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ABSTRACT

Decades of research on the neural code underlying spatial navigation have re-
vealed a diverse set of neural response properties. The Entorhinal Cortex (EC) of
the mammalian brain contains a rich set of spatial correlates, including grid cells
which encode space using tessellating patterns. However, the mechanisms and
functional significance of these spatial representations remain largely mysterious.
As a new way to understand these neural representations, we trained recurrent
neural networks (RNNs) to perform navigation tasks in 2D arenas based on veloc-
ity inputs. Surprisingly, we find that grid-like spatial response patterns emerge in
trained networks, along with units that exhibit other spatial correlates, including
border cells and band-like cells. All these different functional types of neurons
have been observed experimentally. The order of the emergence of grid-like and
border cells is also consistent with observations from developmental studies. To-
gether, our results suggest that grid cells, border cells and others as observed in EC
may be a natural solution for representing space efficiently given the predominant
recurrent connections in the neural circuits.

1 INTRODUCTION

Understanding the neural code in the brain has long been driven by studying feed-forward architec-
tures, starting from Hubel and Wiesel’s famous proposal on the origin of orientation selectivity in
primary visual cortex (Hubel & Wiesel, 1962). Inspired by the recent development in deep learn-
ing (Krizhevsky et al., 2012; LeCun et al., 2015; Hochreiter & Schmidhuber, 1997; Mnih et al.,
2015), there has been a burst of interest in applying deep feedforward models, in particular convolu-
tional neural networks (CNN) (LeCun et al., 1998), to study the sensory systems, which hierarchi-
cally extract useful features from sensory inputs (see e.g., Yamins et al. (2014); Kriegeskorte (2015);
Kietzmann et al. (2017); Yamins & DiCarlo (2016)).

For more cognitive tasks, neural systems often need to maintain certain internal representations
of relevant variables in the absence of external stimuli- a process that requires more than feature
extraction. We will focus on spatial navigation, which typically requires the brain to maintain a
representation of self-location and update it according to the animal’s movements and landmarks
of the environment. Physiological studies done in rodents and other mammals (including humans,
non-human primates and bats) have revealed a variety of neural correlates of space in Hippocampus
and Entorhinal Cortex (EC), including place cells (O’Keefe, 1976), grid cells (Fyhn et al., 2004;
Hafting et al., 2005; Fyhn et al., 2008; Yartsev et al., 2011; Killian et al., 2012; Jacobs et al., 2013),
along with border cells (Solstad et al., 2008), band-like cells (Krupic et al., 2012) and others (see
Figure 1a). In particular, each grid cell only fires when the animal occupies a distinct set of physical
locations, and strikingly these locations lie on a lattice. The study of the neural underpinning of
spatial cognition has provided an important window into how high-level cognitive functions are
supported in the brain (Moser et al., 2008; Aronov et al., 2017).
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How might the spatial navigation task be solved using a network of neurons? Recurrent neural net-
works (RNNs) (Hochreiter & Schmidhuber, 1997; Graves et al., 2013; Oord et al., 2016; Theis &
Bethge, 2015; Gregor et al., 2015; Sussillo et al., 2015) seem particularly useful for these tasks.
Indeed, recurrent-based continuous attractor networks have been one popular type of models pro-
posed for the formation of grid cells (McNaughton et al., 2006; Burak & Fiete, 2009; Couey et al.,
2013) and place cells (Samsonovich & McNaughton, 1997). Such models have provided valuable
insights into one set of possible mechanisms that could support the formation of the grids. How-
ever, these models typically rely on fine-tuned connectivity patterns, in particular the models need a
subtle yet systematic asymmetry in the connectivity pattern to move the attractor state according to
the animal’s own movement. The existence of such a specific 2D connectivity in rodent EC remains
unclear. Additionally, previous models have mainly focused on grid cells, while other types of re-
sponses that co-exist in the Entorhinal Cortex have been largely ignored. It would be useful to have
a unified model that can simultaneously explain different types of neural responses in EC.

Motivated by these considerations, here we present an alternative modeling approach for under-
standing the representation of space in the neural system. Specifically, we trained a RNN to perform
some spatial navigation tasks. By leveraging the recent development in RNN training and knowl-
edge of the navigation system in the brain, we show that training a RNN with biologically relevant
constraints naturally gives rise to a variety of spatial response profiles as observed in EC, including
grid-like responses. To our knowledge, this is the first study to show that grid-like responses could
emerge from training a RNN to perform navigation. Our result implies that the neural representation
in EC may be seen as a natural way for the brain to solve the navigation task efficiently (Wei et al.,
2015). More generally, it suggests that RNNs can be a powerful tool for understanding the neural
mechanisms of certain high-level cognitive functions.
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Figure 1: a) Example neural data showing different kinds of neural correlates underlying spatial nav-
igation in EC. All figures are replotted from previous publications. From left to right: a “grid cell”
recorded when an animal navigates in a square environment, replotted from Krupic et al. (2012),
with the heat map representing the firing rate of this neuron as a function of the animal’s location
(red corresponds to high firing rate); a “band-like” cell from Krupic et al. (2012); a border cell from
Solstad et al. (2008); an irregular spatially tuned cell from Diehl et al. (2017); a “speed cell” from
Kropff et al. (2015), which exhibits roughly linear dependence on the rodent’s running speed; a
“heading direction cell” from Sargolini et al. (2006), which shows systematic change of firing rate
depending on animal’s heading direction. b) The network consists of N = 100 recurrently con-
nected units (or neurons) which receive two external inputs, representing the animal’s speed and
heading direction. The two outputs linearly weight the neurons in the RNN. The goal of training is
to make the responses of the two output neurons accurately represent the animal’s physical location.
c) Typical trajectory after training. As shown, the output of the RNN can accurately, though not
perfectly, track the animal’s location during navigation.
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2 MODEL

2.1 MODEL DESCRIPTION

Our network model consists of a set of recurrently connected units (N = 100). The dynamics of
each unit in the network ui(t) is governed by the standard continuous-time RNN equation:

τ
dxi(t)

dt
= −xi(t) +

N∑
j=1

W rec
ij uj(t) +

Nin∑
k=1

W in
ik Ik(t) + bi + ξi(t) (1)

for i = 1, . . . , N . The activity of each unit, ui(t), is related to the activation of that unit, xi(t),
through a nonlinearity which in this study we take to be ui(t) = tanh(xi(t)). Each unit receives
input from other units through the recurrent weight matrix W rec and also receives external input,
I(t), that enters the network through the weight matrix W in. Each unit has two sources of bias,
bi which is learned and ξi(t) which represents noise intrinsic to the network and is taken to be
Gaussian with zero mean and constant variance. The network was simulated using the Euler method
for T = 500 timesteps of duration τ/10.

To perform a 2D navigation task with the RNN, we linearly combine the firing rates of units in
the network to estimate the current location of the animal. The responses of the two linear readout
neurons, y1(t) and y2(t), are given by the following equation:

yj(t) =

N∑
i=1

W out
ji ui(t) (2)

2.2 INPUT TO THE NETWORK

The network inputs and outputs were inspired by simple spatial navigation tasks in 2D open envi-
ronments. The task resembles dead-reckoning (sometimes referred to as path integration), which is
ethologically relevant for many animal species (Darwin, 1873; Mittelstaedt & Mittelstaedt, 1980;
Etienne & Jeffery, 2004; McNaughton et al., 2006). To be more specific, the inputs to the network
were the animal’s speed and direction at each time step. Experimentally, it has been shown that the
velocity signals exist in EC (Sargolini et al., 2006; Kropff et al., 2015; Hinman et al., 2016), and
there is also evidence that such signals are necessary for grid formation (Winter et al., 2015a;b).

Throughout the paper, we adopt the common assumption that the head direction of the animal coin-
cides with the actual moving direction. The outputs were the x- and y-coordinates of the integrated
position. The direction of the animal is modeled by modified Brownian motion to increase the
probability of straight-runs, in order to be consistent with the typical rodent’s behavior in an open
environment. The usage of such simple movement statistics has the advantage of having full control
of the simulated trajectories. However, for future work it would be very interesting to test the model
using different animals’ real movement trajectories to see how the results might change.

Special care is taken when the animal is close to the boundary. The boundary of the environment
will affect the statistics of the movement, as the animal cannot cross the boundary. This fact was
reflected in the model by re-sampling the angular input variable until the input angle did not lead
the animal outside the boundary. In the simulations shown below, the animal always starts from the
center of the arena, but we verified that the results are insensitive to the starting locations.

2.3 TRAINING

We optimized the network parameters W rec, W in, b and W out to minimize the squared error in
equation (3) between target x- and y-coordinates from a two dimensional navigation task (performed
in rectangular, hexagonal, and triangular arenas) and the network outputs generated according to
equation (2).

E =
1

MTNout

M,T,Nout∑
m,t,j=1

(yj(t,m)− ytargetj (t,m))2 (3)

Parameters were updated with the Hessian-free algorithm (Martens & Sutskever, 2011) using mini-
batches of size M = 500 trials. In addition to minimizing the error function in equation (3) we
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regularized the input and output weights according to equation (4) and the squared firing rates of the
units (referred to as metabolic cost) according to equation (5). In sum, the training aims to minimize
a loss function, that consists of the error of the animal, the metabolic cost, and a penalty for large
network parameters.

RL2 =
1

NNin

N,Nin∑
i,j=1

(W in
ij )

2 +
1

NNout

Nout,N∑
i,j=1

(W out
ij )2 (4)

RFR =
1

NTM

N,T,M∑
i,t,m=1

ui(t,m)2 (5)

We find that the results are qualitatively insensitive to the initialization schemes used for the re-
current weight matrix W rec. For the results presented in this paper, simulations in the hexagonal
environment were obtained by initializing the elements of W rec to be zero mean Gaussian random
variables with variance 1.52/N , and simulations in the square and triangular environments were
initialized with an orthogonal W rec (Saxe et al., 2014). We initialized the bias b and output weights
W out to be zero. The elements of W in were zero mean Gaussian variables with variance 1/Nin.
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Figure 2: Different types of spatial selective responses of units in the trained RNN. Example sim-
ulation results for three different environments (square, triangular, hexagon) are presented. Blue
(yellow) represents low (high) activity. a) Grid-like responses. b) Band-like responses; c) Border-
related responses; d) Spatially irregular responses. These responses can be spatially selective but
they do not form a regular pattern defined in the conventional sense.

3 RESULTS

We run simulation experiments in arenas with different boundary shapes, including square, triangu-
lar and hexagonal. Figure 1c shows a typical example of the model performance after training; the
network (red trace) accurately tracks the animal’s actual path (black).

3.1 TUNING PROPERTIES OF THE MODEL NEURONS

We are mostly interested in what kind of representation the RNN has learned to solve this navigation
task, and whether such a representation resembles the response properties of neurons in EC (Moser
et al., 2008).

3.1.1 SPATIAL TUNING

To test whether the trained RNN developed location-selective representations, we plot individual
neurons’ mean activity level as a function of the animal’s location during spatial exploration. Note
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that these average response profiles should not be confused with the linear filters typically shown in
feedforward networks. Surprisingly, we find neurons in the trained RNN show a range of interesting
spatial response profiles. Examination of these response profiles suggests they can be classified into
distinct functional types. Importantly, as we will show, these distinct spatial response profiles can be
mapped naturally to known physiology in EC. The spatial responses of all units in trained networks
are shown in the Appendix.

Grid-like responses Most interestingly, we find some of the units in the RNN exhibit clear grid-like
responses (Figure 2a). These firing patterns typically exhibit multiple firing fields, with each firing
field exhibiting roughly circular symmetric or ellipse shape. Furthermore, the firing fields are highly
structured, i.e., when combined, are arranged on a regular lattice. Furthermore, the structure of the
response lattice depends on the shape of the boundary. In particular, training the network to perform
self-localization in a square environment tends to give rectangular grids. In hexagonal and triangular
environments, the grids are closer to triangular.

Experimentally, it is shown that (medial) EC contains so-called grid cells which exhibit multiple
firing fields that lie on a regular grid (Fyhn et al., 2004; Hafting et al., 2005). The grid-like firing
patterns in our simulation are reminiscent of the grid cells in rodents and other mammals. However,
we also notice that the the grid-like model responses typically exhibit few periods, not as many
as experimental data (see Figure 1a). It is possible that using a larger network might reveal finer
grid-patterns in our model. Nonetheless, it is surprising that the gird-like spatial representations can
develop in our model, given there is no periodicity in the input. Another potential concern is that,
experimentally it is reported that the grids are often on the corners of a triangular lattice (Hafting
et al., 2005) even in square environments (see Figure 1a), though the grids are somewhat influenced
by the shape of the environment. However, the rats in these experiments presumable had spatial
experience in other environments with various boundary shapes. Experimentally, it would be inter-
esting to see if grid cells would lie on a square lattice instead if the rats are raised in a single square
environment - a situation we are simulating here.

Border responses Many neurons in the RNN exhibit selectivity to the boundary (Figure 2c). Typi-
cally, they only encode a portion of the boundary, e.g. one piece of wall in a square shaped environ-
ment. Such properties are similar to the border cells discovered in rodent EC (Solstad et al., 2008;
Savelli et al., 2008; Lever et al., 2009). Experimentally, border cells mainly fire along one piece of
wall, although some have been observed to fire along multiple borders or along the whole bound-
ary of the environment; interestingly, these multi-border responses were also observed in some RNN
models. Currently, it is unclear how the boundary-like response profiles emerge (Solstad et al., 2008;
Savelli et al., 2008; Lever et al., 2009). Our model points to the possibility that the border cells may
emerge without the presence of tactile cues. Furthermore, it suggests that border cell formation may
be related to the movement statistics of the animals, i.e. due to the asymmetry of the movement
statistics along the boundary.

Band-like responses Interestingly, some neurons in the RNN exhibit band-like responses (Figure
2b). In most of our simulations, these bands tend to be parallel to one of the boundaries. For
some of the units, one of the bands overlaps the boundary, but for others, that is not the case.
Experimentally, neurons with periodic-like firing patterns have been recently reported in rodent EC.
In one study, it has been reported that a substantial portion of cells in EC exhibit band-like firing
characteristics (Krupic et al., 2012). However, we note that based on the reported data in Krupic
et al. (2012), the band pattern is not as clear as in our model.

Spatially-stable but non-regular responses Besides the units described above, most of the remain-
ing units also exhibit stable spatial responses, but they do not belong to the above categories. These
response profiles can exhibit either one large irregular firing field; or multiple circular firing fields,
but these firing fields do not show a regular pattern. Experimentally these types of cells have also
been observed. In fact, it is recently reported that the non-grid spatial cells constitute a large portion
of the neurons in Layer II and III of rodent EC (Diehl et al., 2017).

3.1.2 SPEED TUNING AND HEAD DIRECTION TUNING

Speed tuning We next ask how neurons in the RNN are tuned to the inputs. Many of the model
neurons exhibit linear responses to the running speed of the animal, while some neurons show no
selectivity to speed, as suggested by the near-flat response functions. Example response profiles are
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Figure 3: Direction tuning and speed tuning for nine example units in an RNN trained in a triangular
arena. For each unit, we show the spatial tuning, (head) directional tuning, speed tuning respectively,
from left to right. a,b,c) The three model neurons show strong directional tuning, but the spatial
tuning is weak and irregular. The three neurons also exhibit linear speed tuning. d,e,f) The three
neurons exhibit grid-like firing patterns, and clear speed tuning. The strength of their direction
tuning differ. g,h) Border cells exhibit weak and a bit complex directional tuning and almost no
speed tuning. i) This band cell shows weak directional tuning, but strong speed tuning.

shown in Figure 3. Interestingly, we observe that the model border cells tend to have almost zero
speed-tuning (e.g., see Figure 3g,h).

Head direction tuning A substantial portion of the model neurons show direction tuning. There
are a diversity of direction tuning profiles, both in terms of the strength of the tuning and their pre-
ferred direction. Example tuning curves are shown in Figure 3, and the direction tuning curves of
a complete population are shown in the Appendix. Interestingly, in general model neurons which
show the strongest head direction tuning do not show a clear spatial firing pattern (see Figure 3a,b,c).
This suggests that there are a group of neurons which are mostly responsible for encoding the direc-
tion. We also notice that neurons with clear grid-like firing can exhibit a variety of direction tuning
strengths, from weak to strong (Figure 3d,e,f). In the Appendix, we quantify the relation between
these different tuning properties at the whole population level, which show somewhat complex de-
pendence.

Experimentally, the heading direction tuning in EC is well-known, e.g., Sargolini et al. (2006). Both
the grid and non-grid cells in EC exhibit head direction tuning (Sargolini et al., 2006). Furthermore,
the linear speed dependence of the model neurons is similar to the properties of speed cells reported
recently in EC (Kropff et al., 2015). Our result is also consistent with another recent study reporting
that the majority of neurons in EC exhibit some amount of speed tuning (Hinman et al., 2016).
It remains an open question experimentally, at a population level, how different types of tuning
characteristics in EC relate to each other.

3.1.3 DEVELOPMENT OF THE TUNING PROPERTIES

We next investigate how the spatial response profiles evolve as learning/training progresses. We re-
port two main observations. First, neurons that fire selectively along the boundary typically emerge
first. Second, the grid-like responses with finer spatial tuning patterns only emerge later in train-
ing. For visualization, we perform dimensionality reduction using the t-SNE algorithm (Maaten &
Hinton, 2008). This algorithm embeds 100 model neurons during three phases of training (early,
intermediate, and late) into a two-dimensional space according to the similarity of their temporal
responses. Here the similarity metric is taken to be firing rate correlation. In this 2D space as shown
in Figure 4a, border cell representations appear early and stably persist through the end of training.
Furthermore, early during training all responses are similar to the border related responses. In con-
trast, grid-like cells typically undergo a substantial change in firing pattern during training before
settling into their final grid-like representation (Figure 4b).

The developmental time line of the grid-like cells and border cells is roughly consistent with de-
velopmental studies in rodents. Experimentally, it is known that border cells emerge earlier in de-
velopment, and they exist at about 2 weeks after the rat is born (Bjerknes et al., 2014). The grid
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cells mature only at about 4 weeks after birth (Langston et al., 2010; Wills et al., 2010; Bjerknes
et al., 2014). Furthermore, our simulations suggest the reason why border cells emerge earlier in
development may be that computationally it is easier to wire-up a network that gives rise to border
cell responses.
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Figure 4: Development of border cells and grid-like cells. Early during training all responses are
similar to the border related responses, and only as training continues do the grid-like cells emerge.
We perform dimensionality reduction using the t-SNE algorithm on the firing rates of the neu-
rons. Each dot represents one neuron (N = 100), and the color represents different training stages
(early/intermediate/late shown in blue/cyan/yellow). Each line shows the trajectory of a single high-
lighted neuron as its firing responses evolve during training. In panel a), we highlight the border
representation. It appears there are four clusters of border cells, each responding to one wall of a
square environment (spatial responses from four of these border cells are inset). These cells’ re-
sponse profiles appear early and stably persist through training, illustrated by the short distance they
travel in this space. In b), we show that the neurons which eventually become grid cells initially have
tuning profiles similar to the border cells but then change their tuning substantially during learning.
As a natural consequence, they need to travel a long distance in this space between the early and late
phase of the training. Spatial responses are shown for four of these grid-like cells during the late
phase of training.

3.2 THE IMPORTANCE OF REGULARIZATION

We find appropriate regularizations of the RNN to be crucial for the emergence of grid-like repre-
sentations. We only observed grid-like representations when the network was encouraged to store
information while perturbed by noise. This was accomplished by setting the speed input to zero, e.g.
zero speed 90% of the time, and adding Gaussian noise to the network (ξi(t) in equation (1)); the
precise method for setting the speed input to zero and the value of the noise variance is not crucial
for our simulations to develop grid-like representations. The cost function which aims to capture
the penalization on the metabolic cost of the neural activity also acts as an important regulariza-
tion. Our simulations show that the grid-like representation did not emerge without this metabolic
cost. In Figure 5, we show typical simulation results for a square environment, with and without
proper metabolic regularization. In the Appendix, we illustrate the effect of regularization further,
in particular the role of injecting noise into the RNN units.

Our results are consistent with the general notion on the importance of incorporating proper con-
straint for learning useful representations in neural networks (Bengio et al., 2013). Furthermore, it
suggests that, to learn a model with response properties similar to neural systems it may be necessary
to incorporate the relevant constraints, e.g., noise and metabolic cost.

3.3 ERROR CORRECTION AROUND THE BOUNDARY

One natural question is whether the trained RNNs are able to perform localization when the path
length exceeds the typical length used during training (500 steps), in particular given that noise in
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a b

Figure 5: Complete set of spatial response profiles for 100 neurons in a RNN trained in a square
environment. a) Without proper regularization, complex and periodic spatial response patterns do
not emerge. b) With proper regularization, a rich set of periodic response patterns emerge, including
grid-like responses. Regularization can also be adjusted to achieve spatial profiles intermediate
between these two examples.
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Figure 6: Error-correction happens at the boundary and the error is stable over time. At the boundary,
the direction is resampled to avoid input velocities that lead to a path extending beyond the boundary
of the environment. These changing input statistics at the boundary, termed a boundary interaction,
are the only cue the RNN receives about the boundary. We find that the RNN uses the boundary
interactions to correct the accumulated error between the true integrated input and its prediction
based on the linear readout of equation (2). Panel a), the mean squared error increases when there
are no boundary interactions, but then decreases after a boundary interaction, with more boundary
interactions leading to greater error reduction. In the absence of further boundary interaction, the
squared error would gradually increase again (blue curve) at roughly a constant rate. b) The network
was trained using mini-batches of 500 timesteps but has stable error over a duration at least four
orders of magnitude larger. The error of the RNN output (mean and standard deviation shown in
black, computed based on 10000 timesteps) is compared to the error that would be achieved by an
RNN outputting the best constant values (red).

the network would gradually accumulate, leading to a decrease in localization performance. We test
this by simulating paths that are several orders of magnitude longer. Somewhat surprisingly, we find
the RNNs still perform well (Figure 6b). In fact, the squared error (averaged over every 10000 steps)
is stable. The spatial response profiles of individual units also remain stable. This implies that the
RNNs have acquired intrinsic error-correction mechanisms during training.

As shown earlier, during training some of the RNN units develop boundary-related firing (Figure 2c),
presumably by exploiting the change of input statistics around the boundary. We hypothesize that
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boundary interactions may enable error-correction through signals based on these boundary-related
activities. Indeed, we find that boundary interactions can dramatically reduce the accumulated er-
ror (Figure 6a). Figure 6a shows that, without boundary interactions, on average the squared error
grows roughly linearly as expected, however, interactions with the boundaries substantially reduce
the error, and more frequent boundary interactions can reduce the error further. Error-correction on
grid cells via boundary interactions has been proposed (Hardcastle et al., 2015; Pollock et al., 2017),
however, we emphasize that the model proposed here develops the grid-like responses, boundary
responses and the error-correction mechanisms all within the same neural network, thus potentially
providing a unifying account of a diverse set of phenomena.

4 DISCUSSION

In this paper, we trained RNNs to perform path integration (dead-reckoning) in 2D arenas. We
found that after training RNNs with appropriate regularization, the model neurons exhibit a variety
of spatial and velocity tuning profiles that match neurophysiology in EC. What’s more, there is
also similarity in terms of when these distinct neuron types emerge during training/development.
The EC has long been thought to be involved in path integration and localization of the animal’s
location (Moser et al., 2008). The general agreement between the different response properties
in our model and the neurophysiology provide strong evidence supporting the hypothesis that the
neural population in EC may provide an efficient code for representation self-locations based on the
velocity input.

Recently, there has been increased interest in using complex neural network models to understand
the neural code. But the focus has been on using feedforward architectures, in particular CNNs (Le-
Cun et al., 1998). Given the abundant recurrent connections in the brain, it seems a particularly
fruitful avenue to take advantage of the recent development in RNNs to help with neuroscience
questions (Mante et al., 2013; Song et al., 2016; Miconi, 2017; Sussillo et al., 2015). Here, we only
show one instance following this approach. However, the insight from this work could be general,
and potentially useful for other cognitive functions as well.

The finding that metabolic constraints lead to the emergence of grid-like responses may be seen
as conceptually related to the efficient coding hypothesis in visual processing (Barlow, 1961), in
particular the seminal work on the emergence of the V1-like Gabor filters in a sparse coding model
by Olshausen & Field (1996). Indeed, our work is partly inspired by these results. While there
are conceptual similarities, however, we should also note there are differences between the sparse
coding work and ours. First, the sparsity constraint in sparse coding can be naturally viewed as
a particular prior while in the context of the recurrent network, it is difficult to interpret that way.
Second, the grid-like responses are not the most sparse solution one could imagine. In fact, they are
still quite dense compared to a more spatially localized representation. Third, the grid-like patterns
that emerged in our network are not filters based on the raw input, rather the velocity inputs need to
be integrated first in order to encode spatial locations. Our work is also inspired by recent work using
the efficient coding idea to explain the functional architecture of the grid cells (Wei et al., 2015). It
has been shown that efficient coding considerations could explain the particular set of grid scales
observed in rodents (Stensola et al., 2012). However, in that work, the firing patterns of the neurons
are assumed to have a lattice structure to start with. Furthermore, our work is related to the study by
Sussillo and others (Sussillo et al., 2015), in which they show that regularization of RNN models are
important for generating solutions that are similar to the neural activity observed in motor cortex.
In Sussillo et al., a smoothness constraint together with others lead to simple oscillatory neural
dynamics that well matches the neural data. We have not incorporated a smoothness constraint into
our network.

Additionally, we note that there are a few recent studies which use place cells as the input to generate
grid cells (Dordek et al., 2016; Stachenfeld et al., 2016), which are fundamentally different from
our work. In these feedforward network models, the grid cells essentially perform dimensionality
reduction based on the spatial input from place cells. However, the main issue with these models
is that, it is unclear how place cells acquire spatial tuning in the first place. To the contrary, our
model takes the animal’s velocity as the input, and addresses the question of how the spatial tuning
can be generated from such input, which are known to exist in EC (Sargolini et al., 2006; Kropff
et al., 2015). In another related study (Kanitscheider & Fiete, 2016), the authors train a RNN with
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LSTM units (Hochreiter & Schmidhuber, 1997) to perform different navigation tasks. However, no
grid-like spatial firing patterns are reported.

Although our model shows a qualitative match to the neural responses observed in the EC, nonethe-
less it has several major limitations, with each offering interesting future research directions. First,
the learning rule we use seems to be biologically implausible. We are interested in exploring how a
more biologically plausible learning rule could give rise to similar results (Lillicrap et al., 2016; Mi-
coni, 2017; Guerguiev et al., 2017). Second, the simulation results do not show a variety of spatial
scales in grid-like cells. Experimentally, it is known that grid cells have multiple spatial scales, that
scale geometrically with a ratio 1.4 (Stensola et al., 2012), and this particular scale ratio is predicted
by efficient coding of space (Wei et al., 2015). We are investigating how to modify the model to
get a hierarchy of spatial scales, perhaps by incorporating more neurons or modifying the regular-
ization. Last but not least, we have focused on the representation produced by the trained RNN.
An equally important set of questions concern how the networks actually support the generation of
such a representation. As a preliminary effort, we have examined the connectivity patterns of the
trained network, and they do not seem to resemble the connectivity patterns required by standard
attractor network models. Maybe this should not be seen as too surprising. After all, the trained
networks can produce a diverse set of neural responses, while the previous models only led to grid
responses. It would be interesting for future work to systematically examine the questions related to
the underlying mechanisms.
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A TRIANGULAR ENVIRONMENT

Noise	1,	Metabolic	0	 Noise	0,	Metabolic	1	

Noise and metabolic cost are important for grid-like representations. The figure on the left shows
the spatial responses for a network trained with noise and no metabolic cost. The figure on the right
shows the spatial responses for a network trained with no noise and the metabolic cost.
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B RECTANGULAR ENVIRONMENT
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C HEXAGONAL ENVIRONMENT
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D RELATION BETWEEN SPEED, DIRECTION, AND SPATIAL SELECTIVITY

To quantify the speed selectivity of each unit we first fit a line to the tuning curve of unit activity as
a function of speed. The speed selectivity is the absolute value of the slope. If the unit activity is not
modulated by speed then the speed selectivity is 0. To quantify the direction selectivity of each unit
we calculated the average unit activity as a function of direction input and then took the maximum
minus minimum of this tuning curve. If the unit activity is not modulated by direction then the
direction selectivity is 0. To quantify the spatial selectivity we used lifetime sparseness (Willmore
& Tolhurst, 2001). If the unit activity is not modulated by spatial location then the spatial selectivity
is 0. Each dot in the figures below show the selectivity for a single unit.
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E ADDITIONAL TRAINING DETAILS

During training we tried to balance all three terms we were minimizing (E, RL2, and RFR) so no
single term was neglected or dominated. At the beginning of training we weighted the regularization
term RL2 to be equal to the error function E and then decreased the weighting on RL2 according to
the schedule used by Martens & Sutskever (2011). We adaptively adjusted the weighting on RFR,
starting from an initial value of E/10 and enforcing an upper bound of E/3 as training progressed.
We found this training procedure improved training performance and led to more interesting repre-
sentations.
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