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Abstract. People frequently use internet-based messaging systems to
coordinate. In order to achieve that, it is sufficient for them to exchange
natural language messages. The message history they generate can be
seen as a shared database that can be tapped into by personal assistive
systems; moreover, messaging is increasingly used for human-computer
communication. However, if natural language understanding is required
for such systems to function properly, the cost of developing them is
high and only few market players will be able to compete. If, on the
other hand, it is possible to mix machine-interpretable data with nat-
ural language conversations, assistive or conversational programs may
be developed more easily. As a first important challenge, we tackle the
problem of negotiating agreements and unambiguously represent what
has been agreed upon in a machine-readable form. In this paper, we
propose an extension of the Web of Needs, a de-centralized, linked data
based matching and messaging system, to allow conversation partners to
produce a mutually agreed-upon RDF dataset.
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1 Introduction

Agreement is commonly considered as “a negotiated and typically legally bind-
ing arrangement between parties as to a course of action”[20]. When we look at
the dominant ways to reach such agreements today, we see three clusters. The
classic way is that people come to an agreement in some kind of oral or written
conversation. With the advent of modern information technology, another way of
agreeing on the specifics of a transaction evolved: technological artifacts (Web-
sites, mobile apps) that require users to provide certain information needed to
render a service. The common pattern in the second cluster is a fixed Web API
on one side and a human who fills in the parameters on the other side. Here,
the API exhibits little to no flexibility, and agreement depends on the person
understanding the interface the way the designers intended them to.

A third option is gradually evolving in the form of chatbots and other con-
versational systems. The way such systems are typically built, they mix natural
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language conversation with structured or semi-structured data exchange, for ex-
ample by providing natural language patterns for allowing users to perform the
equivalent of API function calls, or GUI widgets to ask users for specific infor-
mation. This setup allows for more flexibility on the side of the service provider.
However, the success of the transaction depends on the chatbot understanding
the person correctly.

The field of electronic negotiations research (for a taxonomy of the field,
see the work by Strobl and Weinhardt [24]) is striving to develop a fourth op-
tion in which a communication medium produces agreement as an integrated
functionality that can be relied upon by people and software agents alike. Such
a medium might reduce the burden on intelligent conversational systems and,
if available as an open, federated system, make it cheaper and easier for new
market participants to enter.

Motivated by this vision, we describe an extension of a de-centralized, linked
data based communication system, the Web of Needs (WoN) [12,11], that helps
users find cooperation partners based on mutual interest, and provides a com-
munication channel. With the proposed extension, the communication partners
can negotiate the contents of an RDF dataset containing mutually agreed-upon
data that can be used for further coordination.

This paper is organized as follows. In Section 2 we explain how our work
compares to existing approaches in the field of electronic negotiation systems.
Section 3 establishes the technological background required to understand our
contribution. The contribution itself is described in Section 4, which is followed
by a discussion of important design decisions in Section 5.

2 Related Work

The purpose of the protocol extensions described in this paper is to facilitate
and organize electronic two-party negotiations in the Web of Needs. Systems
that employ Internet technologies (e.g. open linked data) and are deployed on
the Web are usually called e-negotiation systems (ENS) [10] and originate from
negotiation support systems (NSS). Many e-negotiation systems that are based
on game theoretic models or heuristic approaches restrict the negotiation do-
main, negotiation object, negotiation protocol, negotiation rules or communica-
tion language in order to enable autonomous agents for automatic negotiation
processes [9,15,21]. This is also true for scenarios where automated agents ne-
gotiate with humans [16]. Some systems apply more flexible approaches by not
hard-coding negotiation protocols but expressing them by ontologies [3,25] or
by letting participants construct rules in open e-negotiation protocols [4].
According to the Montreal Taxonomy [24], which is the first attempt of a
generic comprehensive classification scheme of e-negotiation processes and sys-
tems [5], electronic markets can be divided into different phases of interaction:
Knowledge, Intention, Agreement and Settlement. So far the main focus of Web
of Needs was on the Intention phase where supply and demand is specified by
market participants. With the support of electronic negotiation processes, WoN
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can support users in the Agreement phase as well, in which terms and conditions
of transactions are identified, and a contract can be signed.

In the Web of Needs the goal is to support negotiation between humans in
the first place but keep the system open and structured enough for automated
agent negotiation. Argumentation based negotiation approaches [1,21] empha-
size the importance of expressive communication (for exchanging information,
resolving uncertainties, revising preferences, etc.) as an integral part of the ne-
gotiation process. In more complex scenarios this often enables agents (human
or automated) to find an agreement in the first place. Therefore we want to keep
the full flexibility and expressiveness of natural language in negotiating about
arbitrary domains and objects while still having structured agreements as an
outcome.

These structured agreements are more than just an interaction history of
messages and can be compared to what is referred to as commitment stores [21].
This is realized by referring to exchanged messages using RDF triples [17] and
thereby marking them as issues of an proposal that can then be accepted by the
other participant to form an agreement. The content, number of issues and order
of exchanged messages between participants is completely unrestricted and pro-
posals/agreements can be formed (as well as retracted/canceled) directly from
messages during the communication. Since these structured agreements can be
automatically extracted from the message interaction history, the system repre-
sents a combination of communication-oriented and document-oriented approach
(e.g. [22]). This helps to avoid misunderstandings and errors during negotiations
and particularly valuable in business-to-business (B2B) scenarios [27]. In many
B2B scenarios (for instance public procurement [6,18]) these agreements could
be used to create legal contracts from it [19].

The agreement protocol layer is build on the Web of Needs message protocol
layer which generates a signed message interaction history for the two partici-
pants of the communication. This guarantees authentication, integrity and non-
repudiation for agreements or contracts (cf. [8]) as well as for the whole message
history. Every message references the signature of previous non-referenced mes-
sages therefore creating a structure which has some similarity to a blockchain.
However in contrast to a blockchain this structure represents a consensus that
affects only two participants and is not distributed to nodes of the whole net-
work. Also there is no mining of blocks and no proof-of-work or proof-of-stake
involved. The use of blockchains for storing negotiations and contracts has al-
ready been proposed [26,28]. Identified trade offs were the limitation of data
that can be stored on the blockchain as well as the communication latency that
might result in poor user experience if too much data is communicated over the
blockchain.
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3 Background

Our approach for the negotiation of agreements over linked data is based on
the Web of Needs (WoN) architecture. In this section, we explain the aspects of
WoOoN that are required to understand our approach.

The central idea of WoN is to connect people or software agents based on
their intentions, or as we call them, needs, in a de-centralized infrastructure built
on top of linked data and related Web technologies. When their needs have been
matched, users of different Web domains can establish a communication channel.
The architecture does not limit users in the description of their needs, nor is the
content of the messages they exchange restricted in any way. One core benefit of
this approach is that matchmaking, arguably a highly centralized functionality in
today’s Web, can be realized in a de-centralized fashion. When connected, users
have conversations by exchanging messages. In the simplest case, a conversation
is a chat session. However, the messages can contain arbitrary RDF data, and
they are stored online in an immutable fashion, effectively providing an add-only
RDF store shared between users. They can thus collaboratively build a shared
RDF data model of their relationship and use it for aligning their expectations
and coordinating their actions.

3.1 Components and Responsibilities

Users (or software agents) publish a linked data resource on the Web describ-
ing their interest in an interaction. This resource is referred to as a need, the
agent that created it is its owner, who used an owner application to create the
resource, which in turn published it on a server that supports the WoN protocol,
called a WoN node. The need description can contain a self-description and a de-
scription of the need it should be matched with. Independent matching services
can subscribe to changes on the WoN node and crawl their content. Whenever
a matching service finds a suitable pair of needs, it informs them of each other’s
existance. Consequently one could describe a need as a persistent, self-describing
search query that can be discovered by other such queries, and that serves as a
bi-directional communication proxy.

‘WoN nodes fulfill two purposes. On the one hand, they store and serve all the
data, and on the other hand, they serve as message brokers, routing messages
directed at needs and offering updates via a publish-subscribe system.

3.2 Message Composition and Delivery

Messages are realized as RDF datasets that are created by owners or WoN nodes,
and that are de-referencable under their message URI, minted by the sender, on
the sender’s WoN node. Message datasets contain three types of graphs: content
graphs, envelope graphs and a signature graph. Content graphs can contain any
kind of RDF data (including higher-level protocol data, see Section 4) that the
sender wants to communicate to the recipient. Envelope graphs contain meta
data about the message like the addressing information or references to other
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envelopes that were created during processing of messages. Both kinds, content
and envelope graphs are cryptographically signed during the process of sending
and receiving messages. Envelope graphs are added consecutively by each party
processing the message, linking them up in a chain. The signature of the last
(Coutermost’) envelope graph in the chain is placed in a signature graph. The
first (’innermost’) content graph of a message links to the content graphs and
includes their signatures. The structure of a message which is sent from an owner
to a WoN nodes is depicted in Figure 1.
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A message that is delivered to another need is sent to that need’s WoN node,
stored there, and dereferencable on that node under an URI that the sender’s
node mints in the recipient’s node’s URI space. The two copies, the local copy
and the remote copy reference each other so as to make the message delivery
tractable. All participants sign the data they add to the message using their
respective WebID [13]. The dataset representing a message has an empty default
graph to avoid mixing triples from different messages when aggregating data.

We define D to be the set of all possible RDF datasets. The boolean-valued
function isMsg : D — {true, false} indicates whether a given dataset is a pro-
cessable message. M = {m € D|isMsg(m) = true} is the set of all possible
messages. As messages do not have default graphs, messages are sets of named
graphs, i.e. M C P(I x G), where P denotes the powerset, I denotes the set of
all possible IRIs, and G denotes the set of all possible RDF graphs.

A WoN node always responds to a message it receives with a SUCCESSRE-
SPONSE or a FAILURERESPONSE message, which is itself delivered to the sender
of the original message and stored on the WoN node. The sender of a message
may either be an owner, a remote node, or the WoN node itself. A message is
referred to as failed if any of the WoN nodes involved responds with a FAILUR-
ERESPONSE message. If at least one of the WoN nodes does not respond to the
message at all, it is referred to as ignored. We use the boolean valued functions
failed : Z x P(M) — {true, false} and ignored : Z x P(M) — {true, false}
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to express that a message with a given IRI has failed or was ignored in a given
set of messages.

3.3 Creating Needs and Establishing Connections

A need is created by sending a CREATE message containing the need description
along with a public key to a WoN node. The need creator mints two URIs in the
URI space of the WoN node in the process, the message URI (as explained above)
and the Need URI. The latter is used as the root resource of the need description.
Upon receiving the message, the WoN node makes the need description available
as linked data and responds with a SUCCESSRESPONSE.3

Need owners can ask other needs to establish a Connection by performing
a handshake of a CONNECT and an OPEN message (or a CLOSE message to
deny the connection). Matching services can suggest a connection by sending a
HINT message to one or both of the needs involved. In that case, the connection is
created by the WoN node, but the owners still have to establish the connection by
an OPEN/OPEN handshake. In an established connection, the need objects can
freely exchange CONNECTIONMESSAGE messages.® All these exchanged messages
form two parallel signature chains on both WoN nodes because new messages
refer to signatures of former (unreferenced) messages. Also these chains have
references between each other since exchanged messages refer to its remote copy
received on the other side. The message chain structure resulting from connecting
two needs is depicted in Figure 2.
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Fig. 2: Diagram showing the messages visible to both owners in a conversation.
The beginning of the conversation is shown here with the two CREATE messages
(c), followed by a HINT, (h), and an OPEN/OPEN handshake (o). The two sides of
the conversation are separated by the dashed line. The subscript a or b indicates
which side the message was sent from. SUCCESSRESPONSES are represented by
s. Dashed boxes represent responses, double boxes represent remote copies. The
arrows indicate references to other messages.

Needs and connections have event containers, which are modeled after page-
able LDP containers[23]. When stored, a message is added to the event container
of the object it belongs to. CREATE, ACTIVATE, and DEACTIVATE messages are

3 In an earlier work [11] we show sequence diagrams of the message exchange taking
place upon need creation (Figure 5) and connecting (Figure 6)
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stored in the respective need’s event container. All other messages are added to
the respective connections’s event container.

When processed by the WoN node, an envelope graph is added to the mes-
sage. Besides other message metadata, references to previous messages in the
same event container are added in the form of signature references citing the
signature value. By doing so, all messages become part of a signature chain,
making message modification prohibitively hard, as signatures depend on signa-
tures created by the two owners and up to two nodes involved in a conversation.
When a connection is created for a need, the first message in the connection
references the need’s create message, thereby tying the need’s messages to the
connection’s.

4 Protocol Layers: From Conversations to Agreements

In the following, we consider a conversation between two need owners, 07 and o
that connects their needs n; and ny via their connections ¢; and cs.

The conversation is the union of all messages that are accessible to 07 in the
conversation with oo, at the point in time when m is the last message seen by
o1. This point in time is defined as either the reception of the remote response if
o1 is the sender of m. If oy is the recipient, the point is defined as the time the
response to m in c; is sent.

The set of all possible conversations is defined as the poweset of all possible
messages C = P(M) (which, as stated earlier, is equal to P(Z x G)). We define
the raw conversation dataset C,.(01,09,m) as the union of all messages in the
event containers of ni,ny and c¢;. As we will regard 07 and o0, as fixed for the
remainder of the paper, describing the situation from the point of view of o1, we
will write C..(m) instead of C..(01, 02, m).

The raw conversation dataset consists of all messages exchanged, or at-
tempted to be exchanged. It is used to verify the integrity of the message history
based on the chain of message signatures. It can be seen as a monotonically grow-
ing RDF store that the participants can only manipulate by adding messages. In
the context of WoN, this dataset is intended to be used as a device that allows
users to coordinate, that is, to build a shared, and at least partly agreed-upon
model of their relationship. In order to allow for the latter, we define higher-level
conversation protocols based on C,.. For doing this, we first make some auxiliary
definitions:

The function iri : M — T gives the IRI of the input message.

The function iris : C — Z yields the IRIs of all all message in the specified
conversation dataset.

The function msg : Z x C — M yields the message dataset of the message
with the specified IRI in the specified conversation dataset.

The function sender : Z x C — Z yields the IRI of the sender of the input
message.

The function happenBefore : Z X Z x C — {true, false} is true if there is
a signature reference path in C' from the message identified by the second IRI
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and all of its Responses to the message identified by the first IRI and all of its
responses, respectively.

The function content : Z X C — G yields the union of all content graphs of
the message with the specified IRI in the specified conversation dataset.

The function strip : M — M removes all content graphs from the input
message.

In the following we define a number of conversation protocols based on these
defintions.

4.1 Acknowledgement Protocol

As stated earlier, message delivery can fail, and messages can be ignored. In
both cases, we are dealing with messages that were not provably delivered to the
conversation partner. In this protocol layer, we want to present only the content
that was provably delivered, therefore we exclude the content of these messages
in the acknowledged selection S,ex : C — C:

Gack(C) = U cleanup(m, C) (1)

mé€iris(C)
where

strip(msg(m)) if failed(m,C) = true
cleanup(m,C) = V ignored(m,C) = true (2)
msg(m) otherwise

4.2 Modification Protocol

We intend to allow participants to specify SHACL shapes [14] defining the infor-
mation they require their counterpart to provide. Moreover, executing SPARQL
queries [2] over the conversation dataset can be useful for a number of use cases.
However, for accurately representing a shared model of the conversation content,
it is necessary to allow participants to change their mind or to correct mistakes,
which means, there must be a way to modify past messages. Modifying is only
allowed in one way: by marking one’s own earlier messages as no longer to be
considered or, as we will call it in the remainder of this work, as retracted.

For modelling the modification of messages, we introduce the Modification
ontology?, prefixed *mod’. It specifies only one ObjectProperty, mod:retracts,
that is used in triples linking two message IRIs, the subject being the retracting
message, the object being the retracted message.

The function retracts : Z x C — P(Z) returns all message IRIs linked to
from the input message via mod:retracts in any of its content graphs. The

4 See http://purl.org/webofneeds/modification [2017/07/23].
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function isRetracted :Z x C — {true, false} is defined as follows:

isRetracted(m,C) =
m € iris(C)
A Jr € iris(C):
m € retracts(r,C)
A sender(m, C) = sender(r,C)
A happenBefore(r,m,C) = true

The modification functionality is provided by the modification selection &,,,q :
C—Cas

Gmod(C) = U modifyMessage(m, Gucr(C)) (4)
meiris(Sqex(C))
where
strip(msg(m)) if isRetracted(m,C) = true
modifyMessage(m,C) = { strip(msg(m)) if retracts(m,C) # 0 (5)

msg(m) otherwise

The effect of this selection is that the content graphs of retracted messages
and those of the retracting messages are removed in the result. The selection is
applied to &k, hence modifications only have an effect if they do not fail and
are not ignored.

The messages referenced through the mod:retracts property are said to be
retracted.

4.3 Agreement Protocol

The fact that the message history can be modified does not mean that both
participants agree on anything. It just allows them to revise earlier statements,
which is not sufficient to coordinate actions between agents. In order to coordi-
nate, it is required to come to a shared understanding about facts, which requires
that the agents state the facts and that they signal each other that they agree
on them. In the Semantic Web, the core of such an agreement naturally is a set
of triples. Consequently, the agreement protocol allows the participants to select
a set of triples as agreed-upon.

The result is formally defined as the agreement function §.g» : C — D,
yielding a dataset in which each graph corresponds to one agreement in the
conversation C' and the associated graph name is an IRI that identifies the
agreement.® In the following, we define Sagr-

5 Note that Sagr, in contrast to Gpoq and Sycer, does not simply select named graphs
from a dataset. Rather, it selects them and recombines their triples, hence we do
not refer to it as a selection.
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Fig. 3: Diagram showing a acknowledgment and modification protocol layers us-
ing the same visualization style as Figure 2. Here, a later part in a conversation
is shown with three consecutive ConnectionMessage messages (m). Message m,, 3
is ignored by its intended recipient. In the acknowledged selection (middle layer),
its content graph is therefore removed, which is indicated by its light grey color.
Message m, ; is retracted by message r,,1. The content graphs of both messages
are removed in the modified selection (top layer), leaving message my o as the
only message that still has a content graph.

In order to represent agreements, we allow participants to propose the content
graphs of a set of earlier messages as the content of an agreement, to accept a
proposed agreement, and to cancel an accepted agreement.

Again, we introduce an ontology, the Agreement ontology®, prefixed ’agr’
that defines the properties agr:proposes, agr:proposesToCancel, and agr:
accepts, and the classes agr:Proposal and agr:Agreement.

agr:proposes, domain agr:Proposal, is used to link the IRIs of two mes-
sages p and c¢ in a triple iri(p) agr:proposes iri(c). Such a triple only has an
effect in this protocol if it occurs in a content graph of p, making p a proposal
that can be accepted. We call the message ¢ an clause of the proposal. There is
no limit on the number of clauses in a proposal.

5 See http://purl.org/webofneeds/agreement [2017/07/23].
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agr:accepts, domain agr:Agreement, is used to link the IRIs of two mes-
sages a and p in a triple iri(a) agr:accepts iri(p). Such a triple only has an
effect in this protocol if it occurs in the content graph of a if p is actually a
proposal. In that case, we say that a accepts the proposal p. There is no limit
to the number of proposals that can be accepted by one message a.

agr:proposesToCancel, domain agr:Proposal is used to link the IRIs of
two messages as and a1 in a triple iri(as) agr:proposesToCancel iri(a;).
Such a triple only has an effect in this protocol if it occurs in a content graph of
as, if a1 is an earlier agreement that has not been canceled yet

There are no restrictions concerning the combined use of these properties in
one content graph, that is, one message can accept any number of proposals,
propose any number of other messages, and propose to cancel any number of
agreements. As will be explained in the following, the effects of these statements
do not influence each other. It is thus possible to propose an agremeent that
replaces another one by mixing agr:proposes and agr:proposesToCancel. It
is even possible to make a proposal and agree to another proposal in one message.

The agreement protocol depends on the acknowledgement protocol and on
the modification protocol: We want to make sure that only provably delivered
messages can play a role in the agreement protocol, and we want to allow that
until accepted, proposals and clauses can be retracted. However, after its accep-
tance, an agreement must remain unaffected by later retractions - the only way
to get rid of an agreement must be to make a new one that cancels it.

For defining the agreement function we need to make some auxiliary defini-
tions:

accepts : Z x C — P(Z) returns all message IRIs linked to from the input
message via agr:accepts in any of its content graphs.

proposes : Z x C — P(Z) gives all the message IRIs the input message links
to via agr:proposes in any of its content graphs.

proposesToCancel : Z x C — P(Z) gives all the message IRIs the input
message links to via agr:proposesToCancel in any of its content graphs.

hasContent : Z x C — {true, false}) indicates if the message with the spec-
ified IRI in the specified conversation dataset has at least one content graph.

The function isProposal : Z x C — {true, false} is defined as follows:

isProposal(m,(C) =
m € iris(C)
A Ve € (proposes(m, C) U proposesToCancel(m,()) :
c € iris(C)
A happenBefore(c,m,C) = true
A hasContent(c, C') = true.

(6)

isProposal is true for message m in the conversation dataset C if C' contains all
messages that are proposed or proposed to be canceled. These messages need to
happen before m (thereby also disallowing m to propose itself) and need to have
at least one content graph. This last condition ensures that such a structure is
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not a proposal if evaluated over &,,,4(C) and one or more of its clauses have
been retracted, because such a clause does not have a content graph in &,,,4(C).
The function isAgreement : Z x C — {true, false} is defined as follows:

isAgreement(m,C) =
m € iris(C) A Vp € accepts(m,C) :
isProposal(p, C) = true (7)
A happenBefore(p, m,C) = true
A sender(m, C) # sender(p, C).

isAgreement is true for message m in C' if that message accepts a proposal that
was made earlier by the counterpart of the sender of m.

isProposal and isAgreement only regard messages before their input mes-
sage m, hence they can be evaluated over C(m) instead of C' without changing
the result. Doing that is actually required if we allow retraction of messages
(using &,,,04), because messages added to C' after m may change the result of
isProposal and isAgreement. Therefore, for evaluating agreements over &,,,04,
we have to do it at point m in the conversation, or &,,,q(C(m)), which is used
in the following definitions.

As we want to allow agreements to be cancelled later, we have to distinguish
between valid and canceled agreements. The function isValidAgreement : Z X
C — {true, false} is defined as follows:

isValidAgreement(m,C) =
isAgreement(m, G,,0q4(C(Mm))) = true A —3Jec € iris(C):

isAgreement(c, S,04(C(c))) = true A Ip € iris(G,04(C(c))) :

p € accepts(c, Gpod(C(c)) A m € cancels(p, Gpmod(C(c))).
(3)
isValidAgreement is true if agreement m was not canceled by a later agree-
ment ¢, which would have to accept a message p that proposes to cancel m. Note
that c is itself not checked for validity this way, so if ¢ does cancel m, and c is
itself cancelled later, m remains cancelled. There is no way to restore a cancelled

agreement.

Now that we have defined valid agreements, we can proceed to show how to
calculate the content of one agreement, and how to calculate all contents of all
agremeents in the conversation, which is the output of §qgr.

The function clauses : Z x C — P(Z), yielding the IRIs of all clauses in an
agreement (valid or invalid), is defined as follows:

clauses(m,C) =
{c €T | c € proposes(p, G 0qa(C(Mm)))},
= p € accepts(m, S,,04(C(Mm))) if isAgreement(m, S,,0q(C(m))
0 otherwise

(9)
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The function agreementContent : Z x C — D is defined as follows:

agreementContent(m,C) = U content(c, Gpoq(C(m)))
ceclauses(m,S,,,q4(C(m))

(10)
This is to say that the content of an agreement is one RDF graph, namely the
union of all content graphs of all clauses in the agreement at the point m in
the conversation, applying &,,.4. Note that neither the content of the proposing
message nor the content of the accepting message are added to the content of
the agreement.

We can now define the agreement function §qg4- : C = D as follows:

Fagr(C) = U (a, agreementContent(a, C)) (11)
a€{m|isValidAgreement(m,C)}

The agreement function §.g4., applied to C,, yields a dataset in which each
graph corresponds to one valid agreement in the conversation. The name of each
such graph is the IRI of the message that accepted the agreement. The triples
in each such graph is the union of the triples of all content graphs in all clauses
of the agreement. Note that if the agreement has no clauses (i.e., it only cancels
other agreements), the corresponding graph is empty.

This construction allows for identifying the messages pertaining to an agreed-
upon graph by looking up the agreement IRI and follwing agr:accepts and
agr:proposes. Likewise, it is simple to ask for canceling an agreement: the IRI
required to do that is the IRI associated with the agreement’s graph in Fog.(Cy).

5 Discussion

The Web of Needs protocols have been implemented” and can be tested on a
public demonstrator® The work at hand is part of an effort to apply WoN in the
transportation domain, in which we plan to use agreements for the coordination
of transportation jobs (e.g., setting/changing a pick-up or delivery appointment).
At this point, we have not implemented agreements yet, so we cannot provide
an experimental evaluation of the approach at hand. We will proceed to imple-
menting the extensions described here and evaluate their applicability for that
use case in simulations, a case study, and finally in field study. In this work, we
reflect on our solution by discussing some of our design decisions, which we do
in the following.

Cascading retracts. The option to retract earlier messages requires the
special case to be considered in which the retracted message is itself a retracting
one. In designing the protocol, we considered the options to a) to disallow such
messages (leading to a failure of the message) b) to let such messages not have
any cascading effect, or ¢) to let a retract have a cascading effect. Moreover, we

" See https://github.com/researchstudio-sat/webofneeds/ [2017/07/28].
8 See https://matchat.org/ [2007/07/28].
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considered enabling a restore operation for retracted messages in combination
with a) and b).? Our decision was guided by simplicity of computation and by
an intuitive evaluation of the importance for users. We decided not to support
restoring retracted messages as this does not seem to be an important feature of
a communication application (judging from state of the art messaging applica-
tions), and because such a feature may enable deceiving an unsuspecting user by
retracting a message and later silently restoring it. Consequently, we also decided
to avoid cascading retracts. The computationally simplest solution we found was
to define a message as retracted if there is a later message retracting it, with-
out checking if that message is retracted, and in addition to that to remove the
retracting message itself from the modified selection. The same reasoning was
applied for designing the cancelling of agreements: it is not possible to restore a
cancelled agreement, and cancelling has no cascading effect.

Granularity of modifications. When considering the modification of the
conversation content, the decision on the granularity of the modifications has to
be made. We are aware of current discussions of the related patch functional-
ity!® in LDP[23], which is to allow triple-level modifications. We decided only
to support retraction of whole messages for two reasons. For one, the approach
is simple to implement yet sufficient for all changes, and second, it is easy to
understand what happened for a human user. Modification on the triple level
may be much harder to keep track of, possibly adding an attack vector, e.g. for
introducing unnoticed triples into an agreement.

Retraction may fail. All messages can fail or be ignored. Worse, an au-
thenticated byzantine participant [7] operating a WoN node may deliberately
choose to lose certain messages or let them fail. This may lead to unfair situ-
ations. For example, let an owner make a proposal, then notice a mistake and
send a retract, and an authenticated byzantine remote WoN node, colluding
with the owner’s counterpart, ignore retract. The result is that the proposal is
not retracted, and the counterpart can still accept the proposal. One strategy to
counter this attack is to have the owner’s WoN node ignore the accept message
from the counterpart as long as the SUCCESSRESPONSE for the retract message
has not been received. In a non-fraudulent setting, however, the owner has no
way to make the WoN node do that. We currently do not have a solution to this
problem, other than that one should double check a proposal before sending it,
especially if one cannot be sure counterpart’s WoN node is uncompromised.

Proposing proposals. Technically, it is possible to propose a proposal or an
already agreed-to agreement. The effect is that the content graph of the proposal
or agreement message can become the content of an agreement. The protocol
could be adapted to prevent such agreements, but we do not see any harm done
by them.

9 Interested readers are referred to the discussion on the topic of negotiations on
the semantic Web Mailing list for more background. See https://lists.w3.org/
Archives/Public/semantic-web/2017Jul/0004.html [2017/07/07].

10" See https://dves.w3.org/hg/ldpwg/raw-file/ldpatch/ldpatch.html [2017/07/13].
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No special message type for retraction and agreement. One may
argue for at least some of the messages we introduce in this paper to be realized
with new top-level message types. We decided against this and rather opted for a
clear separation of communication layers. The basic protocol is used for making
connections and exchanging messages. Retraction as well as reaching agreements
is about a client-side interpretation of the message history, therefore we strove
for realizing the functionality in a separate, higher layer.

6 Conclusion and Outlook

In the work at hand, we propose a new way to interpret a linked data based
conversation between agents in the Web of Needs as a shared, add-only RDF
database. We introduce new protocol layers as views of the raw conversation
data available to each participant. These layers provide a) a cleaned-up view,
removing the content of failed and ignored messages and b) a modified view,
allowing participants to retract messages they sent earlier. Using these two lay-
ers, we introduce c) an agreement view, enabling the participants to produce a
mutually agreed-upon RDF dataset consisting of the RDF payload of selected
earlier messages.

The contributions of this work represent one step toward a generic, de-
centralized (or federated) protocol that allows for mixing different language lev-
els (natural language as well as the exchange of RDF structures) and facilitates
negotiations between agents (humans or software agents).

A related extension currently being designed is an additional protocol al-
lowing agents to define information requirements using SHACL shapes, thereby
allowing to ask for certain information in a non-ambiguous, machine-processable
way. We envision the use of intelligent client-side assistants that may assume dif-
ferent responsibilities such as filling in already known data like the user’s home
address etc., or organizational tasks like managing appointments on behalf of
the user.

We are planning to implement the proposed protocol extensions and evaluate
them in the context of transportation by connecting Web APIs of transporta-
tion companies to WoN via specifically designed bots bridging between the two
systems.
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