Learning to Focus: Prioritizing Informative Histories
with Structured Attention Mechanisms in Partially
Observable Reinforcement Learning

Anonymous Submission

Abstract

Transformers have shown strong ability to model long-term dependencies and
are increasingly adopted as world models in model-based reinforcement learning
(RL) under partial observability. However, unlike natural language corpora, RL
trajectories are sparse and reward-driven, making standard self-attention inefficient
because it distributes weight uniformly across all past tokens rather than emphasiz-
ing the few transitions critical for control. To address this, we introduce structured
inductive priors into the self-attention mechanism of the dynamics head: (i) per-
head memory-length priors that constrain attention to task-specific windows,
and (ii) distributional priors that learn smooth Gaussian weightings over past
state—action pairs. We integrate these mechanisms into UniZero, a model-based
RL agent with a Transformer-based world model that supports planning under
partial observability. Experiments on the Atari 100k benchmark show that most
efficiency gains arise from the Gaussian prior, which smoothly allocates attention
to informative transitions, while memory-length priors often truncate useful signals
with overly restrictive cut-offs. In particular, Gaussian Attention achieves a 77%
relative improvement in mean human-normalized scores over UniZero. These find-
ings suggest that in partially observable RL domains with non-stationary temporal
dependencies, discrete memory windows are difficult to learn reliably, whereas
smooth distributional priors flexibly adapt across horizons and yield more robust
data efficiency. Overall, our results demonstrate that encoding structured temporal
priors directly into self-attention improves the prioritization of informative histories
for dynamics modeling under partial observability.

1 Introduction

Reinforcement learning (RL)|Sutton and Barto|[2018]] provides a principled framework for sequential
decision making, but real-world tasks often violate the Markov assumption and exhibit only partial
observability. Such settings are naturally modeled as Partially Observable Markov Decision Processes
(POMDPs), which require agents to leverage observation—action histories to reduce uncertainty and
achieve robust control [Sondik! [[1971]], Kaelbling et al.|[[1998]].

Model-based RL addresses this challenge by learning an explicit world model of environment
dynamics |Sutton and Barto| [2018]], which can be used to plan or imagine future trajectories. A
seminal example is MuZero Schrittwieser et al.|[2020], which learns a joint representation, dynamics,
and value model in latent space, paired with Monte Carlo Tree Search Kocsis and Szepesvari, [[2006]
to achieve state-of-the-art performance in board games and Atari. More recently, UniZero Pu et al.
[2025] replaced MuZero’s recurrent dynamics with a Transformer backbone, using masked self-
attention to capture long-range dependencies in latent state—action sequences and improve sample
efficiency under partial observability.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Embodied World
Models for Decision Making.

Despite this architectural shift, UniZero often remains sample-inefficient in low-data regimes because
it inherits assumptions from natural language modeling: namely, that sequential data are abundant,
balanced, and richly interdependent. In reality, RL trajectories consist of long stretches of uninfor-
mative transitions, sparse rewards, skewed return distributions, and a limited number of interactions
Janner et al.| [2021]], Andrychowicz et al.| [2017]. In Transformer-based world models, standard
self-attention treats all past tokens within the history as equally relevant, making it hard to identify
the sparse transitions that actually drive reward. Unlike language modeling, where vast corpora
make even rare dependencies learnable Brown et al.|[2020]], RL agents operate on scarce and noisy
trajectories, requiring attention mechanisms that explicitly prioritize informative segments of history
Ni et al.| [2023].

To address this limitation, we enhance the UniZero world model by introducing two structured
temporal priors into the self-attention layers of its dynamics head. The dynamics head predicts the
next latent state z;1 and immediate reward 7; based on attention-weighted histories. The first prior, a
memory-length prior, restricts each attention head to a learnable contiguous window, approximating
the minimal history required for accurate prediction. The second, a distributional prior, applies
smooth Gaussian weighting over past tokens, emphasizing those most informative for immediate
outcomes. We instantiate these as Adaptive Attention (memory-length prior), Gaussian Attention
(distributional prior), and their combination, Gaussian Adaptive Attention.

On the Atari 100k benchmark, Gaussian Attention yields a 77% relative improvement in human-
normalized mean score over UniZero’s standard self-attention. This gain stems from its ability to
allocate weight smoothly across past transitions, capturing relevant temporal dependencies without
imposing sharp cutoffs. In contrast, Adaptive Attention often misestimates the true dependency
horizon, either truncating important signals or including irrelevant ones, reducing sample efficiency.
Combining the two mechanisms degrades performance: the hard span mask truncates Gaussian tails,
negating its smooth weighting benefits. These results highlight a general guideline for model-based
RL under partial observability: smooth distributional priors offer more robust and data-efficient
dynamics modeling than rigid memory-length priors.

Our contributions are as follows:

* We propose two structured temporal priors for self-attention in world models: a memory-
length prior enforcing per-head learnable look-back windows, and a distributional prior
introducing smooth Gaussian weightings over histories.

* We integrate these mechanisms into the UniZero agent and demonstrate on Atari 100k
that Gaussian Attention achieves substantial gains in human-normalized mean and median
scores, with negligible computational overhead.

* We analyze the complementary behavior of hard and smooth priors, showing how Gaussian
priors reliably capture diverse temporal dependencies while memory-length priors offer
benefits in limited cases.

* Through systematic ablations across Atari games, we isolate the effects of each prior and its
regularization, confirming robustness to initialization and low additional computational cost.

2 Background

MDPs and POMDPs. A Markov Decision Process (MDP) is defined by the tuple (S, A, P, R,~),
where S is the state space, A is the action space, P(s’ | s, a) denotes the transition probability, R(s, a)
is the reward function, and v € [0, 1) is the discount factor |Sutton and Barto|[[2018]]. The agent secks
a policy 7 : § — A that maximizes the expected discounted return E|) |,~, 7" R(s¢, a;)|, satisfying
the Bellman optimality equation. A Partially Observable MDP (POMDP) extends this formulation
with an observation space O and observation probabilities O(o | s, a), since the true state is not
directly observable, and thus is defined by (S, A, O, P, R, O, 7). To act under partial observability,
the agent maintains a belief distribution b over states, updated after action a and observation o as
ba,o(s’) o< O(o | s',a) ", P(s" | s,a)b(s). Not all observations are equally informative, and a
central objective in planning under partial observability is to identify a minimal subset of history
sufficient for predicting future transitions and rewards. Influence-Based Abstraction (IBA) formalizes
this by identifying d-separating observation sets that render the future conditionally independent of

the remaining history [Oliehoek et al.|[2012]], echoing state-abstraction principles in RL|Givan et al.
[2003]].

Deep Reinforcement Learning. Deep Reinforcement Learning (DRL) integrates classical RL with
deep neural networks to handle high-dimensional state and action spaces. Foundational value-based
methods include DQN and Double DQN Mnih et al.|[2015]],[Van Hasselt et al.| [2016]], while policy-
gradient and actor—critic methods such as REINFORCE, A3C, TRPO, and PPO have become standard
benchmarks Williams| [[1992], Mnih et al.| [2016]], Schulman et al.|[2015} 2017]]. More recently,
entropy-regularized off-policy algorithms such as SAC have improved stability and exploration in
continuous and high-dimensional domains |Haarnoja et al.|[2018]]. These advances underpin the
extension of DRL to increasingly complex, partially observable, and real-world tasks.

Transformers. Transformers|Vaswani et al.|[2017] have emerged as powerful alternatives to recurrent
neural networks (RNNs) for long-sequence modeling. Given an input sequence of length NV, each
token is projected into queries Q € RV*% keys K € RV*%, and values V € RV*dv Self-
attention then aggregates contextual information via:

Attention(Q, K, V) = softmax(%) V. €Y

Since self-attention is permutation-invariant, positional encodings, either fixed or learned, are added
to token embeddings to inject order information |Devlin et al.| [2019]. By combining global context
aggregation with positional encodings, Transformers effectively capture long-range dependencies that
truncated RNNSs fail to model |Dai et al.|[2019]. This has made Transformer architectures compelling
candidates for world models in RL, where long-horizon planning and memory are critical [Ni et al.
[2023]], Robine et al.| [2023].

MuZero. MuZero Schrittwieser et al.| [2020] achieves superhuman performance in board games and
Atari by integrating Monte Carlo Tree Search (MCTS) with a learned latent dynamics model. At each
time step ¢, MuZero employs:

1. Encoder: z? = hg(01.¢), mapping the observation history to a latent state.

2. Dynamics head: (z;11,7:) = go(z:, a:), unrolling latent states and predicting rewards
recurrently.

3. Prediction head: (7;,v;) = fp(z:), producing policy logits and value estimates.

Although powerful, MuZero’s recurrent dynamics suffer from vanishing gradients and a fixed unroll
horizon, which limit its ability to capture long-range dependencies Bengio et al.|[[1994].

UniZero. UniZero |Pu et al|[2025] retains MuZero’s overall world model tuple W = (hg, go, fo)
but parameterizes gy and fy with a Transformer backbone. Unlike MuZero, whose encoder pro-
duces only a single latent state summarizing the entire history, UniZero encodes each observation
individually as z; = hg(0;), yielding a sequence z1.;. The sequence of observation—action pairs
[(21,a1),..., (21, a;)] is then processed by L stacked Transformer layers, each with h attention
heads. Masked self-attention ensures that token ¢ attends only to past tokens, preventing future
leakage.

The outputs from all heads are concatenated and projected through a final linear layer, integrating the
diverse subspaces captured by each head. This allows UniZero to capture dependencies far beyond
MuZero’s fixed horizon, though at quadratic complexity in the sequence length, the number of layers
L, and the number of heads h. Moreover, because self-attention initially treats all past tokens as
equally relevant, the model must learn relevance weights during training, often leading to sample
inefficiency.

The final Transformer layer outputs the next latent state z;4; and immediate reward r;, which are
passed to the unchanged prediction head fy to produce 7; and v;. UniZero, like MuZero, is trained
via joint model-policy optimization, maintaining a soft-target world model W = (heo, go, fo) to
stabilize learning [Eysenbach et al.| [2022]]. By leveraging global temporal context, UniZero improves
long-horizon performance, but its uniform attention weighting motivates the structured temporal
priors we introduce in this work.

3 Related Work

RL in POMDPs. Under partial observability, model-free methods typically rely on recurrent networks
to infer hidden states Hausknecht and Stone| [[2015]], whereas model-based approaches learn latent
world models for planning. Early frameworks such as predictive state representations [Littman and
Sutton|[2001]] have evolved into deep generative models such as Dreamer, which combine variational
inference and recurrent state-space models to compactly represent belief states and enable efficient
long-horizon planning [Ha and Schmidhuber|[2018]], Hafner et al.| [2020].

Memory Mechanisms in DRL. Many deep RL methods explicitly incorporate memory to handle
partial observability. Simple approaches stack the last k£ frames Mnih et al.| [2015]], recurrent
architectures summarize the entire action—observation history into fixed-size states Hausknecht and
Stone| [2015]], and external differentiable memories further expand capacity but often introduce
training instability (Graves et al.|[2016]. Influence-Aware Memory (IAM), inspired by Influence-
Based Abstraction (IBA) Oliehoek et al.|[2012], learns gating mechanisms that selectively retain past
observations predictive of future outcomes|Suau et al.|[2022].

Transformer-based World Models. Recent Transformer adaptations in RL leverage self-attention
to capture long-range dependencies, but most do not incorporate inductive priors tailored to RL
sequences. On the model-free side, methods such as GTrXL and Transformer-XL stabilize attention
via gating and relative encodings [Parisotto et al.| [2020]], Dai et al.| [2019]], Decision Transformer
reframes control as return-conditioned masked attention over past trajectories |Chen et al.| [2021]],
and Adaptive Span Transformer reduces computation by learning per-head context lengths without
building an explicit dynamics model Kumar et al.|[2020]. On the model-based side, hybrids such as
IRIS Micheli et al.| [2023]] and TransDreamer|Chen et al.| [2022] integrate Transformers into latent
world models, rolling out imagined trajectories for planning to achieve strong sample efficiency.
However, most existing Transformer-based world models in RL rely on fixed or NLP-inspired
positional encodings (e.g., sinusoidal or relative embeddings), which emphasize computational
efficiency rather than task relevance. In contrast, we introduce structured temporal priors to better
align attention with reward-relevant dependencies.

4 Dynamics Modelling with Self-Attention Priors

In UniZero’s world model, the dynamics function aggregates past latents and actions up to time ¢ into
a history h;, and predicts the next latent and reward:

(5t+17 72t) = ge(Zgu (lgt) = ge(ht), ()

where relevance is computed via self-attention with weights {c;; }3»:1 (with ¢ the current query and
7 the key). Under partial observability, however, only a limited window of context and a sparse set
of key events truly drive accurate predictions. To better align attention with these reward-relevant
dependencies, we introduce two structured temporal priors into the attention mechanism: (i) a
memory-length prior that enforces a learnable finite look-back span, and (ii) a distributional
prior that softly emphasizes tokens according to a Gaussian saliency distribution. Our goal is to
bias self-attention toward histories that matter most for predicting dynamics and rewards, thereby
improving sample efficiency in low-data, partially observable RL settings.

4.1 Memory-Length Prior

Many partially observable environments admit a finite effective memory: only the most recent n steps
are needed to predict the next reward Littman and Sutton|[[2001]], Mnih et al.|[2016]. Imposing this
prior focuses the model on a minimal history window, reducing redundant computation over distant
tokens. Formally,

E[Tt \ hl:tyat] = E[Tt | ht—n+1:t7at]- 3)

We implement this using Adaptive Attention Sukhbaatar et al.|[2019]. Each head h learns a scalar
parameter sy, transformed via softplus into a positive span L;, = softplus(sy,). A hard mask over
relative positions is then constructed:

0 i—j <Ly
MW =Y ’ 4
t —00, 1 —j> Ly,)

A B
Standard Masked ~ Adaptive
Te-1,Vt-1 Te-1,2t-1 T, Ut Tty 2t m | |
e T e T —— o e “BEEE
N S | o] | ==
T 9 17T _‘,w J e l M — T B
X S S
| Transformer Backbone) 1) 2 o
] I I] Z4g —— Zp] ————— 2 g Ly
g
o Gaussian Gaussian Adaptive
Zt-1 -1 3‘_ at Complete Context IEEEEEE NEEEEEE
fa T]
——{ 041 O e ™t |||| | e
—— == Hh
. +on —Oh =
Training Inference Ly

Keys

Figure 1: Model framework and attention priors. (A) UniZero world model with Transformer
dynamics: observation—action sequences are encoded into latents, processed by self-attention, and
used for dynamics and decision heads. (B) Attention priors: standard masking (left), memory-length
prior (adaptive span), distributional prior (Gaussian bias), and their combination (Gaussian Adaptive).
Yellow indicates high attention bias; dark blue indicates zero. Together, these priors bias self-attention
toward reward-relevant temporal context.

so that queries at ¢ can only attend within their learned look-back span. Attention weights become

Attention®™ = softmax(% + M(h)). &)

To prevent trivial solutions where all spans grow without bound, we apply an ¢; penalty, encouraging
the model to learn minimal but sufficient spans [Tibshirani| [[1996]],|Givan et al.| [2003]. Each attention
head h produces a context vector

t
h h
" =3 ol z1a5], (©)
j=1

where [2;; a;] denotes the concatenated latent state and action at step j. By constraining spans Ly,
different heads specialize at distinct temporal scales, yielding a multi-scale representation when their
context vectors are combined into h;.

4.2 Distributional Prior

In partially observable settings, only a sparse subset of tokens carries predictive signal for (21, 7).
We capture this distributional prior by learning a Gaussian positional kernel.

Each head h learns parameters pip, o, > 0, defining

S 2
w (== pm)
Gij - _T. @)
This is added to the scaled dot-product logits:
Attention®) = softmax(% + G(h)>, 8)

so that queries at ¢ privilege tokens at offset y;, with sharpness o, [loannides et al.|[2024]. Unlike
spans, up and oy, are unconstrained: o} may expand to broad attention or shrink to narrow focus,
thereby giving each head a smooth, learned saliency profile through G). Different heads capture
different offsets and spreads, producing complementary temporal filters that are concatenated into h;.

4.3 Combining Priors

Finally, we combine the two priors by defining
(R) _ ~(h) (h)

B;j" =G+ M7, ©)]
and apply it within the attention mechanism by adding B(" as a bias term to the scaled dot-product
before the softmax. This Gaussian Adaptive Attention enforces a finite horizon while retaining
smooth saliency within it, thereby combining the strengths of memory-length and distributional
priors.

5 Experiments

We evaluate our Transformer-based world model augmented with attention priors on the Atari 100k
benchmark, a widely used testbed for sample efficiency in model-based reinforcement learning.
This suite spans diverse reward densities, horizon lengths, and stochastic dynamics. Our evaluation
considers both aggregate performance and the contribution of each prior through controlled ablations.

5.1 Experimental Setup

Agents are trained on 26 Atari environments for 100k interaction steps, with results averaged over
five independent runs using random seeds (1-5). Performance is reported as human-normalized
scores, following the protocol of Lukasz Kaiser et al.|[2020]]. UniZero supports both Single-Task (ST)
training, where a separate model is learned per environment, and Multi-Task (MT) training, where
a shared latent space spans multiple environments. To isolate the effects of the proposed attention
priors, all experiments are conducted in the ST setting. Unless otherwise noted, we adopt the default
hyperparameters of UniZero from [Pu et al.| [2025]], ensuring strict comparability with prior work.
Full architectural details, training configurations, and hyperparameters are provided in
together with instructions for reproducing all reported results.

Table 1: Raw Atari 100k scores comparing our attention-biased UniZero variants against reproduced
UniZero and MuZero baselines. MuZero results are from LightZero reproductions in |Pu et al.|[2025]
(three seeds), while Random and Human scores are from |Pu et al.|[2025]]. All “Ours” results are
averaged over five seeds. Bold entries denote the superior method between the UniZero ST baseline
and our attention-biased methods, while underlined values indicate the overall best-performing
method.

Game Random Human MuZero UniZero ST (Baseline) Adaptive UniZero (Ours) Gaussian UniZero (Ours) Gaussian Adaptive UniZero (Ours)
Alien 227.8 7127.7 300.0 468.5 570.6 483.3 509.6
Amidar 5.8 1719.5 90.0 57.2 57.9 71.2 53.4
Assault 222.4 742.0 609.0 341.9 423.5 486.8 333.7
Asterix 210.0 8503.7 1400.0 495.3 500.1 619.9 333.6
BankHeist 14.2 753.1 223.0 91.3 13.3 165.1 0.7
BattleZone 2360.0 37187.5 7587.0 6000.0 5872.5 5361.6 5297.6
Boxing 0.1 12.1 20.0 0.1 —9.5 2.4 —11.3
Breakout 1.7 30.5 3.0 3.7 0.8 5.1 0.5
ChopperCommand 811.0 7387.8 1050.0 1169.0 872.5 1263.4 735.2
CrazyClimber 10780.5 35829.4 22060.0 7418.9 4326.6 7966.6 2020.0
DemonAttack 152.1 1971.0 4601 236.3 187.4 267.0 166.4
Freeway 0.0 29.6 12.0 0.0 0.7 0.1 2.6
Frostbite 65.2 4334.7 260.0 239.8 261.2 236.7 162.2
Gopher 257.6 2412.5 346.0 606.7 646.4 798.8 240.0
Hero 1027.0 30826.4 3315.0 1483.0 1422.2 699.6 2414.4
Jamesbond 29.0 302.8 90.0 201.7 156.7 362.0 75.9
Kangaroo 52.0 3035.0 200.0 842.6 488.6 1636.4 367.9
Krull 1598.0 2665.5 5191.0 2539.8 2647.5 3108.8 1964.0
KungFuMaster 258.5 22736.3 6100.0 2019.0 8546.5 9424.5 644.3
MsPacman 307.3 6951.6 1010.0 643.9 1103.3 726.6 394.7
Pong —20.7 14.6 —15.0 —14.5 —19.6 =7.1 —20.3
PrivateEye 24.9 69571.3 100.0 93.3 —60.1 57.6 80.0
Qbert 163.9 13455.0 1700.0 677.2 941.5 1741.8 356.3
RoadRunner 11.5 7845.0 4400.0 1941.3 2164.5 1948.4 1400.0
Seaquest 68.4 42054.7 466.0 384.1 293.2 485.7 273.3
UpNDown 533.4 11693.2 1213.0 2018.0 1374.7 2373.8 1246.4
Normalized Mean 0.000 1.000 0.44 0.13 0.095 0.23 0.00
Normalized Median 0.000 1.000 0.13 0.05 0.05 0.10 0.02

Attention Prior Initialization. We initialize all attention priors to align with typical temporal
dependencies in Atari trajectories. For Adaptive Attention, each head begins with a span of L9 =
0.3 Limax ~ 6, following the recommendations of [Kumar et al.| [2020]. Gaussian Attention is
initialized with mean offset y, = 6 and standard deviation o5, = 1, while Gaussian Adaptive
Attention learns both ji;, and o, but applies a hard cutoff at L? = 10. To ensure comparable starting
conditions, initial distributional logits are sampled from A (u,, o7), exactly matching the Gaussian
prior.

Baselines. We compare against two established model-based RL baselines implemented in the
LightZero framework Niu et al.| [2023]]: (i) MuZero |Schrittwieser et al.| [2020], which combines
latent dynamics with Monte Carlo Tree Search, and (ii) UniZero |Pu et al.|[2025]], which replaces
MuZero’s recurrent core with a Transformer backbone. Both baselines are trained for 100k steps

per environment under identical hyperparameters, ensuring that performance differences arise solely
from the proposed priors.

5.2 Performance Results

[Table T|reports Atari 100k results against UniZero (ST) and MuZero. Gaussian UniZero delivers the
best overall performance, improving HNS from 0.13 to 0.23 (+77%) and HMS from 0.05 to 0.10
(+100%), outperforming the baseline in 19 of 26 games. Adaptive and Gaussian Adaptive variants
yield inconsistent or weaker results, with Adaptive only matching the baseline on HMS. Overall,
smooth Gaussian priors provide consistent sample-efficiency gains, while rigid span cutoffs hurt

performance. See full learning curves in[Appendix B] .

Gaussian Attention consistently outperforms alternatives because it distributes weights smoothly
across short- and mid-range temporal offsets, effectively capturing both immediate and moderately
delayed dependencies|Ni et al.|[2023]]. By contrast, Adaptive Attention’s hard spans often misestimate
the relevant horizon, either truncating delayed yet informative signals or incorporating irrelevant
context. Combining Gaussian weighting with a hard cutoff further degrades performance: truncating
the Gaussian kernel removes useful tails and produces conflicting priors. Together, these findings
suggest a general guideline for model-based RL under partial observability: smooth, learnable
positional priors offer a more robust and flexible mechanism for temporal modeling than rigid
memory windows. Future directions include extending Gaussian priors to multi-task settings, where
shared temporal structure across games could further improve generalization.

5.3 Ablation Studies

To isolate the contributions of each prior, we conduct ablations on four representative Atari games:
Pong, MsPacman, Jamesbond, and Freeway, which span diverse observation complexities, reward
structures, and temporal dependencies.

Regularization Ablation. We compare three penalties on the learned span vector Ly, each with
penalty coefficient A = 0.025 as in Kumar et al.| [2020]:

@O Max-norm lpax: enforces || Lyl < ¢, restricting each head to the most recent tokens
Srivastava et al.| [2014].

@ fy:adds Ay j Ly, ;, encouraging sparsity by driving many spans to zero while letting a few
grow.

B ly:adds A\ j L2, ;» softly shrinking spans while preserving long-range context.

In practice, max-norm favors purely short-term attention; ¢; produces a bimodal mix of very short
and very long spans; and {2 encourages balanced recency while retaining moderate long-range
dependencies. illustrates these effects: max-norm performs best in short-horizon tasks,
{5 dominates in mid-horizon settings, and ¢, occasionally excels in long-horizon environments by
retaining sparse but wide spans. Overall, /5 generalizes most robustly, striking a balance between
stability and flexibility.

Pong MsPacman Jamesbond Freeway

?
{
[

Env Steps
L1

Env Steps

L2

Figure 2: Regularization ablation. Comparison of /; (blue), ¢5 (orange), and max-norm (green)
penalties across four Atari games over five seeds. Shaded regions denote standard error. Each scheme
exhibits task-specific strengths, but /5 achieves the most consistent performance overall.

Initial Parameter Sensitivity. We further analyze sensitivity to initialization. As shown in[Table 2}
performance is largely robust to different initial spans (L) and Gaussian centers (i), both of which

adapt quickly during training. By contrast, the Gaussian width o}, has a stronger effect: narrower
widths (0}, = 1) consistently yield superior results across environments, while wider priors (o, = 3)
underperform. This suggests that initializing with a tight positional prior is more critical than precise
initialization of span or offset, providing a better inductive starting point for efficient learning.

Table 2: Ablation on initialization of attention priors. Mean = standard error over five seeds on
four Atari games. Varying initial spans Lj, or offsets yup, has little effect, while narrow Gaussian
widths (o}, = 1) consistently improve performance. Bold entries mark the best result per game.

Pong MsPacman Jamesbond Freeway
Ly =2 —18.5£0.4 716.7 + 58.9 180.0 £ 49.8 2.2+2.1
Ly, =6 —19.6 £ 0.4 1103.3 + 345.8 156.7 £+ 29.8 0.7+ 0.6
Ly =10 —18.7£0.5 633.3 £47.4 130.0 £ 34.7 2.7+ 2.1
pwn =2 —6.91+ 1.8 805.3 + 112.6 293.3 +£49.6 0.0+ 0.0
pun =6 —-7.9+1.0 726.7 +98.2 362.1 +53.1 0.1+0.1
pn =10 —10.5£1.0 894.7 + 101.8 290.0 £+ 58.4 0.1+0.1
op =1 -7.9+1.0 726.7 + 98.2 362.1 +53.1 0.1+0.1
op =3 —15.1 £0.7 638.7 + 47.6 196.7 £ 24.4 0.0+ 0.0

Compute and Memory Overhead. All proposed priors incur negligible overhead, with at most a
0.002% increase in MFLOPs per forward pass. shows that parameter counts and FLOPs
remain effectively unchanged relative to UniZero, demonstrating that the efficiency gains of adaptive
and Gaussian attention come at no meaningful computational cost. Full details on resources and

training times are provided in

Table 3: Overhead analysis. Parameter counts (in millions), MFLOPs per Transformer forward
pass, and relative increase over the vanilla UniZero baseline.

Model Total Parameters (M) Transformer Parameters (M) MFLOPs A MFLOPs (%)
Baseline 20.77 14.18 454.611 —
Adaptive 20.77 14.18 454.615 +0.001
Gaussian 20.77 14.18 454.619 —+0.002
Gaussian Adaptive 20.77 14.18 454.619 -+0.002

Limitations. Our evaluation is restricted to Atari, leaving open whether the proposed attention priors
generalize to continuous-control or multi-task settings. In addition, the learned look-back spans re-
quire regularization to avoid collapse to trivial extremes, which may limit adaptability in environments
with highly variable temporal dependencies. Future work should investigate more flexible tempo-
ral priors and evaluate their robustness across broader RL domains, including continuous-control
benchmarks such as Tassa et al.| [2018]].

6 Conclusion

In NLP, Transformers benefit from massive, balanced corpora where long-range dependencies recur
frequently, allowing self-attention to capture them implicitly. In contrast, model-based RL agents
must identify the few reward-relevant dependencies hidden within sparse and correlated trajectories
under limited supervision. This mismatch makes standard self-attention sample-inefficient, as it
spreads its focus across many uninformative transitions rather than concentrating on the critical
ones. We addressed this by incorporating two inductive priors into UniZero’s dynamics head: a
memory-length prior, restricting each head to a finite span, and a distributional prior, implemented
as a smooth Gaussian positional prior.

Experiments on Atari-100k demonstrate that Gaussian positional priors substantially improve sample
efficiency, delivering a 100% relative gain in human-normalized median score, while hard span
cutoffs degrade performance by truncating delayed yet informative signals. These results suggest
a broader principle: smooth, learnable temporal priors align better with the irregular dependency
structure of RL trajectories than rigid memory windows. Looking ahead, structured temporal priors
in self-attention promise to improve robustness and data efficiency in Transformer world models,
with potential benefits extending beyond Atari to continuous control, multi-task learning, and other
domains with complex temporal dependencies.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in Neural Information Processing Systems, 30, 2017.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166, 1994.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877-1901, 2020.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning with
transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Processing Systems, 34:15084—15097, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 2978-2988.
Association for Computational Linguistics, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume I (Long and Short Papers), pages 4171-4186. Association for Computational
Linguistics, 2019.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230-23243, 2022.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial intelligence, 147(1-2):163-223, 2003.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiriska, Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471-476, 2016.

David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861-1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

Matthew J Hausknecht and Peter Stone. Deep recurrent g-learning for partially observable mdps. In
AAAI fall symposia, volume 45, page 141, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv: Learning, 2016.

Georgios Ioannides, Aman Chadha, and Aaron Elkins. Gaussian adaptive attention is all you need:
Robust contextual representations across multiple modalities. CoRR, 2024.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence

modeling problem. In Advances in Neural Information Processing Systems, volume 34, pages
1273-1286, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99—-134, 1998.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In Machine Learning:
ECML 2006, pages 282-293. Springer Berlin Heidelberg, 2006.

Shakti Kumar, Jerrod Parker, and Panteha Naderian. Adaptive transformers in rl. arXiv preprint
arXiv:2004.03761, 2020.

Michael Littman and Richard S Sutton. Predictive representations of state. Advances in Neural
Information Processing Systems, 14, 2001.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Vincent Micheli, Eloi Alonso, and Frangois Fleuret. Transformers are sample-efficient world models.
In The Eleventh International Conference on Learning Representations, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pages 1928—-1937. PMLR, 2016.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine

in rl1? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36:50429-50452, 2023.

Yazhe Niu, Yuan Pu, Zhenjie Yang, Xueyan Li, Tong Zhou, Jiyuan Ren, Shuai Hu, Hongsheng Li,
and Yu Liu. Lightzero: A unified benchmark for monte carlo tree search in general sequential
decision scenarios. Advances in Neural Information Processing Systems, 36:37594-37635, 2023.

Frans Oliehoek, Stefan Witwicki, and Leslie Kaelbling. Influence-based abstraction for multiagent
systems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pages
1422-1428, 2012.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International Conference on Machine Learning, pages 7487-7498.
PMLR, 2020.

Yuan Pu, Yazhe Niu, Zhenjie Yang, Jiyuan Ren, Hongsheng Li, and Yu Liu. Unizero: Generalized
and efficient planning with scalable latent world models. Transactions on Machine Learning
Research, 2025. ISSN 2835-8856.

Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
models are happy with 100k interactions. In The Eleventh International Conference on Learning
Representations, 2023.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604—-609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889-1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

10

Edward Jay Sondik. The optimal control of partially observable markov processes. PhD thesis,
Stanford University, Stanford, CA, 1971.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Miguel Suau, Jinke He, Elena Congeduti, Rolf A. N. Starre, Aleksander Czechowski, and Frans A.
Oliehoek. Influence-aware memory architectures for deep reinforcement learning in pomdps. Neu-
ral Computing and Applications, 37(19):13145-13161, 2022. doi: 10.1007/s00521-022-07691-7.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention span
in transformers. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 331-335. Association for Computational Linguistics, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press,
Cambridge, MA, second edition, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267-288, 1996.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229-256, 1992.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Mitos, Blazej Osiniski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In International Conference on Learning Representations, 2020.

11

A Implementation Details

Encoder Archictecture. We adopt the UniZero encoder architecture [Pu et al.| [2025]], which builds
on the convolutional backbone of LightZero Niu et al.|[2023]] and adds a final linear projection to
produce a 768-dimensional (D) latent state. To improve training stability under partial observability,
we incorporate simplicial normalization (SimNorm) Hansen et al.| [2023]], which normalizes each
latent segment via a learnable temperature-controlled mappings.

Transformer Backbone and Prediction Heads. Our Transformer backbone follows the nanoGPT
architecture described in |Pu et al.|[2025]], stacking multiple self-attention and feed-forward layers
to process sequences of timestep inputs. All of our proposed inductive biases are implemented
directly within the self-attention module of each Transformer layer. At each step, the latent state
(after SimNorm) and the corresponding action are embedded into a common D-dimensional space
via learnable nn . Embedding (or a linear layer for continuous actions) and summed with learnable
positional embeddings. The Transformer outputs context-enriched representations that are sent to two
separate two-layer MLPs with GELU Hendrycks and Gimpel| [2016]] activations: the dynamics head
predicts the next latent state (of dimension D, followed by SimNorm) and the reward distribution
(discrete support size), while the decision head predicts policy logits (action-space size) and value
distribution (support size).

Hyperparameters and Environments. Table 4| summarizes all architectural and training parameters
used in our experiments. Most values such as latent dimension, Transformer depth, MCTS settings,
and optimizer configuration are inherited from UniZero [Pu et al|[2025]], with additional entries
for our attention-bias hyperparameters. All Atari environments are provided through the ALE
interface via Gymnasium v0.28, using the standard NoFrameskip variants with sticky actions enabled,
matching the settings in the UniZero framework. We select the environments from the Atari 100k
benchmark f.ukasz Kaiser et al.| [2020].

Training Details. All reported results are averaged over 5 random seeds, with error bars as described
in[Appendix B] Atari environments are provided through the ALE interface (Gymnasium 0.28, sticky
actions enabled), ensuring consistency with prior work. All experiments were conducted with a
configuration of a single NVIDIA Tesla A100 / V100 GPU, 15 — 20 CPU cores, and 60 — 80 GB of
total RAM. Training an Atari agent for 100,000 environment steps requires approximately 4 — 5 hours,
with agent evaluations every 10,000 steps (starting after the 20,000th step). We observed stable results
across A100 and V100 GPUs. Training configurations can be found in the zoo/atari/config
directory, where each attention model has a different configuration file within UniZero. See README
file in the codebase for details on how to train an agent.

Table 4: Key Hyperparameters. The values are aligned with those in [Pu et al.[[[2025]] for Atari
environments. The section on Attention refers to the newly added parameters.

Hyperparameter Value
Planning

Number of MCTS Simulations (sim) 50
Inference Context Length (Hipger) 4
Temperature 0.25
Dirichlet Noise () 0.3
Dirichlet Noise Weight 0.25
Coefficient ¢; 1.25
Coefficient co 19652
Environment and Replay Buffer

Replay Buffer Capacity 1,000,000
Sampling Strategy Uniform
Observation Shape (Atari) (3, 64, 64) (stackl)
Reward Clipping True
Number of Frames Stacked 1 (stackl)

12

(continued)

Hyperparameter Value
Frame Skip 4
Game Segment Length 400
Data Augmentation False
Architecture

Latent State Dimension (D) 768
Number of Transformer Heads 8
Number of Transformer Layers (V) 2
Dropout Rate (p) 0.1

Activation Function
Reward/Value Bins

LeakyReLU (encoder); GELU (others)
101

SimNorm Dimension (V') 8

SimNorm Temperature (7) 1

Optimization

Training Context Length (H) 10

Replay Ratio 0.25

Buffer Reanalyze Frequency 1/50

Batch Size 64

Optimizer AdamW |Loshchilov and Hutter [2019]
Learning Rate 1x107*

Next Latent State Loss Coefficient 10

Reward Loss Coefficient 1

Policy Loss Coefficient 1

Value Loss Coefficient 0.5

Policy Entropy Coefficient 1x 1074

Weight Decay 1074

Max Gradient Norm 5

Discount Factor 0.997

Soft Target Update Momentum 0.05

Hard Target Network Update Frequency 100

Temporal Difference (TD) Steps 5

Evaluation Frequency 10k Collector Steps
Attention

Attention Type causal, gaussian, adaptive or gaam

Rotary Positional Embeddings

Initial Gaussian Mean Offset pft
(init_adaptive_mu)

Initial Gaussian Standard Deviation o
(init_adaptive_sigma)

Max Adaptive Span
(max_adaptive_span)

Initial Adaptive Span LY
(init_adaptive_span)

Adaptive Span Regularization Parameter
(adapt_span_loss)

Adaptive Span Ramp R
(adapt_span_ramp)

False
6.0 (Varied across ablations)

1.0 (Varied across ablations)

20.0

6.0 (Adaptive), 10.0 (Gaussian Adaptive)
0.025

3.0

13

B Learning Curves and Learned Biases

Alien Amidar Assault Asterix BankHeist
2 L
o 300- F-- = |
B, o

BattleZone Boxing Breakout CrazyClimber Chopper
{:MN * —— ©
2 .
et]

DemonAttack Freeway Frostbite
c -
2 -
g —

Kangaroo Krull KungFuMaster MsPacman

Return

UpNDown

Return

Gaussian

Adaptive

Gaussian Adaptive

Figure 3: Learning Curves for Attention-Biased UniZero. Each panel plots the mean evaluation
return (solid line) and standard error (shaded band) over five random seeds for three variants: Gaussian
attention (blue), Adaptive attention (orange), and Gaussian Adaptive attention (green). The grey
dotted horizontal line in each subplot marks the UniZero baseline’s final return at the 100,000th
environment step.

In Pong, the learned parameters reveal clear differences between the inductive priors (Figure 4J).

Adaptive attention. The learned memory spans Lj (initialized at 6) drift inconsistently across
heads and layers. Some collapse to very short horizons, while others expand far beyond the relevant
dependency range. This instability indicates that Adaptive attention struggles to capture Pong’s
narrow but stable temporal dependencies.

Gaussian attention. By contrast, Gaussian attention learns mean offsets y, that remain close to the
initialization (u = 6), while widths o, expand moderately beyond 1.0. This produces smooth, head-
specific kernels that emphasize a few recent steps but still leverage informative tails. These stable
parameters align well with Pong’s true dependency horizon and explain the stronger performance of
this variant.

Gaussian Adaptive attention. This mechanism combines both priors, but the hard cutoff imposed by
Ly, (initialized at 10) often truncates the Gaussian kernel. Although the learned p;, and oy, resemble
those of Gaussian attention, the span clips the tails, removing the soft weighting needed to capture
delayed signals. As a result, Gaussian Adaptive inherits the instability of Adaptive rather than the
robustness of Gaussian.

14

Gaussian - up

&)]

Learned up

N
n

I layer 0
I layerl

Head Index

Gaussian - oy

N
o

=
u

Learned oy
=
o

| — Layer O
I lLayerl

o
8]

o
o

Head Index

Adaptive - Lj

wu

N

Initial L, = 6.0
| Il Layer 0

Learned L
w

N
N

Jun

[Layer 1

o 1 2 3 4 5 6 7
Head Index

Learned up
+ o

N

=
6]

Learned oy
o
(9]

©
o

Learned L
[e)]

.. Gaussian Adaptive - up

| HEE Layer 1l

=
o

Il layer 0
I lLayer1

Head Index

Gaussian Adaptive - oy

Initial c=1.0
Il Layer O

o 1 2 3 4 5 6 7

Head Index

Gaussian Adaptive - Lj

| Il Layer O

Initial L, =10.0

[Layer 1

o 1 2 3 4 5 6 7

Head Index

Figure 4: Learned adaptive and Gaussian-based attention parameters in Pong. The six subplots
report the learned values across attention heads and layers, compared against their initialization
(dashed lines). Top row: learned Gaussian mean offsets (i) for Gaussian (left) and Gaussian
Adaptive (right) attention. Middle row: learned Gaussian standard deviations (o},) for Gaussian (left)
and Gaussian Adaptive (right) attention. Bottom row: learned adaptive memory lengths (L) for
Adaptive (left) and Gaussian Adaptive (right) attention. Each bar shows the mean over 5 random seeds,
with error bars indicating standard deviations. These plots illustrate how different inductive biases
(Gaussian, Adaptive, and Gaussian Adaptive) evolve during training and how learned parameters

adapt relative to their initial values.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are accurate, since the abstract and introduction emphasize
the role of biased self-attention for dynamics modelling under partial observability, and the
paper substantiates this with both the method (Gaussian and adaptive priors) and empirical
evidence across Atari environments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, there is a subsection discussing the limitations of our experiments.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [NA]

Justification: We show no theoretical results in this paper, but we leverage theoretical
assumptions to drive the empirical results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of the experiments (setup and environments), architecture and
hyperparameters used are widely described throughout the paper and appendices.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experiments are based on standard Atari benchmark environments, which
are publicly available. We provide open access to our code, building upon existing open-
source frameworks [Pu et al.| [2025]], Niu et al. [2023]], and include instructions in the
README to reproduce the main experimental results. The release contains scripts and
configuration files for training and evaluation, along with details on environment setup,
ensuring faithful reproduction of the reported results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the hyperparameter and experimental setup details are described throughout
the paper and
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviation error bars for all experiments. In addition, for the
full learning curves that provide the final Atari scores, we report standard error bars, which

are included in

Guidelines:

* The answer NA means that the paper does not include experiments.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This details about the computational resources and training times are detailed
in
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have read and reviewed the NeurIPS Code of Ethics. Our work is purely
methodological, evaluated on a standard Atari benchmark, and does not involve human
subjects, sensitive data, or any form of deployment with ethical or societal risk. We confirm
that our work adheres to the Code without deviation.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

Answer: [NA]

Justification: Our paper presents a methodological contribution evaluated in controlled Atari
benchmark environments. The work does not involve deployment in real-world applications,
sensitive domains, or datasets with societal implications. As such, it poses no immediate
positive or negative societal impacts beyond advancing reinforcement learning research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not pose risks of misuse that would require special safeguards
such as releasing pretrained models, large language models, image generators, or specific
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

20

13.

14.

15.

Justification: We reused code from [Pu et al.|[2025]], Niu et al.|[2023]], which we properly
acknowledged in the README. The original code was released under Apache License,
Version 2.0 (Apache-2.0), and we respected the license terms.

Guidelines:

e The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our work does not introduce any new datasets, benchmarks, or other assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our research does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

21

paperswithcode.com/datasets

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were used exclusively for formatting, writing and editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Related Work
	Dynamics Modelling with Self-Attention Priors
	Memory-Length Prior
	Distributional Prior
	Combining Priors

	Experiments
	Experimental Setup
	Performance Results
	Ablation Studies

	Conclusion
	Implementation Details
	Learning Curves and Learned Biases

