dp, DR, Dp, a domain invariant discriminator.
Initialize a novice policy 7.
Initialize numiters, the number of inner policy optimization iterations we wish to run.
for iter in numiters do
9: Sample a set of successes and failures wg from €.
10: Collect on policy samples w
11: Setw =wgUwy.

»

12: Shuffle w

13: for o,cy,dyin w do

14: for o; in o do

15: oy = DF(Ot)

16: Ot44 = DF(0t+4)

17: Lr= CE(DR(O't,O't+4),C[)
18: Lg= CE(DD(Q Jt))7d4)
19: L=XN-Lg+ LR

20: minimize £ with ADAM.
21: end for

22: end for

23: Collect on policy samples wy from 7p.
24: for win wy do

25: for w; in w do

26: oy = DF (Ot)

27: Oi44a = DF (0t+4>

28: é@ ZDR(Ut,Ut+4)

29: r = ¢¢[0], the probability that o;, 0,14 were generated via expert rollouts.
30: Use r to train 7y with via policy gradients (TRPO).

31: end for

32: end for

33: end for

34: return optimized policy g

6.1 ENVIRONMENTS

To evaluate our algorithm, we consider three environments in the MuJoCo physics simulator. There
are two different versions of each environment, an expert variant and a novice variant. Our goal
is to train a cost function that is domain agnostic, and hence can be trained with images on the
expert domain but nevertheless produce a reasonable cost on the novice domain. See Figure 1 for a
visualization of the differences between expert and novice environments for the three tasks.

Point: A pointmass attempts to reach a point in a plane. The color of the target and the camera angle
change between domains.

Reacher: A two DOF arm attempts to reach a designated point in the plane. The camera angle,
the length of the arms, and the color of the target point are changed between domains. Note that
changing the camera angle significantly alters the image background color from largely gray to
roughly 30 percent black. This presents a significant challenge for our method.

Inverted Pendulum: A classic RL task wherein a pendulum must be made to balance via control.
For this domain, We only change the color of the pendulum and not the camera angle. Since there
is no target point, we found that changing the camera angle left the domain invariant representations
with too little information and resulted in a failure case. In contrast to some traditional renderings

Published as a conference paper at ICLR 2017

of this problem, we do not terminate an episode when the agent falls but rather allow data collection
to continue for a fixed horizon.

6.2 EVALUATIONS

Is it possible to solve the third-person imitation learning problem in simple settings? In Figure[3]
we see that our proposed algorithm is indeed able to recover reasonable policies for all three tasks we
examined. Initially, the training is quite unstable due to the domain confusion wreaking havoc on the
learned cost. However, after several iterations the policies eventually head towards reasonable local
minima and the standard deviation over the reward distribution shrinks substantially. Finally, we
note that the extracted feature representations used to complete this task are in fact domain-agnostic,
as seen in Figure[9] Hence, the learning is properly taking place from a third-person perspective.

Reacher Reward vs Iteration Inverted Pendulum Reward vs Iteration Point Reward vs Iteration

\/\ //\/ \/‘\/\/‘/ : /
Al
\ad

N

=
N N AAAA

mean reward

N

mean reward
mean reward

100 0 10

20 5 50 0 15
iteration iteration iteration

Figure 3: Reward vs training iteration for reacher, inverted pendulum, and point environments. The
learning curves are averaged over 5 trials with error bars represent one standard deviation in the
reward distribution at the given point.

% Reacher domain class acc vs iteration Pendulum domain class acc vs iteration Point domain class acc vs iteration

. e

00

domain classfficaiton accuracy
_ domain classificaiton accuracy

domain classfficaiton accuracy

iteration iteration iteration

Figure 4: Domain accuracy vs. training iteration for reacher, inverted pendulum, and point environ-
ments.

Does the algorithm we propose benefit from both domain confusion and the multi-time step input?
We answer this question with the experiments summarized in Figure[5] This experiment compares
our approach with: (i) our approach without the domain confusion loss; (ii) our approach without the
multi-time step input; (iii) our approach without the domain confusion loss and without the multi-
time step input (which is very similar to the approach in|Ho & Ermon|(2016)). We see that adding
domain confusion is essential for getting strong performance in all three experiments. Meanwhile,
adding multi-time step input marginally improves the results. See also Figure [/| for an analysis of
the effects of multi-time step input on the final results.

_velo and domain confusion reacher velo and domain confusion inverted pendulum velo and domain confusion point

20 variable
0 —vanilla

B-a000 variable

v g Zvanilla

dom 2 dom

—velo] —velo

= dom_plus_velo 4 =dom_plus_velo
75

10.0 25 100

Reward
1
§8
‘
B
Reward

:
C

10 20 25 50 50 75
Iteration Iteration Iteration

Figure 5: Reward vs iteration for reacher, inverted pendulum, and point environments with no do-
main confusion and no velocity (red), domain confusion (orange), velocity (brown), and both do-
main confusion and velocity (blue).

Published as a conference paper at ICLR 2017

How sensitive is our proposed algorithm to the selection of hyper-parameters used in deployment?
Figure @ shows the effect of the domain confusion coefficient A, which trades off how much we
should weight the domain confusion objective vs. the standard cost-recovery objective, on the final
performance of the algorithm. Setting A too low results in slower learning and features that are not

domain-invariant. Setting A too high results in an objective that is too quick to destroy information,
which makes it impossible to recover an accurate cost.

For multi-time step input, one must choose the number of look-ahead frames that are utilized. If
too small a window is chosen, the agent’s actions have not affected a large amount of change in
the environment and it is difficult to discern any additional class signal over static images. If too
large a time-frame passes, causality becomes difficult to interpolate and the agent does worse than
simply being trained on static frames. Figure [/|illustrates that no number of look-ahead frames is
consistently optimal across tasks. However, a value of 4 showed good performance over all tasks,
and so this value was utilized in all other experiments.

Reacher Reward vs dom confusion coefficient Pendulum Reward vs dom confusion coefficient

0
-10
20
15
10
20
0.00 0.00

0.25 0.50 075 025 050 075
Domain Confusion Coefficient Domain Confusion Coefficient

Point Reward vs dom confusion coefficient

Reward
Reward
Reward

200
4000
600

0.25 0.50 0.75
Domain Confusion Coefficient

Figure 6: Reward of final trained policy vs domain confusion weight A for reacher, inverted pendu-
lum, and point environments.

s Reacher Reward vs look-ahead frames Inverted Pendulum Reward vs look-ahead frames Point Reward vs look-ahead frames

-1000
00 275
T
oo g1250
-6.25 N 8
'3
25 -1500
6.50
0 5 20 0 5 5 20

5 10 15 5 10 1
Look-ahead frames Look-ahead frames

Reward
Reward

5 10 15
Look-ahead frames

Figure 7: Reward of final trained policy vs number of look-ahead frames for reacher, inverted pen-
dulum, and point environments.

How sensitive is our algorithim to changes in camera angle? We present graphs for the reacher
and point experiments wherein we exam the final reward obtained by a policy trained with third-
person imitation learning vs the camera angle difference between the first-person and third-person
perspective. We omit the inverted double pendulum experiment, as the color and not the camera

angle changes in that setting and we found the case of slowly transitioning the color to be the
definition of uninteresting science.

Published as a conference paper at ICLR 2017

Point Camera Angle vs Reward

-400-

-500-

Reward
&
o
o

=700

-800

10 20 30
Difference in Camera Angle (degrees)

Reacher Camera Angle vs Reward
4.5

-5.0-

Reward

-6.0-

-6.5

5 10 15
Difference in Camera Angle (degrees)

Figure 8: Point and reacher final reward after 20 epochs of third-person imitation learning vs the
camera angle difference between the first and third-person perspective. We see that the point follows
a fairly linear slope in regards to camera angle differences, whereas the reacher environment is more

stochastic against these changes.

Point Experiment Third-Person vs. Baselines

0
!

0---0--2g--" 9" Q---0-"

~0—=-0=--0=-0=-0"

-1000

— Dm‘oa

20552 0-al goes O 0-uuga- Ol ..
-—-0=_ =0~ -0~
-0 O—-g—--0- o—-0--0

_g---0°"" % 0-e.0-- 0---

O-+- Q== Q== O---
-0 b4

~o--0- =0—=0=wg-=-0=~_-g__-p

2
©
z 8
& 8
| o — first on third
o ,/o‘ﬂ - ’/0 -
= 0 ~g—o0 Y o \ o— o first-person
o ~—g—0—0 [+]
8 0~ o 0___0/ ~ o
n o— o -
i third-person
Iteration
Reacher Experiment Third-Person vs. Baselines
T A)
N
.-8- o s \
40'. o -8. ~ s Thg- 0L 0 _ \ H
0 ° R Y ’ Lo o- 0 o-"
s\ AN . . Y o o- o ° 07 o
® 9 °~, 4 ‘g NSl L0 L Tl 00 0si g 3 g .0
. ~ . RN -3
S O BT N o "
° Q, : o o--
g @ ’ s
; \ ; °
2 O-- 0.. o —o0 _ o~ Y ~g—0 o
& 9 °--o o— ~° °o—0 - TN .
0 o—o0 / o o o
AR S —o
o | o—gy o—©0 o
v S —— first on third
° == first-person
el
~ | third-person
)
Iteration

Figure 9: Learning curves for third-person imitation vs. three baselines: 1)RL with true reward, 2)
first-person imitation, 3) attempting to use first-person features on the third-person agent.

How does our method compare against reasonable baselines? We consider the following base-
lines for comparisons against third-person imitation learning. 1) Standard reinforcement learning
with using full state information and the true reward signal. This agent is trained via TRPO. 2)

10

Published as a conference paper at ICLR 2017

Standard GAIL (first-person imitation learning). Here, the agent receives first-person demonstration
and attempts to imitate the correct behavior. This is an upper bound on how well we can expect to
do, since we have the correct perspective. 3) Training a policy using first-person data and applying
it to the third-person environment.

We compare all three of these baselines to third-person imitation learning. As we see in figure
9: 1) Standard RL, which (unlike the imitation learning approaches) has access to full state and
true reward, helps calibrate performance of the other approaches. 2) First-person imitation learning
is faced with a simpler imitation problem and accordingly outperforms third-person imitation, yet
third-person imitation learning is nevertheless competitive. 3) Applying the first-person policy to
the third-person agent fails miserably, illustrating that explicitly considering third-person imitation
is important in these settings.

Somewhat unfortunately, the different reward function scales make it difficult to capture information
on the variance of each learning curve. Consequently, in Appendix A we have included the full
learning curves for these experiments with variance bars, each plotted with an appropriate scale to
examine the variance of the individual curves.

7 DISCUSSION AND FUTURE WORK

In this paper, we presented the problem of third-person imitation learning. We argue that this prob-
lem will be important going forward, as techniques in reinforcement learning and generative adver-
sarial learning improve and the cost of collecting first-person samples remains high. We presented
an algorithm which builds on Generative Adversarial Imitation Learning and is capable of solving
simple third-person imitation tasks.

One promising direction of future work in this area is to jointly train policy features and cost features
at the pixel level, allowing the reuse of image features. Code to train a third person imitation learning
agent on the domains from this paper is presented here: https://github.com/bstadie/
third_person_im

ACKNOWLEDGEMENTS

This work was done partially at OpenAl and partially at Berkeley. Work done at Berkeley was
supported in part by Darpa under the Simplex program and the FunLoL program.

REFERENCES

P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2004.

Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aerobatics through ap-
prenticeship learning. The International Journal of Robotics Research, 2010.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009.

Yusuf Aytar and Andrew Zisserman. Tabula rasa: Model transfer for object category detection. In
2011 International Conference on Computer Vision, pp. 2252-2259. IEEE, 2011.

D. Barber and F. V. Agakov. Kernelized infomax clustering. NIPS, 2005.

A. Boularias, J. Kober, and J. Peters. Relative entropy inverse reinforcement learning. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

J. S. Bridle, A. J. Heading, and D. J. MacKay. Unsupervised classifiers, mutual information and
phantom targets. NIPS, 1992.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore, Eduard
Siackinger, and Roopak Shah. Signature verification using a siamese time delay neural network.
International Journal of Pattern Recognition and Artificial Intelligence, 7(04):669—688, 1993.

11

https://github.com/bstadie/third_person_im
https://github.com/bstadie/third_person_im

Published as a conference paper at ICLR 2017

Sylvain Calinon. Robot programming by demonstration. EPFL Press, 2009.

Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing, and generalizing a
task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics), 37(2):286-298, 2007.

Malinda Carpenter, Josep Call, and Michael Tomasello. Understanding prior intentions enables
two—year—olds to imitatively learn a complex task. Child development, 73(5):1431-1441, 2002.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
gan: Interpretable representation learning by information maximizing generative adversarial nets.
NIPS, 2016.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 1, pp. 539-546. IEEE, 2005.

A. Doerr, N. Ratliff, J. Bohg, M. Toussaint, and S. Schaal. Direct loss minimization inverse optimal
control. In Proceedings of Robotics: Science and Systems (R:SS), Rome, Italy, July 2015.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML,
pp. 647-655, 2014.

Lixin Duan, Dong Xu, and Ivor Tsang. Learning with augmented features for heterogeneous domain
adaptation. arXiv preprint arXiv:1206.4660, 2012.

C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. ICML, 2016.

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. Arxiv preprint
1409.7495, 2014.

G Gioioso, G Salvietti, M Malvezzi, and D Prattichizzo. An object-based approach to map human
hand synergies onto robotic hands with dissimilar kinematics. Robotics: Science and Systems
VI, pp. 97, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, pp. 2672-2680, 2014.

Abhishek Gupta, Clemens Eppner, Sergey Levine, and Pieter Abbeel. Learning dexterous manip-
ulation for a soft robotic hand from human demonstration. arXiv preprint arXiv:1603.06348,
2016.

J. Ho and S. Ermon. Generative adversarial imitation learning. arXiv pre-print: 1606.03476, pp.
1061-1068, 2016.

Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, and Kate Saenko. Efficient learning of
domain-invariant image representations. arXiv preprint arXiv:1301.3224,2013.

M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal. Learning objective functions for manipula-
tion. In International Conference on Robotics and Automation (ICRA), 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2014.

A. Krause, P. Perona, and R. G. Gomes. Discriminative clustering by regularized information max-
imization. NIPS, 2010.

Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain adaptation

using asymmetric kernel transforms. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pp. 1785-1792. IEEE, 2011.

12

Published as a conference paper at ICLR 2017

S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning with gaussian pro-
cesses. In Advances in Neural Information Processing Systems (NIPS), 2011.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1-40, 2016.

Mingsheng Long and Jianmin Wang. Learning transferable features with deep adaptation networks.
CoRR, abs/1502.02791, 1:2, 2015.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds
and algorithms. arXiv preprint arXiv:0902.3430, 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. arXiv preprint arXiv:1602.01783, 2016.

Chrystopher L Nehaniv. Nine billion correspondence problems. Imitation and Social Learning in
Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions, Cambridge
University Press, 8:10, 2007.

Chrystopher L Nehaniv and Kerstin Dautenhahn. Like me?-measures of correspondence and imita-
tion. Cybernetics & Systems, 32(1-2):11-51, 2001.

A. Ng, S. Russell, et al. Algorithms for inverse reinforcement learning. In International Conference
on Machine Learning (ICML), 2000.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems, pp. 305-313, 1989.

D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In AAAI Conference on
Artificial Intelligence, volume 51, 2007.

N. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In International Con-
ference on Machine Learning (ICML), 2006.

N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt. Boosting structured prediction for imitation
learning. 2007.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In AISTATS, volume 1, pp. 6, 2011.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3
(6):233-242, 1999.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization. Arxiv preprint 1502.05477, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

Aaron Shon, Keith Grochow, Aaron Hertzmann, and Rajesh P Rao. Learning shared latent structure
for image synthesis and robotic imitation. In Advances in Neural Information Processing Systems,
pp. 1233-1240, 2005.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Xingchao Peng, Pieter Abbeel, Sergey
Levine, Kate Saenko, and Trevor Darrell. Towards adapting deep visuomotor representations
from simulated to real environments. arXiv preprint arXiv:1511.07111,2015.

13

Published as a conference paper at ICLR 2017

M. Wulfmeier, P. Ondruska, and I. Posner. Maximum entropy deep inverse reinforcement learning.
arXiv preprint arXiv:1507.04888, 2015.

Jun Yang, Rong Yan, and Alexander G Hauptmann. Cross-domain video concept detection using
adaptive svms. In Proceedings of the 15th ACM international conference on Multimedia, pp.
188-197. ACM, 2007.

B. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement learning.
In AAAI Conference on Artificial Intelligence, 2008.

8 APPENDIX A: LEARNING CURVES FOR BASELINES

Here, we plot the learning curves for each of the baselines mentioned in the experiments section as
a standalone plot. This allows one to better examine the variance of each individual learning curve.

Inverted DP RL Reward vs lteration Inverted DP First Person Imitation Reward vs Iteration

50

I3
=}

S

S

° — el
40
=t c
3 ‘ / 3
€30 _//\ / E20 \ /\
N
/ ~
201 10 \V
25 5.0 7.5 10.0 25 5.0 7.5 10.0
iteration iteration
DP First Person Policy on Third Person Agent Inverted DP Third Person Imitation Reward vs Iteration
225
40
20.0
T yuu T
© ©
30 4
517.5 /\/ g /
c c
8150 /\ / 3 ///\/
IS , \ £20 P
v / —~—1
12.5
4
10
10.0-
25 5.0 7.5 10.0 25 5.0 7.5 10.0
iteration iteration

Figure 10: Inverted Pendulum performance under a policy trained on RL, first-person imitation
learning, third-person imitation, and a first-person policy applied to a third-person agent.

14

Published as a conference paper at ICLR 2017

Reacher RL Reward vs Iteration
7\

A AL \
: /\// ARVAV: / _, P~

mean reward

10 .15
iteration

Reacher First Person Policy on Third Person Agent

/\‘/\//\/\/\

V

fg \ ie i~/

mean reward

0 .15
iteration

20 25

Reacher First Person Imitation Reward vs Iteration

N\ N //_
/ \\/\ b3

&

mean reward

JTTAA
) \l /\v/\/

10 .15 20 25
iteration

Reacher Third Person Imitation Reward vs lteration
6

mean reward
L
\
<

0 .15
iteration

Figure 11: Reacher performance under a policy trained on RL, first-person imitation learning, third-
person imitation, and a first-person policy applied to a third-person agent.

Point RL Reward vs Iteration

N
133
=}

| /N

mean reward

-750-

10 15
iteration

Point First Person Policy on Third Person Agent

-4000

/\/\ | —1

mean reward

5000 /\/

—

-6000

25 7.5 10.0

5.0
iteration

20 25

Point First Person Imitation Reward vs Iteration
-600

A e

2
©
g
c N
§ N
g |
-1000 \
0 5 10 15 20 25
iteration
Point Third Person Imitation Reward vs Iteration
-1000 /
® /\/\/ CT]
g A
£-2000 //
é /\//
e
N

-3000

0 . .15
iteration

Figure 12: Point performance under a policy trained on RL, first-person imitation learning, third-
person imitation, and a first-person policy applied to a third-person agent.

15

Published as a conference paper at ICLR 2017

9 APPENDIX B: ARCHITECTURE PARAMETERS

Joint Feature Extractor: Input is images are size 50 x 50 with 3 channels, RGB. Layers are 2
convolutional layers each followed by a max pooling layer of size 2. Layers use 5 filters of size 3
each.

Domain Discriminator and the Class Discriminator: Input is domain agnostic output of con-
volutional layers. Layers are two feed forward layers of size 128 followed by a final feed forward
layer of size 2 and a soft-max layer to get the log probabilities.

ADAM is used for discriminator training with a learning rate of 0.001. The RL generator uses the
off-the-shelf TRPO implementation available in RLLab.

16

	Introduction
	Related Work
	Background and Preliminaries
	A Formal Definition Of The Third-Person Imitation Learning Problem
	A Third-Person Imitation Learning Algorithm
	Game Formulation
	Algorithm

	Experiments
	Environments
	Evaluations

	Discussion and Future Work
	Appendix A: Learning Curves for baselines
	Appendix B: Architecture Parameters

