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ABSTRACT

Model editing techniques, particularly task arithmetic with task vectors, offer
an efficient alternative to full fine-tuning by enabling direct parameter updates
through simple arithmetic operations. While this approach promises substan-
tial computational savings, its impact on fairness has remained largely unex-
plored—despite growing concern over biased outcomes in high-stakes applica-
tions such as hate speech detection. In this work, we present the first sys-
tematic study of fairness in task arithmetic, benchmarking it against full fine-
tuning (FFT) and Low-Rank Adaptation (LoRA). We evaluate across multiple
language models and datasets using standard group fairness metrics, including
Demographic Parity and Equalized Odds. Our analysis shows that task vectors
can be tuned to achieve competitive accuracy while reducing disparities, and
that merging subgroup-specific task vectors provides a practical mechanism for
steering fairness outcomes. We further provide a theoretical bound linking task-
vector scaling to fairness metrics, offering insight into the observed trade-offs.
Together, these findings establish task arithmetic not only as a cost-efficient edit-
ing method but also as a fairness-aware alternative to existing adaptation tech-
niques, laying the groundwork for responsible deployment of large language
models. Our code is available at https://anonymous.4open.science/
status/fairness_task_vector-4F2F

1 INTRODUCTION

As large language models (LLMs) are deployed across increasingly diverse applications, efficient
techniques for adapting them to specific tasks have become essential. While model distillation
and compact architectures reduce computational demands (Sanh et al., 2019b; Jiao et al., 2020;
Turc et al., 2020; Abdin et al., 2024), task-specific fine-tuning (FFT) remains resource-intensive.
This has motivated parameter-efficient fine-tuning (PEFT) methods such as adapters and Low-Rank
Adaptation (LoRA) (Houlsby et al., 2019; Hu et al., 2022; Ben Zaken et al., 2022; Dettmers et al.,
2023), which update only a small fraction of parameters.

LoRA exemplifies this trade-off: it preserves most of the pretrained weights while reducing train-
ing costs. However, PEFT methods do not resolve deeper concerns. In high-stakes domains with
imbalanced data—such as toxicity or hate-speech detection—they can maintain or even amplify
biases (Ding et al., 2024b; Sap et al., 2019), raising concerns about fairness.

A promising alternative is task arithmetic with task vectors (Ilharco et al., 2023; Zhang et al., 2024;
Yoshida et al., 2025; Yoshikawa et al., 2025). A task vector is defined as the difference between
a fine-tuned model and its base counterpart. By adding, subtracting, or scaling such vectors, one
can directly edit model behavior without gradient-based retraining. This approach offers (i) com-
putational efficiency, (ii) fine-grained control over transferred capabilities, and (iii) enhanced inter-
pretability when task vectors are associated with specific subgroups (Cerrato et al., 2025). Yet its
fairness implications remain poorly understood. For example, enhancing performance on one demo-
graphic subgroup may inadvertently degrade outcomes for another, and the trade-offs with standard
metrics such as Demographic Parity (DPD) or Equalized Odds (EOD) remain unclear.

To address this gap, we conduct the first systematic study of fairness in task arithmetic. We com-
pare task-vector editing against both FFT and LoRA, and we further investigate whether injecting
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(a) Gender-based demographic subgroups
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(b) Race-based demographic subgroups

Figure 1: LoRA and FFT vs. Task addition with the optimal coefficient for the training accuracy
(λ = 0.8 for gender setting and λ = 0.5 for race setting) on group-wise accuracy, demographic
parity difference (DPD, lower is fairer), and equalized odds difference (EOD, lower is fairer). Error
bars denote the standard error across three seeds. Columns: group-wise accuracy, DPD, EOD.
No consistent pattern emerges that task addition necessarily degrades subgroup fairness relative to
LoRA or FFT subgroups show improvements or comparable results under task addition, while others
show small declines.

subgroup-specific task vectors into an FFT model provides additional control over fairness out-
comes. Our experiments focus on hate-speech detection with LLaMA-7B (Touvron et al., 2023), and
we replicate on Civil Comments (Borkan et al., 2019) with DistilBERT and Qwen2.5-0.5B Qwen
Team (2025), observing consistent fairness–utility trade-offs.

Our contributions are as follows:

• Comprehensive evaluation: We compare FFT, LoRA, task-vector editing, and a hybrid
approach that injects task vectors into FFT, analyzing their impact on fairness metrics and
predictive performance (Figure 1).

• Fairness through scaling: We show that adjusting task-vector coefficients can substan-
tially improve fairness while maintaining accuracy (Figure 2).

• Subgroup-sensitive editing: We demonstrate that merging task vectors from underrepre-
sented subgroups allows targeted fairness adjustments with negligible accuracy loss (Fig-
ures 3a, 3b, 4a).

• Theoretical grounding: We derive an upper bound linking task-vector scaling to DPD,
providing a principled explanation for the observed fairness–accuracy trade-offs (Section
5.1 and Appendix B).

Through this analysis, we establish task arithmetic as not only a cost-efficient model editing tech-
nique but also a fairness-aware alternative to existing adaptation methods. Our findings lay the
groundwork for extending task-vector approaches toward fair and responsible deployment of LLMs.

2 PRELIMINARIES

In this section, we first provide an overview of the fundamental concept of task vectors and the
procedure known as task arithmetic, which applies these vectors to edit model behavior. We then
introduce methods for merging multiple task vectors into a single model.

Task arithmetic. A task vector is defined as the difference in model parameters between a fine-
tuned model on a given task and the original base model. Formally, if θbase are the pre-trained
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weights and θtask are the weights after fine-tuning on a task, then the task vector is: ∆θ = θtask−θbase
(Ilharco et al., 2023).

This vector represents a direction in weight space such that moving the base model’s weights by ∆θ
steers the model to perform well on that task. In other words, adding ∆θ to θbase yields a model
with improved performance on the target task, without any additional training. Once computed, task
vectors can be manipulated through simple arithmetic operations to edit model behavior directly in
weight space (Ilharco et al., 2023; Ortiz-Jimenez et al., 2024). Key operations include:

Addition: Given two task vectors ∆θA and ∆θB (for tasks A and B), their sum
can be applied to the base model (θbase + ∆θA + ∆θB) to produce a model that
exhibits improved performance on both tasks A and B (Ilharco et al., 2023). This
task addition effectively combines knowledge from multiple tasks into one model.
Negation: Using the negative of a task vector, −∆θ, one can subtract a task’s
influence. For example, applying θbase − ∆θA (or equivalently θbase + (−∆θA))
yields a model with reduced performance on task A—effectively unlearning or
forgetting it—while preserving other behaviors (Ilharco et al., 2023). This is use-
ful for removing undesirable skills or biases.
Scalar scaling: Multiplying a task vector by a scalar λ adjusts the strength of the
edit. For example, using θbase + λ∆θA allows partial (0 < λ < 1) or amplified
(λ > 1) application of a task’s effect. This scaling provides fine-grained control
over how strongly the task knowledge is injected into the model.

Merging task vectors. Since task vectors reside in a common weight space, they can be merged
by simple addition with tunable scaling. Formally, given a base model θ0 and task vectors ∆θi, one
can construct a merged model as:

θmerged = θ0 +
∑
i

λi ∆θi , (1)

where each coefficient λi controls the influence of task i. Varying λi thus directly modulates how
strongly the i-th task’s knowledge is injected, allowing fine-grained blending of capabilities. In-
deed, adding multiple task vectors with λi = 1 endows a model with all those capabilities simul-
taneously (Ilharco et al., 2023). Optimizing the λi values (i.e., learning an anisotropic scaling for
each vector) further improves the composition by balancing contributions and reducing interference
between tasks (Zhang et al., 2024).

3 RELATED WORK

Task arithmetic: efficiency and interpretability. Task vectors offer a computationally efficient
framework for editing and analyzing model behavior. Once a task vector is computed—namely,
the weight difference between a base model and its fine-tuned variant (Ilharco et al., 2023; Zhang
et al., 2024; Yoshida et al., 2025)—no additional training data or retraining is required to transfer
or remove task-specific capabilities. By treating each fine-tuning update as a direction in weight
space, practitioners can combine or negate these updates through simple addition or subtraction
(Ilharco et al., 2023). This modularity not only reduces computational overhead but also enhances
interpretability by isolating the contribution of each task.

Beyond modularity, task arithmetic can reveal valuable information about how and where a model
adapts to new tasks. Li et al. (2024) show a near-linear relationship between data size and the norm
of a task vector, suggesting that over-represented tasks can dominate weight space shifts in multi-
task settings. In addition, the orientation of task vectors can indicate synergies or conflicts among
tasks (Li et al., 2025), and decomposing these vectors by layer can pinpoint which parts of the model
are most affected (Zhang et al., 2024; Gargiulo et al., 2025). Hence, task vectors offer a promising
lens for diagnosing training dynamics and identifying potential biases.

Group fairness metrics in binary text classification. There are two canonical criteria that cap-
ture complementary harms and enable comparability with prior PEFT–fairness work: Demographic
Parity Difference (DPD) for allocation disparity (gaps in positive selection rates across groups) and

3
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Equalized Odds Difference (EOD) for error-rate disparity (gaps in TPR and FPR) (Hardt et al., 2016;
Feldman et al., 2015; Kennedy et al., 2020a). Both are standard in auditing toolkits and empirical
studies (Bellamy et al., 2018; Fairlearn contributors, 2025) and are the prevailing baseline in the
literature we build upon (Fraenkel, 2020; Pitoura, 2019; Quan et al., 2023). For score-based classi-
fiers with group-agnostic thresholds and (approximate) calibration, many group fairness desiderata
reduce to constraints on (i) selection rates and (ii) class-conditional error rates (Hardt et al., 2016;
Kleinberg et al., 2017). DPD targets (i); EOD targets (ii). Impossibility results imply that, when base
rates differ, one cannot satisfy calibration, selection parity, and error parity simultaneously; report-
ing DPD and EOD therefore exposes the relevant trade-off frontier without auxiliary counterfactual
assumptions (Kleinberg et al., 2017). Accuracy-parity is not, by itself, a principled fairness guar-
antee; it’s generally tracked for monitoring (Barocas et al., 2023). Formal definitions in Appx. A;
implementation in §4.1.

FFT and LoRA under fairness constraints. Parameter-efficient methods such as LoRA (Hu
et al., 2022) address computational bottlenecks by training only a small set of parameters, yet they
do not inherently solve fairness issues. In some cases, LoRA yields comparable subgroup perfor-
mance to full fine-tuning (Ding et al., 2024b), while in others, it fails to mitigate toxic behaviors or
biases (Das et al., 2024). The variance in outcomes depends on factors like the rank of the LoRA
matrices, the base model’s quality, and the distribution of training data (Das et al., 2024).

Merging tasks and fairness composition. Despite the potential efficiency gains and inter-
pretability offered by task arithmetic, the merging of task vectors for multiple groups can trigger
new challenges. For instance, simply summing vectors may lead to “negative transfer,” where up-
dates beneficial to one subgroup degrade performance for another (Ding et al., 2024a; Yu et al.,
2020). In highly imbalanced settings, merging models through supervised fine-tuning can also dis-
proportionately favor majority groups while disadvantaging minorities (Cross et al., 2024).

Additionally, prior work shows that fairness guarantees often do not compose: even if individual
components satisfy group or individual fairness in isolation, composing them can break those guar-
antees (Dwork & Ilvento, 2018). This motivates our focus on post-hoc task-arithmetic edits: adding
or scaling subgroup task vectors can be viewed as composing behaviors, and interactions among
subgroup-specific task vectors can produce unpredictable shifts in metrics like Demographic Parity
and Equalized Odds (Gohar et al., 2023). Consequently, identifying effective ways to adjust task
vectors—such as through scalar scaling—remains a key step toward fairness-aware model editing.
This work aims to fill that gap by systematically evaluating how these operations influence both
fairness and overall model accuracy.

In parallel, multi-task fairness methods such as Multi-Task-Aware Fairness (Wang et al., 2021),
Learning-to-Teach Fairness-Aware MTL (Roy & Ntoutsi, 2022), and FairBranch (Roy et al., 2024)
manage fairness–accuracy trade-offs during training. Our study complements these by asking: when
we edit models after training via task vectors, can simple controls (e.g., λ-scaling) recover fairer
behavior without retraining?

4 EXPERIMENTAL SETUP

4.1 CONFIGURATION

Gender Subgroups Race Subgroups
Men 817 Asian 311
Non-binary 114 Black 1,007
Trans men 178 Latinx 368
Trans unspecified 173 Native American 153
Trans women 148 Middle Eastern 493
Women 2,057 Pacific Islander 138
Other 59 White 580

Other 302

Total 3,546 Total 3,352

Table 1: Berkeley D-Lab Hate Speech data
statistics in the gender and race subgroups.

Building on the experimental framework established
by Ding et al. (2024b), we adopted their evaluation
and experimental procedure to assess the fairness
implications of LoRA in comparison to FFT. In our
work, we extend this analysis by focusing on how
task arithmetic compares to both LoRA and FFT in
terms of fairness and performance. The detailed ex-
perimental setup is provided in Appendix C.

Datasets. We use a modified version of the Berke-
ley D-Lab Hate Speech dataset originally introduced by Kennedy et al. (2020a) and adapted by Ding
et al. (2024b), the research we are building upon. Our dataset contains a total of 6,898 tweet-sized
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text snippets annotated for hate speech and categorized by sensitive attributes: Race and Gender,
each further divided into fine-grained subgroups (e.g., Women, Non-binary, Men within Gender) as
shown in Table 1. We frame hate speech detection as a binary classification task: given a text snip-
pet, the model predicts whether it constitutes hate speech (e.g., hatespeech in the Gender subset may
target Non-binary or Trans Women). Each example includes both the hate speech label and one or
more protected attribute annotations (e.g., gender = woman, race = Asian). These are used to assess
subgroup-level performance and fairness metrics. This setting supports rigorous fairness analysis
due to its rich attribute annotations and real-world relevance (Kennedy et al., 2020a). To test gener-
alization beyond hate speech, we apply our methods to the Civil Comments dataset (Borkan et al.,
2019), a large-scale toxicity corpus with sensitive-attribute labels. We treat toxicity as binary with a
0.5 threshold; comments above this are positive “flagged”. Fairness is evaluated across Gender and
Race subgroups.

Evaluation metrics and fairness scope. Since we cast hate-speech and toxicity detection as
binary classification, for each protected attribute (e.g., Gender, Race/Ethnicity), we compute
subgroup-resolved metrics: DPD measures selection-rate disparity as the maximum absolute gap
in flag rates across subgroups. EOD measures error-rate disparity by requiring both true-positive
and false-positive rates to be comparable. Accuracy-parity gap is the maximum absolute difference
in accuracy across subgroup pairs and serves as a stability indicator. We report per-subgroup values
along with macro-averages and worst-group results. These choices mirror established practice and
enable direct comparison to prior PEFT–fairness evaluations discussed in §3. Formal definitions and
computation details appear in Appendix A.

4.2 PROTOCOL

We evaluate our methods on a main generative base model, LLaMA2-7B (Touvron et al., 2023)1, and
two compact baselines for CivilComments toxicity, DistilBERT (Sanh et al., 2019a)2 and Qwen2.5-
0.5B (Qwen Team, 2025)3. Our fairness evaluations focus on two sensitive attributes: gender and
race across both datasets, computing subgroup accuracy, DPD, and EOD. These selections span
distinct architectures (decoder-only vs. encoder-only), parameter scales, tasks, and label taxonomies.

For FFT, the pretrained model was fine-tuned on the combined training data from all subgroups of
the target attribute (gender or race). Evaluation was then performed on the test data from each corre-
sponding subgroup, enabling fine-grained assessment of both performance and fairness. For LoRA,
we followed the same training and evaluation procedure as FFT. The rank of LoRA’s adaptation
modules was set to 8, following Ding et al. (2024b).

For task arithmetic, we applied a compositional fine-tuning approach. The training data was par-
titioned by subgroup (gender or race), and FFT was applied separately to each subgroup’s data to
produce fine-tuned models θi. From these, we computed task vectors ∆θi relative to the base model.
These vectors were then merged using the approach described in Eq. (1), with a single, uniform scal-
ing coefficient λ applied to all vectors. λ served as the sole hyperparameter in the merging process
and was tuned on the training data. The evaluation metrics were computed in the same manner as
for FFT and LoRA.

Task vector coefficient adjustment. Building on the task vector merging framework introduced in
Eq. (1), we further explore the impact of the scaling coefficient λ on fairness outcomes. Specifically,
we vary the uniform task vector coefficient λ across a broad range (from 0.0 to 1.0 with 0.1 intervals)
and evaluate how this adjustment influences subgroup-level fairness metrics, including accuracy,
DPD, and EOD.

Impact of worst-performing subgroup task vectors on fairness and performance. To inves-
tigate whether incorporating task vectors from underperforming subgroups can improve fairness

1LLaMA 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All
Rights Reserved. See https://ai.meta.com/llama/license.

2DistilBERT is released under the Apache 2.0 License. See https://github.com/huggingface/
transformers/blob/main/LICENSE.

3See the Qwen2.5-0.5B model card and license details at https://huggingface.co/Qwen/
Qwen2.5-0.5B.
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Figure 2: Varying the task arithmetic coefficient λ and comparing against FFT (purple dashed) and
LoRA (orange dashed) for macro-averaged accuracy (left), demographic parity difference (DPD,
center), and equalized odds difference (EOD, right) on the gender subset. Higher accuracy is better;
lower DPD/EOD indicate improved group fairness. For λ ≳ 0.3, task addition maintains competitive
accuracy while typically lowering DPD/EOD relative to both baselines.

without sacrificing overall performance, we first identified the lowest-performing subgroups within
each attribute based on the average of DPD and EOD under the FFT setting. We excluded the
“others” group from this analysis as it does not reflect the characteristics of any specific subgroup.
This selection was informed by both our experimental results and those reported in Ding et al.
(2024b), which showed consistent patterns. For gender, the worst-performing subgroups were men
and women; for race, they were Asian and Native American. We constructed a new model variant
by injecting a worst-performing subgroup task vector worst-performing subgroup task vector into
the base fine-tuned model:

θnew = θSFT + λ(θworst-performing subgroup − θ0),

where λ controls the strength of the task vector injection. We varied λ from 0.0 to 1.0 at 0.2 intervals
to analyze the effect of this targeted addition on subgroup fairness metrics and overall accuracy.

5 RESULTS

5.1 THEORETICAL INTUITION.

We complement our empirical findings with an analytical upper bound that links task-vector scaling
to fairness metrics.
Theorem (informal). Consider the merged model θ(λ) = θ0 +

∑
g λ∆θg , where ∆θg denotes the

task vector for subgroup g. Then the demographic parity difference (DPD) satisfies

DPD(θ(λ)) ≤ 2L
∑
g

∣∣λ− 1
∣∣ ∥∆θg∥2, for a Lipschitz constant L.

Intuitively, deviations of the scaling coefficient λ from the balanced setting (λ = 1) enlarge dis-
parities in proportion to the norms of subgroup task vectors. This explains why fairness disparities
shrink as λ → 1, consistent with the empirical trends observed in Figure 2. A full derivation and
tighter constants are provided in Appendix B.

5.2 EMPIRICAL RESULTS OVERVIEW.

Figures 1a and 1b compare FFT, LoRA, and task addition across gender and race subgroups for hate
speech detection on LLaMA-2. For task addition, we selected λ = 0.8 for gender, λ = 0.5 for race,
as it achieved the highest average training accuracy across three random seeds within the tested range
λ ∈ [0.0, 1.0]. These visualizations provide a direct comparison of subgroup-wise model behavior.
From the subgroup-level bar plots in Figure 1, we observe that accuracy remains consistently high
and comparable across all three adaptation methods, regardless of subgroup. On Civil Comments,
on both DistilBERT and Qwen-2.5, Task Addition reduces group disparities while keeping accuracy
competitive. (see Appendix. E and Table 4 for full CIs/results).

We also observe that, relative to FFT, task addition improves fairness in five of seven gender sub-
groups and in three of eight race subgroups, with no single method dominating across all groups.
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The effect in fairness being subgroup-dependent, motivates treating λ as a deliberate tuning knob
and inspecting subgroup behavior explicitly. As shown in Appendix B.2, theoretically, task addition
realizes a group-weighted ERM in the linearized model. Concretely, θ(λ) = θ0 +

∑
g λg ∆θg coin-

cides with the one-step minimizer of a first-order surrogate where subgroup g is re-weighted by λg .
This explains the smooth fairness–utility frontier traced by sweeping λ, and Theorem 5.1 predicts
larger parity swings for groups with larger ∥∆θg∥2. The observed curves in Fig. 2 align with those
predictions without further assumptions.

Taken together, the empirical trends and their first-order mechanism align with prior literature: our
macro-averaged accuracy, DPD, and EOD findings for FFT and LoRA are consistent with (Ding
et al., 2024b). Moreover, the reductions perspective of Agarwal et al. (2018) and the equalized-odds
criterion of Hardt et al. (2016) anticipate precisely the trade-off behavior we document, reinforcing
the robustness of our evaluation and interpretation.

5.3 CONTROLLING ACCURACY AND FAIRNESS METRICS THROUGH LAMBDA.

Figure 2 illustrates the overall performance of FFT, LoRA, and task arithmetic as the scaling coeffi-
cients for task addition vary from 0.0 to 1.0. We observe how varying the task-arithmetic coefficient
λ impacts macro-averaged accuracy (left), demographic parity difference (DPD, center), and equal-
ized odds difference (EOD, right) on a gender subset of the data. As λ increases from 0.0 to 0.2,
we observe a peak in accuracy, but this configuration yields higher DPD and EOD, indicating re-
duced fairness. Beyond λ = 0.3, accuracy remains competitive compared to FFT and LoRA, while
both DPD and EOD progressively decline, suggesting that fairness improves without severely com-
promising performance. Notably, these task addition curves stay consistently lower than FFT and
LoRA in terms of DPD and EOD at higher λ values. Overall, this ablation could indicate that tuning
λ provides a practical mechanism for balancing accuracy and fairness objectives, offering guide-
lines for practitioners who wish to fine-tune fairness outcomes while maintaining strong predictive
performance.

5.4 SUBGROUP-TARGETED VECTORS: GAINS WITH TRADE-OFFS

To further analyze the effects of subgroup-specific task composition, Figure 3a–3b illustrate
heatmaps where the y-axis lists each method or configuration under evaluation: FFT as baseline,
followed by task arithmetic with varying scaling coefficients (0.0 to 1.0 with 0.2 intervals). The
x-axis represents the subgroups— (e.g., Women, Trans, etc. for Gender). Each cell shows the cor-
responding performance metric (e.g., macro-averaged accuracy, DPD, or EOD for a given method
on a specific subgroup. For these experiments, we added the task vector of the worst-performing
subgroups (Women and Men for the gender dataset subset, and Asian, and Native American for the
race dataset subset) to the FFT model, as explained earlier.

We generally observe that increasing the scaling coefficient λ tends to improve overall accuracy, con-
sistent with the trends observed in Figure 2. However, effects are not uniform across all subgroups.
In the gender-based plots, for example, the Asian subgroup consistently achieves the highest ac-
curacy and lowest DPD/EOD—highlighting a recurring tradeoff where performance gains for one
group may exacerbate disparities for others. When the Women task vector is added (Figure 3b),
accuracy improves for the Trans Women subgroups. However, fairness metrics for subgroups such
as Men tend to worsen as the scaling coefficient λ increases.

In Figure 3a, injecting the Men task vector improves performance for some subgroups, yet Women
consistently show lower accuracy and do not see consistent fairness improvements at higher λ.
Some groups (e.g., Other, Trans Men, Trans Women) begin with relatively poor fairness under FFT
and show partial improvements with task vector addition. Still, these improvements are not uni-
versal—for example, the Other subgroup often retains high EOD values regardless of λ. Likewise,
Native American accuracy remains mostly unchanged across λ, while fairness metrics can deterio-
rate when injecting task vectors for other groups. To visualize these results in more detail, Figure 4a
shows macro-averaged accuracy, DPD, and EOD for the Men task vector added to the FFT model.
The plots illustrate how varying the scaling coefficient λ impacts overall performance and fairness,
highlighting the effects of subgroup-specific task injection. We can observe in Figure 4a that inject-
ing the Men task vector into the FFT model results in a slight accuracy gain and a clear monotonic
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(a) When Men task vector added to the FFT model on the gender subset.
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(b) When Women task vector added to the FFT model on the gender subset.

Figure 3: Heatmaps of Accuracy (left), DPD (center), and EOD (right) for gender (top) and race
(bottom) subgroups under the baseline FFT model (λ = 0.0) and with increasing λ values from 0.2
to 1.0 in 0.2 increments. The task vector for Men was added on the gender subset (top), and the task
vector for Women was added on the gender subset (bottom). Darker cells indicate higher values on
each metric’s scale; for DPD/EOD, lower values are better.

decrease in both DPD and EOD as λ increases—indicating a favorable and consistent improvement
in fairness on the gender subset.

However, Figure 4b and the additional plots in Figures 10 and 11 in Appendix D.2 show more
varied patterns as seen on Figures 3a and 3b. When injecting the Native American task vector
(Figure 11), accuracy remains stable while fairness seems to decrease (increased DPD and EOD).
Asian (Figure 10) shows the same behavior as injecting the Men task vector (Figure 4a), positive
increase of fairness metrics as λ increases. These results show that injecting task vectors shifts
fairness and performance in a group-specific manner, tracing a clear fairness–utility frontier. This
heterogeneity is expected: per §5.2 and Theorem 5.1, sensitivity scales with |∆θg|2. Practically,
task-vector merging thus offers a subgroup-conditioned control knob: identifying which ∆θg help
or hurt which groups provides a new actionable design consideration that SFT/LoRA do not expose,
and that hasn’t been explored in previous task arithmetic literature.

6 CONCLUSION AND LIMITATIONS

Conclusion. In this study, we investigated the impact of a task arithmetic approach using task
vectors on fairness, in comparison to conventional FFT and LoRA methods. We conducted de-
tailed experiments to assess how the task addition affects prediction accuracy and fairness metrics,
including the DPD and EOD across various subgroups. The results indicate that, with appropriate
settings of the scalar coefficient λ, the task arithmetic method can improve DPD and EOD without
significantly compromising overall model accuracy. Notably, using low to moderate values of the
task vector coefficient effectively reduced prediction bias in minority groups compared to FFT and
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Figure 4: Impact of injecting both the Men and Women subgroup task vectors into the FFT model
on the gender data subset. The plot illustrates how scaling coefficient λ reduces DPD and EOD,
outperforming the baseline FFT (blue dashed) and LoRA (orange dashed), with negligible impact
on macro-averaged accuracy.

LoRA.We observe this pattern across two datasets (hate speech, toxicity) and three model families
(LLaMA-2, DistilBERT, Qwen-2.5).

Furthermore, the task arithmetic framework allows for subgroup-specific evaluation and adjustment
of model updates, enhancing interpretability—a key advantage of this method in the context of fair-
ness. This interpretability facilitates the mitigation of excessive bias or adverse effects on particular
groups, ultimately enabling more balanced model training.

Limitations. Despite these promising results, several challenges remain. The effectiveness of
task arithmetic depends on dataset characteristics and subgroup distributions, necessitating further
investigation into its generalizability across different tasks and domains. Moreover, future work
should explore algorithms for automatically optimizing the scalar coefficient λ and for balancing
trade-offs among multiple subgroups.

In summary, our study demonstrates that task arithmetic using task vectors offers a promising ap-
proach for controlling model fairness. Further experimental validation, application to diverse tasks,
and developing trade-off optimization methods are essential for improving fairness in broader and
more realistic deployment scenarios.

Reproducibility statement. We provide code 4, configs, and scripts to reproduce all experiments,
including data preprocessing, training, and evaluation. All datasets and base models used are open-
source/publicly available; we include scripts to fetch the exact versions. Exact hyperparameters,
model identifiers, and implementation details are documented in the appendix, along with seeds and
hardware/software specs. Results are reported over multiple runs, and we provide instructions to
regenerate all figures and tables from logged outputs.
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APPENDIX

A FAIRNESS METRICS

A.1 DEMOGRAPHIC PARITY DIFFERENCE (DPD) (AGARWAL ET AL., 2018; 2019)

DPD measures how varied the model’s rate of positive predictions is across attributes. This metric
is calculated as follows:

MDPD =
∣∣∣Pr[f(X) = 1 | A = 1]− Pr[f(X) = 1 | A = 0]

∣∣∣,
where A is the sensitive attributes, f(X) is the prediction from the models, and X is the feature
vector. The larger the DPD, the greater the difference in prediction outcomes across attributes,
indicating greater unfairness in the model predictions.

A.2 EQUALIZED ODDS DIFFERENCE (EOD) (DING ET AL., 2024B)

EOD is a metric that measures whether the model exhibits similar predictive performance in terms
of true and false positives, regardless of the attribute.

Meod = max {MTP,MFP} . (2)

Here, letting Y denote the true label, MTP and MFP are defined as follows:

MTP =
∣∣∣Pr[f(X) = 1 | Y = 1, A = 1]− Pr[f(X) = 1 | Y = 1, A = 0]

∣∣∣,
MFP =

∣∣∣Pr[f(X) = 1 | Y = 0, A = 1]− Pr[f(X) = 1 | Y = 0, A = 0]
∣∣∣.

A.3 ACCURACY PARITY

Accuracy parity refers to the expectation that a classifier achieves comparable accuracy across differ-
ent sensitive attribute groups. Formally, accuracy parity is satisfied when the probability of correct
classification is equal across groups, i.e.,

E(Y = Ŷ | S = 0) = E(Y = Ŷ | S = 1), (3)

This notion of fairness ensures that all subgroups receive equally reliable predictions, and is partic-
ularly relevant in applications where consistent model performance across demographics is critical.
Unlike statistical parity or equal opportunity, accuracy parity focuses on equal overall correctness
rather than specific error types or outcome rates (Quan et al., 2023).

We observed high degree of accuracy parity in both gender and race settings, as the accuracy
differences between subgroups are negligible, indicating that the model performs consistently across
all groups.

B DPD UPPER BOUND AND OPTIMAL TASK–VECTOR SCALING

B.1 NOTATION AND ASSUMPTIONS

A1 Smooth predictions. Soft scores pθ satisfy |pθ(x)− pθ′(x)| ≤ L ∥θ − θ′∥2 ∀x.
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A2 Task vectors. For each group g ∈ {1, . . . , G}, ∆θg := θ
(g)
0 − θ0 is obtained with the same

learning rate and schedule.

A3 Scaling coefficients. Coefficients obey
∑G

g=1 λg = G.

A4 Symmetric data-generating process. The joint distribution satisfies D =
⋃

g Dg where all
Dg share the same conditional distribution except for the sensitive attribute label.

The merged model is

θ(λ) = θ0 +

G∑
g=1

λg ∆θg.

Demographic Parity Difference (DPD) reads

DPD(θ) =
∣∣∣ED1

[pθ]− ED0
[pθ]

∣∣∣.
B.2 TASK ADDITION AND WEIGHTED ERM

Lemma 1 (First-order link). Let ℓ(θ;x) be the training loss. For any non-negative {λg},

θ(λ) ≈ argmin
θ

G∑
g=1

λg Ex∼Dg

[
ℓ(θ0;x)

+∇θℓ(θ0;x)
⊤(θ − θ0)

]
.

That is, task addition gives the first-order solution of a group-weighted ERM.

Proof. Insert the linear Taylor expansion of ℓ at θ0 and minimise the resulting quadratic form; the
solution is exactly θ(λ).

Implication. Deviation |λg − 1| alters the group weights and therefore directly pushes DPD up-
ward, as made explicit in Proposition 1 below.

B.3 DPD UPPER BOUND

Proposition 1 (DPD bound). Under Assumptions A1–A4,

DPD
(
θ(λ)

)
≤ 2L

G∑
g=1

|λg − 1| ∥∆θg∥2.

Proof. Define θ̄ := θ0 +
1
G

∑
g

∆θg. Assumption A4 gives DPD(θ̄) = 0. Put f(x) := pθ(λ)(x)−

pθ̄(x). Then DPD(θ(λ)) = |ED1
[f ] − ED0

[f ]|. Triangle and Jensen yield ≤ 2L ∥θ(λ) − θ̄∥2.
Finally, θ(λ)− θ̄ =

∑
g(λg − 1)∆θg and the triangle inequality give the stated bound.

C EXPERIMENTAL DETAILS

C.1 COMPUTATIONAL RESOURCES AND SOFTWARE ENVIRONMENT

Hardware and Software: All experiments presented in this study were performed using compu-
tational resources equipped with two NVIDIA H100 GPUs. The experiments leveraged a GPU
environment consisting of CUDA 12.1.0, cuDNN 9.0.0, and NCCL 2.20.5.
The experiments were conducted using Python 3.9.18, incorporating several essential Python li-
braries specifically optimized for deep learning tasks. The primary libraries included PyTorch (ver-
sion 2.6.0), transformers (version 4.49.0), tokenizers (version 0.21.1), DeepSpeed (version 0.16.4),
and Accelerate (version 1.5.2).
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The training experiments utilized the DeepSpeed framework with the following key configurations:
a gradient accumulation step of 4, optimizer offloaded to the CPU, zero redundancy optimizer at
stage 2 (ZeRO-2), and mixed precision training employing FP16 and BF16 for enhanced perfor-
mance and memory efficiency. All experiments were conducted with a total computational cost of
approximately 30 GPU-hours.
Protocol: We fine-tuned models based on the Llama-7B (Touvron et al., 2023) architecture obtained
via HuggingFace repositories. Each model was trained for 4 epochs, employing a cosine learning
rate scheduler with a learning rate of 1×10−5, a warm-up ratio of 0.01, and a weight decay of 0.001.
Training utilized a per-device batch size of 2, with an effective batch size of 16 achieved through
gradient accumulation. Reproducibility was ensured by setting a random seed of 13, 14, 15 across
all experiments.
For Qwen2.5 experiments, models were trained for 2 epochs using a learning rate of 2×10−5, a batch
size of 16, and a sample fraction of 25% of the Civil Comments dataset. DistilBERT experiments
utilized 2 epochs with a learning rate of 1 × 10−5, a batch size of 16, and the full dataset (100%
sample fraction). Both architectures employed a weight decay of 0.01 and evaluation/save strategies
set to“epoch” with early stopping enabled.
For Low-Rank Adaptation (LoRA) experiments were conducted with a rank (lora r) of 8, scaling
factor (lora alpha) of 16, and no dropout.

C.2 DATASET

We use the Berkeley D-Lab hatespeech detection dataset (Kennedy et al., 2020b) 5 for our experi-
ments.

The dataset is divided into subgroups based on the following attributes: Race or Ethnicity, Religion,
National Origin or Citizenship Status, Gender Identity, Sexual Orientation, Age, and Disability
Status. In our study, we use some of these subgroups to evaluate fairness.

Following Das et al. (2024), we binarize the hate speech score associated with each review using a
threshold of 0.5 to determine whether the review constitutes hate speech. When multiple annotations
exist for the same instance, we obtain one human annotation to avoid duplication.

D ADDITIONAL RESULTS

Here, we present results focusing on diverse subgroups, which we could not include in the main
paper due to space constraints.

D.1 COMPARISON OF FFT, LORA, AND TASK ARITHMETIC
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Figure 5: Boxplots of group-wise accuracy, demographic parity difference (DPD), and equalized
odds difference (EOD) for —FFT, LoRA, and task addition with coefficient (λ = 0.8) —evaluated
on the gender subset of the data. Higher accuracy is desirable, whereas lower DPD and EOD
values indicate improved fairness. Boxplots show medians, interquartile ranges, and variability
(with standard error across three seeds). While accuracy is similar across methods, Task Addition
generally yields lower DPD and EOD medians than FFT and LoRA, suggesting a better balance
between performance and fairness, though overlapping distributions imply these differences are not
uniformly significant.

5https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
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Figure 6: Boxplots of group-wise accuracy, demographic parity difference (DPD), and equalized
odds difference (EOD) for —FFT, LoRA, and Task Addition with optimal coefficient (λ = 0.5)
—evaluated on the race subset of the data. Higher accuracy is desirable, whereas lower DPD and
EOD values indicate improved fairness. Boxplots show medians, interquartile ranges, and variability
(with standard error across three seeds).

Figure 7 illustrates the overall performance of FFT, LoRA, and task arithmetic as the scaling for
task arithmetic vary from 0.0 to 1.0. Trends observed reinforced results on the gender subset on
Figure 2. Overall, λ provides a practical mechanism for balancing accuracy and fairness objectives,
and similarly there is a peak at λ = 0.2 for highest accuracy, and higher DPD and EOD (less
fairness).
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Figure 7: On a race-focused subset, we vary task arithmetic’s coefficient λ and compare it against
FFT (purple dashed) and LoRA (orange dashed). The plots show group-wise accuracy (left), de-
mographic parity difference (DPD, center), and equalized odds difference (EOD, right). Higher
accuracy is better, while lower DPD and EOD indicate improved fairness. As λ changes, task arith-
metic remains competitive in accuracy and can reduce fairness gaps relative to the baselines.
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Figure 8: The task vector corresponding to Asian was added to the FFT model on the race data
subset. Heatmap of Accuracy (left), DPD (center), and EOD (right) under the baseline (FFT) and
increasing λ values (0.2 to 1.0). Darker cells indicate higher values in each metric’s scale; for
DPD/EOD, lower is better.

D.2 SUBGROUP-SPECIFIC TASK ADDITION TO FFT

We include additional heatmaps that visualize subgroup-wise performance across FFT and varying
scaling coefficients for the FFT model injected with a worst-performing subgroup. These supple-
mentary plots, which follow the same setup described earlier, are consistent with the trends observed
in Figures 3a–3b.

In both gender and race subgroup experiments, increasing the scaling coefficient λ generally leads to
improved macro-averaged accuracy. However, its impact on fairness metrics—DPD and EOD—is
less predictable and varies across subgroups. For instance, some subgroups benefit from improved
fairness as their corresponding task vectors are added, while others experience increased disparity,
even if accuracy remains stable or improves.

This nuanced behavior reflects a broader pattern: gains in performance for certain subgroups can
sometimes come at the expense of fairness for others. Injecting task vectors from worst-performing
subgroups does not consistently reduce disparities and, in some cases, can amplify them.
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Figure 9: The task vector corresponding to Native American was added to the FFT model on the
race data subset. Heatmap of Accuracy (left), DPD (center), and EOD (right) under the baseline
(FFT) and increasing λ values (0.2 to 1.0). Darker cells indicate higher values in each metric’s
scale; for DPD/EOD, lower is better.

Figures 11–4b present additional results for the Full+Worst configuration, in which task vectors
from the worst-performing subgroups (Native American, Asian, Men, and Women) are added to the
FFT model. These plots show macro-averaged accuracy, DPD, and EOD as a function of the scaling
coefficient λ.

Across these figures, we observe mixed effects: while accuracy generally remains stable or im-
proves slightly, fairness outcomes vary by subgroup. In Figure 11, DPD and EOD worsen despite
minimal accuracy changes. Meanwhile, Figure 4b reveals stable performance with minor fairness
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Figure 10: Effect of adding the Asian task vector to the FFT model on the race subset. Accuracy
keeps competitive with increasing λ, and both DPD and EOD decrease consistently.

improvements, though gains are not consistent across metrics. These results further emphasize that
task vector injection alone does not ensure universal fairness improvements and often introduces
subgroup-specific trade-offs.
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Figure 11: Results of injecting the Native American task vector into the FFT model. Accuracy
shows minimal change across λ, while DPD and EOD increase (worsen fairness).

E ADDITIONAL EXPERIMENTS ON CIVIL COMMENTS

Protocol & uncertainty. Unless noted, we follow the LLaMA-2 setup (Section 4.2): SFT and
LoRA (r=8) to obtain subgroup-specific models, compute task vectors w.r.t. the pretrained base, and
merge with a uniform scalar λ. We sweep λ on the validation split (maximize overall accuracy) and
evaluate on the test split. Uncertainty is 95% stratified bootstrap over the test set (2,000 resamples,
preserving group × label frequencies). When multiple seeds are used, we pool predictions before
resampling. For accuracy, we additionally report Wilson CIs when relevant.

At a glance. On Civil Comments with DistilBERT (67M), task addition maintains accuracy within
∼0.6–1.1pp of SFT/LoRA while reducing fairness gaps: for gender, DPD drops by ≈41–54% and
EOD by ≈34–47%; for race, DPD drops by ≈41–58% and EOD by ≈58–73% (midpoint com-
parisons). These patterns align with LLaMA-2 on the Berkeley D-Lab dataset (Table 4). As a
complementary cross-architecture check, Qwen-2.5-0.5B on gender exhibits the same qualitative
λ-controlled trade-off, improving substantially over LoRA with competitive accuracy.

E.1 CIVIL COMMENTS — GENDER

Notes. Relative to LoRA, Qwen-2.5-0.5B task addition halves DPD/EOD (∼54–56%) while re-
gaining ∼3.3pp accuracy; relative to SFT, accuracy is lower and fairness is mixed (DPD comparable;
EOD higher). DistilBERT shows consistent reductions in DPD/EOD with ≲1pp accuracy cost.

E.2 CIVIL COMMENTS — RACE

Discussion. Together with LLaMA-2 on Berkeley D-Lab (Table 4), these experiments indicate that
the λ-controlled fairness–utility trade-off extends across architectures and datasets: task addition
typically preserves accuracy within ∼1pp while materially reducing worst-case DPD/EOD.
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Table 2: Civil Comments (Gender). Headline metrics (Accuracy ↑, worst-case DPD ↓, worst-
case EOD ↓). Entries are 95% CIs from stratified bootstrap; point estimates marked with † will be
replaced by CIs computed using the same protocol.

Model/Method Accuracy Worst-DPD Worst-EOD

DistilBERT SFT 0.9457–0.9476 0.0887–0.1101 0.6157–0.6433
DistilBERT LoRA 0.9447–0.9453 0.0735–0.0812 0.5024–0.5084
DistilBERT Task Addition 0.9395† 0.0454† 0.3358†

Qwen-2.5-0.5B SFT1 0.884–0.886 0.093–0.119 0.060–0.084
Qwen-2.5-0.5B LoRA1 0.774–0.790 0.210–0.251 0.232–0.362
Qwen-2.5-0.5B Task Addition1 0.810–0.820 0.100–0.103 0.130–0.143

† Point estimates; CIs to be computed with the same bootstrap.

Table 3: Civil Comments (Race). Headline metrics (Accuracy ↑, worst-case DPD ↓, worst-case
EOD ↓). Models evaluated for this attribute are shown. CIs are 95% stratified bootstrap; † indicates
point estimates to be replaced by CIs.

Model/Method Accuracy Worst-DPD Worst-EOD

DistilBERT SFT 0.9467–0.9473 0.0987–0.0995 0.2568–0.3544
DistilBERT LoRA 0.9446–0.9453 0.1360–0.1425 0.4649–0.4895
DistilBERT Task Addition 0.9362† 0.0580† 0.1289†

F USE OF LARGE LANGUAGE MODELS (LLMS)

Scope of assistance. For polishing grammar, wording, concision, and transitions in the abstract,
introduction, and discussion. Light edits on figure/table captions and section headings. And style
normalization, enforcing consistent terminology and tense across sections. No ideas, claims, analy-
ses, datasets, model architectures, experiments, or results originated from an LLM.

Models and interface. Edits were produced with state-of-the-art LLMs (e.g., ChatGPT/GPT-class
models) via a standard chat interface. To preserve anonymity, no identifying information (author
names, affiliations, or URLs) was included in prompts. For data privacy, no proprietary data, code,
or non-public results were provided. We avoided uploading full drafts and removed any metadata
that could compromise double-blind review.

Prompts and examples. Typical prompts included: “Please copyedit the following paragraph
for clarity and brevity without changing technical meaning.” and “Standardize terminology (task
vectors, task arithmetic) and flag any ambiguous phrasing.” The models were instructed not to add
facts or alter technical content.
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Model Race (95% CI) Accuracy Worst DPD Worst EOD

LLaMA2-7B SFT 0.7901–0.9039 0.0000–0.0345 0.0000–0.0730
LoRA 0.7599–0.9143 0.0000–0.0459 0.0000–0.1087
Task addition 0.7972–0.8724 0.0000–0.0265 0.0000–0.1308

DistilBERT SFT 0.9467–0.9473 0.0987–0.0995 0.2568–0.3544
LoRA 0.9446–0.9453 0.1360–0.1425 0.4649–0.4895
Task addition 0.9362 0.0580 0.1289

Model Gender (95% CI) Accuracy Worst DPD Worst EOD

LLaMA2-7B SFT 0.7914–0.8491 0.0621–0.1125 0.0000–0.1794
LoRA 0.8031–0.8823 0.0535–0.0596 0.0105–0.0906
Task addition 0.8031–0.8823 0.0259–0.0943 0.0000–0.0858

DistilBERT SFT 0.9457–0.9476 0.0887–0.1101 0.6157–0.6433
LoRA 0.9447–0.9453 0.0735–0.0812 0.5024–0.5084
Task addition 0.9395 0.0454 0.3358

Qwen-2.5-0.5B1 SFT 0.884–0.886 0.093–0.119 0.060–0.084
Qwen-2.5-0.5B LoRA 0.774–0.790 0.210–0.251 0.232–0.362
Qwen-2.5-0.5B Task addition 0.810–0.820 0.100–0.103 0.130–0.143

Table 4: 95% confidence intervals. Models evaluated for each attribute are shown: LLaMA2-7B on
Berkeley D-Lab; DistilBERT and Qwen-2.5-0.5B on Civil Comments (Qwen-2.5 for gender). Task
addition maintains accuracy while showing competitive or improved fairness compared to SFT and
LoRA.
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