
Under review as a conference paper at ICLR 2018

CLUSTERING WITH DEEP LEARNING:
TAXONOMY AND NEW METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering is a fundamental machine learning method. The quality of its results
is dependent on the data distribution. For this reason, deep neural networks can
be used for learning better representations of the data. In this paper, we propose
a systematic taxonomy for clustering with deep learning, in addition to a review
of methods from the field. Based on our taxonomy, creating new methods is more
straightforward. We also propose a new approach which is built on the taxonomy
and surpasses some of the limitations of some previous work. Our experimental
evaluation on image datasets shows that the method approaches state-of-the-art
clustering quality, and performs better in some cases.

1 INTRODUCTION

Clustering is one of the most fundamental unsupervised machine learning problems. Its main goal
is to separate data into clusters of similar data points. Besides having its own applications, it is
beneficial for multiple other fundamental tasks. For instance, it can serve for automatic data labeling
for supervised learning and as a pre-processing step for data visualization and analysis.

However, the performance of clustering algorithms is dependent on the type of the input data, such
that different problems and datasets could require different similarity measures and different sep-
aration techniques. As a result, dimensionality reduction and representation learning have been
extensively used alongside clustering, in order to map the input data into a feature space where sep-
aration is easier with respect to the problem’s context. Using deep neural networks (DNNs), it is
possible to learn non-linear mappings allowing to transform the data into more clustering-friendly
representations.

In the past, dimensionality reduction (or representation learning) and clustering have been treated
separately, and sequentially applied on the data (Ding and He, 2004; Tian et al., 2014; Trigeorgis
et al., 2014). However, recent research has shown that jointly optimizing for both problems can
achieve decent results (Song et al., 2013; Xie et al., 2016; Yang et al., 2016a;b; Li et al., 2017).

One of our main contributions is the formulation of a taxonomy of methods that use deep learning
for clustering. Our taxonomy facilitates the overview of existing methods and the creation of new
ones by using the best properties of the existing ones in a modular manner.

Based on the taxonomy, we propose a new method that combines advantageous properties of some
existing methods. We use an autoencoder-based method for learning better representations of the
data which are clustering-friendly, with a state-of-the-art training procedure. The training has two
phases, the first one being standard autoencoder training with the mean squared error reconstruc-
tion loss, and the second one is based on a loss function combining the reconstruction loss and a
clustering-specific loss. Moreover, in the second phase, we alternate between optimizing the net-
work model, and updating the clustering assignments.

The rest of the paper is organized as follows: the taxonomy of clustering with deep learning and the
corresponding building blocks is described in Section 2. In Section 3, several related methods are
briefly described and compared based on the taxonomy. Subsequently, in Section 4, a new method
is proposed and discussed based on the building blocks of the taxonomy. Results of the proposed
method are shown in Section 5, followed by conclusions in Section 6.

1



Under review as a conference paper at ICLR 2018

2 TAXONOMY

The most successful methods for clustering with deep neural networks all work following the same
principle: representation learning using DNNs and using these representations as input for a specific
clustering method. Every method consists of the following parts, for each of which there are several
options to choose from:

• Neural network training procedure, consisting of the following:
– Main neural network branch and its usage
∗ Architecture of main neural network branch, described in Section 2.1
∗ Set of deep features used for clustering, described in Section 2.2

– Neural network losses:
∗ Non-clustering loss, described in Section 2.3
∗ Clustering loss, described in Section 2.4
∗ Method to combine the two losses, described in Section 2.5

– Cluster updates, described in Section 2.6
• After the network training: re-run clustering (optional), described in Section 2.7

2.1 ARCHITECTURE OF MAIN NEURAL NETWORK BRANCH

In most deep learning methods for clustering, the “main branch” of the neural network (apart from
side branches towards non-clustering losses, see Section 2.3) is used to transform the inputs into
a latent representation that is used for clustering. The following neural network architectures have
previously been used for this purpose:

• Multilayer perceptron (MLP): Feedforward network, consisting of several layers of neu-
rons, such that the output of every hidden layer is the input to next one.

• Convolutional neural network (CNN): Inspired by biology, more precisely by the orga-
nization of the animal visual cortex. Useful for applications to regular-grid data such as
images, if locality and shift-equivariance/invariance of feature extraction is desired.

• Deep belief network (DBN): Generative graphical model, consisting of several layers of
latent variables. It is composed of several shallow networks such as restricted Boltzmann
machines, such that the hidden layer of each sub-network serves as the visible layer of the
next sub-network.

2.2 SET OF DEEP FEATURES USED FOR CLUSTERING

DNNs serve for clustering as mappings to better representations. The features of these representa-
tions can be drawn from different layers of the network or even from several ones. It is possible to
separate this choice into two categories:

• One layer: Refers to the general case where only the output of the last layer of the network
is used. This approach benefits from the low dimensionality of the representation.

• Several layers: Refers to the case where the representation is a combination of the outputs
of several layers. Based on that, the representation is richer and allows the embedded space
to represent more complex semantic representations, which might enhance the separation
process and help in the similarity computation (Saito and Tan, 2017).

2.3 NON-CLUSTERING LOSS

The non-clustering loss is independent of the clustering algorithm and usually enforces a desired
constraint on the learned model. The following are possible options for non-clustering loss func-
tions:

• No non-clustering loss: No additional non-clustering loss functions are used. In such
cases, the network model is only constrained by the clustering loss requirements. For most

2



Under review as a conference paper at ICLR 2018

clustering losses, no non-clustering loss can have a danger of worse representations/results,
or theoretically even collapsing clusters (Yang et al., 2016a), but the latter rarely occurs in
practice.
• Autoencoder reconstruction loss: The autoencoder consists of two parts: an encoder and

a decoder. The encoder maps its input x to a representation z in a latent space Z. During
training, the decoder tries to reconstruct x from z, making sure that useful information has
not been lost by the encoding phase. In the context of clustering methods, once the training
is done the decoder part is no longer used, and the encoder is left for mapping its input
to the latent space Z. By applying this procedure, autoencoders can successfully learn
useful representations in the cases where the output’s dimensionality is different from the
input’s or when random noise is injected to the input (Vincent et al., 2010). Additionally,
they can also be used for dimensionality reduction goals (Hinton and Salakhutdinov, 2006).
Generally the reconstruction loss is a distance measure dAE(xi, f(xi)) between the input xi
to the autoencoder and the corresponding reconstruction f(xi). One particular formulation
of it is using the mean squared error of the two variables:

L = dAE(xi, f(xi)) =
∑
i

‖xi − f(xi)‖2, (1)

where xi is the input and f(xi) is the autoencoder reconstruction. This loss function guar-
antees that the learned representation preserves important information from the initial one,
which is why reconstruction is possible.
• Other tasks: Additional information about training samples that is available in the form

of targets, even if not perfectly suitable to dictate clustering, can be used in a (multi-task)
non-clustering loss to encourage meaningful feature extraction.

2.4 CLUSTERING LOSS

The second type of functions is specific to the clustering method and the clustering-friendliness
of the learned representations, therefore such functions are called clustering loss functions. The
following are options for clustering loss functions:

• No clustering loss: Even if a neural network has only non-clustering losses (Section 2.3),
the features it extracts can be used for clustering after training (Sections 2.6–2.7). The
neural network serves in this case for changing the representation of the input, for instance
changing its dimensionality. Such a transformation could be beneficial for the clustering
sometimes, but using a clustering loss usually yields better results (Xie et al., 2016; Yang
et al., 2016a).
• k-Means loss: Assures that the new representation is k-means-friendly (Yang et al., 2016a),

i.e. data points are evenly distributed around the cluster centers. In order to obtain such a
distribution a neural network is trained with the following loss function:

L(θ) =

N∑
i=1

K∑
k=1

sik‖zi − µk‖2, (2)

where zi is an embedded data point, µk is a cluster center and sik is a boolean variable for
assigning zi with µk. Minimizing this loss with respect to the network parameters assures
that the distance between each data point and its assigned cluster center is small. Having
that, applying k-means would result in better clustering quality.
• Cluster assignment hardening: Requires using soft assignments of data points to clusters.

For instance, Student’s t-distribution can be used as the kernel to measure the similarity
(van der Maaten and Hinton, 2008) between points and centroids. This distribution Q is
formulated as follows:

qij =
(1 + ‖zi − µj‖2/ν)−

ν+1
2∑

j′
(1 + ‖zi − µj′‖2/ν)−

ν+1
2

, (3)

where zi is an embedded data point, µj is the jth cluster centroid, and ν is a constant,
e.g. ν = 1. These normalized similarities between points and centroids can be considered

3



Under review as a conference paper at ICLR 2018

as soft cluster assignments. The cluster assignment hardening loss then enforces making
these soft assignment probabilities stricter. It does so by letting cluster assignment prob-
ability distribution Q approach an auxiliary (target) distribution P which guarantees this
constraint. Xie et al. (2016) propose the following auxiliary distribution:

pij =
q2ij/Σiqij

Σj′(q2ij′/Σiqij′)
. (4)

By squaring the original distribution and then normalizing it, the auxiliary distribution P
forces assignments to have stricter probabilities (closer to 0 and 1). It aims to improve clus-
ter purity, put emphasis on data points assigned with high confidence and to prevent large
clusters from distorting the hidden feature space (Xie et al., 2016). One way to formu-
late the divergence between the two probability distributions is using the Kullback–Leibler
divergence (Kullback and Leibler, 1951). It is formulated as follows:

L = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij
, (5)

which is minimized for the aforementioned Q and P via neural network training.

• Balanced assignments loss: This loss has been used alongside other losses such as the pre-
vious one (Dizaji et al., 2017). Its goal is to enforce having balanced cluster assignments.
It is formulated as follows:

Lba = KL(G‖U) (6)

where U is the uniform distribution and G is the probability distribution of assigning a
point to each cluster:

gk = P (y = k) =
1

N

∑
i

qik (7)

By minimizing equation 6, the probability of assigning each data point to a certain cluster
is uniform across all possible clusters (Dizaji et al., 2017). It is important to note that this
property (uniform assignment) is not always desired. Thus, in case any prior is known it is
still possible to replace the uniform distribution by the known prior one.

• Locality-preserving loss: This loss aims to preserve the locality of the clusters by push-
ing nearby data points together (Huang et al., 2014). Mathematically, it is formulated as
follows:

Llp =
∑
i

∑
j∈Nk(i)

s(xi, xj)‖zi − zj‖2 (8)

where Nk(i) is the set of k nearest neighbors of the data point xi, and s(xi, xj) is a simi-
larity measure between the points xi and xj .

• Group sparsity loss: It is inspired by spectral clustering where block diagonal similarity
matrix is exploited for representation learning (Ng et al., 2002). Group sparsity is itself an
effective feature selection method. In Huang et al. (2014), the hidden units were divided
into G groups, where G is the assumed number of clusters. When given a data point xi the
obtained representation has the form {φg(xi)}Gg=1. Thus the loss can be defined as follows:

Lgs =

N∑
i=1

G∑
g=1

λg‖φg(xi)‖, (9)

where {λg}Gg=1 are the weights to sparsity groups, defined as

λg = λ
√
ng, (10)

where ng is the group size and λ is a constant.

• Cluster classification loss: Cluster assignments obtained during cluster updates (Sec-
tion 2.6) can be used as “mock” class labels for a classification loss in an additional network
branch, in order to encourage meaningful feature extraction in all network layers (Hsu and
Lin, 2017).

4



Under review as a conference paper at ICLR 2018

• Agglomerative clustering loss: Agglomerative clustering merges two clusters with maxi-
mum affinity (or similarity) in each step until some stopping criterion is fulfilled. A neural
network loss inspired by agglomerative clustering (Yang et al., 2016b) is computed in sev-
eral steps. First, the cluster update step (Section 2.6) merges several pairs [correct?] of
clusters by selecting the pairs with the best affinity (some predefined measure of similarity
between clusters). Then network training retrospectively even further optimizes the affinity
of the already merged clusters (it can do so because the affinity is measured in the latent
space to which the network maps). After the next cluster update step, the network train-
ing switches to retrospectively optimizing the affinity of the newest set of newly merged
cluster pairs. In this way, cluster merging and retrospective latent space adjustments go
hand in hand. Optimizing the network parameters with this loss function would result in a
clustering space more suitable for (agglomerative) clustering.

2.5 METHOD TO COMBINE THE LOSSES

In the case where a clustering and a non-clustering loss function are used, they are combined as
follows:

L(θ) = αLc(θ) + (1− α)Ln(θ), (11)

where Lc(θ) is the clustering loss, Ln(θ) is the non-clustering loss, and α ∈ [0; 1] is a constant
specifying the weighting between both functions. It is an additional hyperparameter for the network
training. It can also be changed during training following some schedule. The following are methods
to assign and schedule the values of α:

• Pre-training, fine-tuning: First, α is set to 0, i.e. the network is trained using the non-
clustering loss only. Subsequently, α is set to 1, i.e. the non-clustering network branches
(e.g. autoencoder’s decoder) are removed and the clustering loss is used to train (fine-tune)
the obtained network. The constraint forced by the reconstruction loss could be lost after
training the network long enough for clustering only. In some cases, losing such constraints
may lead to worse results (see Table 1).

• Joint training: 0 < α < 1, for example α = 0.5, i.e. the network training is affected by
both loss functions.

• Variable schedule: α is varied during the training dependent on a chosen schedule. For
instance, start with a low value for α and gradually increase it in every phase of the training.

In phases with α = 1, no non-clustering loss is imposed, with potential disadvantages (see No non-
clustering loss in Section 2.3). Similarly, in phases with α = 0, no clustering loss is imposed, with
potential disadvantages (see No clustering loss in Section 2.4).

2.6 CLUSTER UPDATES

Clustering methods can be broadly categorized into hierarchical and partitional (centroid-based)
approaches (Jain et al., 1999). Hierarchical clustering combines methods which aim to build a
hierarchy of clusters and data points. On the other hand, partitional (centroid-based) clustering
groups methods which create cluster centers and use metric relations to assign each of the data
points into the cluster with the most similar center.

In the context of deep learning for clustering, the two most dominant methods of each of these
categories have been used. Agglomerative clustering, which is a hierarchical clustering method,
has been used with deep learning (Yang et al., 2016b). The algorithm has been briefly discussed in
Section 2.4. In addition, k-means, which falls into the category of centroid-based clustering, was
extensively used (Xie et al., 2016; Yang et al., 2016a; Li et al., 2017; Hsu and Lin, 2017).

During the network training, cluster assignments and centers (if a centroid-based method is used)
are updated. Updating cluster assignments can have one of the two following forms:

• Jointly updated with the network model: Cluster assignments are formulated as proba-
bilities, therefore have continuous values between 0 and 1. In this case, they can be included
as parameters of the network and optimized via back-propagation.

5



Under review as a conference paper at ICLR 2018

• Alternatingly updated with the network model: Clustering assignments are strict and
updated in a different step than the one where the network model is updated. In this case,
several scenarios are possible, dependent on two main factors:

– Number of iterations: Number of iterations of the chosen clustering algorithm, that
are executed at every cluster update step. For instance, in Xie et al. (2016), at each
cluster update step, the algorithm runs until a fixed percentage of points change as-
signments between two consecutive iterations.

– Frequency of updates: How often are cluster updates started. For instance in Yang
et al. (2016b), for every P network model update steps, one cluster updates step hap-
pens.

2.7 AFTER NETWORK TRAINING

Once the training converges, the network should have learned a mapping from the input space to a
more clustering-friendly space with respect to the dataset it was trained on. In other words, if the
training was performed on digit images of N × N pixel size, the network should be able to map a
set of N × N images to a space where clustering is easier. With such a mapping, it makes sense
to run a clustering algorithm on a desired dataset. However, the majority of the presented methods
performs clustering during the training and obtain their clustering results from their last training
iteration. Therefore the following are reasons for re-running the clustering after the training is done:

• Clustering a similar dataset: The general and the most trivial case is to reuse the learned
features representation mapping on another dataset which is similar to the one that has been
used but has different data.

• Obtaining better results: Under certain circumstances, it is possible that the results of
clustering after the training are better than the ones obtained during the learning procedure.
For instance, in Yang et al. (2016b), such a behavior is reported. One possible reason for
this to happen is that the cluster update step during the training doesn’t go all the way
till the end (see Number of iterations in Section 2.6) meaning that older steps used older
representations that might be worse. Therefore, some of the cluster merging steps (agglom-
erative clustering) were performed on a less optimal feature representation, which is why
clustering after the training performed better.

3 RELATED METHODS

Clustering has been extensively studied and researched. Its application with deep neural networks
has gained additional interest in the last few years, due to the success of supervised deep learning.
However, in most cases, clustering is handled in an unsupervised fashion, making its application with
deep learning less trivial and requiring more modeling effort and theoretical analysis. Therefore,
several approaches have been presented over the last years, trying to use the representational power
of DNNs for preprocessing clustering inputs. Each of these approaches used different network
architectures, structures, loss functions and training methods in order to achieve their results and to
improve the clustering quality. The following are some of the interesting methods that have been
previously introduced.

3.1 DEEP EMBEDDED CLUSTERING (DEC)

DEC is one of the most promising approaches in the field. It is based on autoencoders as net-
work architecture and initialization method, and uses k-means for clustering (Xie et al., 2016). As
for training the neural network, the method first pretrains the model using a standard input recon-
struction loss function. Secondly, the network’s model is fine-tuned using the cluster assignment
hardening loss and the clustering centers are updated. The clusters are iteratively refined by learn-
ing from their high confidence assignments with the help of the auxiliary target distribution. As a
consequence, the method showed decent results and has later been used as a reference to compare
new methods performances.

1Results from (Yang et al., 2016a) as the DEC paper did not publish results in NMI metric.

6



Under review as a conference paper at ICLR 2018

Table 1: Comparison of methods based on the taxonomy and quality of results. Quality numbers are
from the respective original publications, except where otherwise noted.

METHOD ARCH
FEATURES

FOR
CLUSTERING

NON-
CLUSTERING

LOSS

CLUSTERING
LOSS

COMBINING
THE LOSS

TERMS

CLUSTERING
ALGORITHM

NMI
MNIST

ACC
MNIST

NMI
COIL20

ACC
COIL20

DEC
(Xie et al., 2016) MLP Encoder

output

Autoencoder
reconstruction

loss

Cluster
assignment
hardening

Pretraining and
fine tuning k-Means 0.8001 0.843 - -

DCN
(Yang et al., 2016a) MLP Encoder

output

Autoencoder
reconstruction

loss

k-Means
loss

Alternating
between joint
training and

cluster updates

k-Means 0.810 0.830 - -

DEN
(Huang et al., 2014) MLP Encoder

output

Autoencoder
reconstruction

loss

- Group
sparsity

- Locality-
preserving

Joint
training k-Means - - 0.870 0.724

DEPICT
(Dizaji et al., 2017) CNN Encoder

output

Autoencoder
reconstruction

loss

- Cluster
assignment
hardening

- Balanced-
assignment

Joint
training k-Means 0.916 0.965 - -

DBC
(Li et al., 2017) CNN Encoder

output

Autoencoder
reconstruction

loss

Cluster
assignment
hardening

Pretraining
and

fine tuning
k-Means 0.917 0.964 0.895 0.793

JULE
(Yang et al., 2016b) CNN CNN

output - Agglomerative
loss - Agglomerative

clustering 0.915 - 1 -

CCNN
(Hsu and Lin, 2017) CNN

Internal
CNN
layer

-
Cluster

classification
loss

- k-Means 0.876 - - -

Neural
Clustering

(Saito and Tan, 2017)
MLP

Concatenation
of encoder

layers output

Autoencoder
reconstruction

loss
- - kNN - 0.966 - -

Proposed CNN Encoder
output

Autoencoder
reconstruction

loss

Cluster
assignment
hardening

Pretraining
followed by
joint training

k-Means 0.923 0.961 0.848 0.762

3.2 DEEP CLUSTERING NETWORK (DCN)

DCN is another autoencoder-based method that uses k-means for clustering (Yang et al., 2016a).
Similar to DEC, in the first phase, the network is pretrained using the autoencoder reconstruction
loss. However, the second phase is different. In contrast to DEC, the network is jointly trained using
a mathematical combination of the autoencoder reconstruction loss and the k-means clustering loss
function. Thus, due to the fact that strict cluster assignments were used during the training (instead
of probabilities such as in DEC) the method required an alternation process between the network
training and the cluster updates. The method performed well and even led to better results than DEC
on the MNIST dataset.

3.3 DISCRIMINATIVELY BOOSTED CLUSTERING (DBC)

With respect to the presented taxonomy, the approach in DBC (Li et al., 2017) is almost identical to
DEC except for using convolutional autoencoders. Namely, it also uses k-means for clustering and
the same training method: pretraining with autoencoder reconstruction loss and fine tuning using the
cluster assignment hardening loss. Additionally, the same advantages and disadvantages are shared
by both methods. Thus, due to the fact that DBC uses convolutional layers, it outperformed DEC’s
clustering quality on image datasets which was obviously expected.

3.4 JOINT UNSUPERVISED LEARNING OF DEEP REPRESENTATIONS AND IMAGE CLUSTERS
(JULE)

JULE uses a convolutional neural network for representation learning. For clustering, a hierarchical
approach is used, specifically, the agglomerative clustering method is employed. Concerning the
training, the method only uses a clustering loss, specifically, the agglomerative loss. Additionally,
the method has a period hyper-parameter, by which the training behavior is altered. Namely, this
hyper-parameter specifies the number of model updates that should be applied before the clustering
algorithm executes a clustering iteration, for instance, ten learning sessions followed by fusing two
clusters into one. In experiments, the method showed great results, for example on MNIST, it
performed better than all the other methods. However, the disadvantages of the lack of any non-
clustering loss (see No non-clustering loss in Section 2.3) may be particularly pronounced, at least
in theory (Yang et al., 2016a).

7



Under review as a conference paper at ICLR 2018

Figure 1: Proposed Method. We use a fully convolutional autoencoder, with reconstruction and
cluster hardening loss, discussed in section 2.3 and 2.4 respectively, which results in cluster friendly
feature space without the risk of collapsing to degenerate solutions

3.5 CLUSTERING CNN (CCNN)

CCNN uses a clustering CNN (Hsu and Lin, 2017) to achieve joint clustering and representation
learning. One of the internal layers of the CCNN forms the feature space. At the same time, the
CCNN’s softmax layer predicts the cluster labels. Initially, features from k random images from
the dataset are used to initialize the cluster centers. k-Means is performed on the features extracted
from the input dataset to get corresponding cluster labels. Based on the assigned labels, and the
labels predicted by the softmax layer, the CCNN parameters can be updated using the clustering
classification loss discussed in section 2.4. The extracted features of the minibatch are then further
used to update the corresponding cluster centroids.

3.6 OTHER METHODS

Besides the described methods, multiple attempts have been made in the field of clustering with
deep learning. An interesting work is by Saito and Tan (2017) where a standard autoencoder was
used without additional clustering loss functions. However, the outputs of several layers of the
network beside the last one are used as the final feature representation. This layer concatenation
led to superior results even when compared with methods which included a clustering-specific loss
function. Moreover, in Huang et al. (2014), joint training was performed with a combination of
an autoencoder reconstruction loss, a locality-preserving loss, and a group sparsity loss. Another
work is by Dizaji et al. (2017), it is very similar to DEC, except for adding an additional term to the
clustering loss which is a balanced assignments loss. By this addition, they alleviate the danger of
obtaining degenerate solutions, but introduce again the need for alternating between network training
and clustering updates. In addition to the mentioned methods, multiple others exist (Premachandran
and Yuille, 2016; Harchaoui et al., 2017; Zheng et al., 2016; Chen et al., 2017; Lukic et al., 2016;
Wang et al., 2016; Chen, 2015).

Rather than directly using a neural network to extract high-level features of samples, infinite ensem-
ble clustering (Liu et al., 2016) uses neural networks to generate infinite ensemble partitions and to
fuse them into a consensus partition to obtain the final clustering.

4 PROPOSED METHOD

After identifying a taxonomy of clustering with deep learning (Section 2) and comparing methods
in the field based on it (Table 1), creating new improved methods became more straightforward.
For instance, by looking at Table 1, one could notice that some combinations of method properties
could lead to new methods. In some cases, such combinations could also surpass the limitations of
the previous approaches and lead to better results. This procedure was followed during this work.

8



Under review as a conference paper at ICLR 2018

Namely, we picked an interesting combination of taxonomy features and came up with a new method
(Fig. 1).

Our method uses a convolutional architecture, since our target clustering datasets are image datasets.
Additionally, the network training has two phases. The first one is pretraining with an autoencoder
reconstruction loss. In the second phase, the autoencoder loss and the cluster assignment hardening
are jointly optimized. This second phase is different from DEC and DBC, which only use the cluster
assignment hardening loss at this level. Omitting the reconstruction loss during one phase of the
network training could lead to worse representations and solutions (see No non-clustering loss in
Section 2.3). Therefore, combining the reconstruction loss with the cluster assignment hardening
loss makes a lot more sense. This phase is also different from DCN, which has the joint training
property, but uses the k-means loss. The k-means loss forces to alternate between joint training and
clustering updates due to the hard cluster assignments. Using the cluster assignment hardening loss,
this alternation procedure is no longer needed in our approach since this loss uses soft assignments
which can be jointly updated with the network updates. Once both training phases are done, the
network should be able to map its input into a more clustering-friendly space. Based on this as-
sumption, we use the output of the network as the input to the k-means method which produces the
final clustering results.

5 EXPERIMENTAL RESULTS

In this section we evaluate our model on real-world data and compare the results against the methods
previously discussed in section 3.

Validation Metrics For evaluation, we use the clustering accuracy (ACC) and normalized mutual
information (NMI) metrics (Strehl and Ghosh, 2002; Vinh et al., 2010; Cai et al., 2011). These
metrics lie in the range [0, 1], with 1 being the perfect clustering, and 0 being the worst.

Experimental Setup Training the network involved trying out several architectures and network
sizes. In addition, it required tuning the learning hyper-parameters, such as the learning rate, initial-
ization parameters, mini-batch size and others. In particular, we use a learning rate of 0.01 with a
momentum of 0.9, in addition to batch normalization (Ioffe and Szegedy, 2015) and L2 regulariza-
tion. The presented results are the best obtained ones during the experimentation phase.

Datasets The experiments were performed on several publicly available datasets:

• MNIST: Consists of 70000 images of hand-written digits of 28× 28 pixel size. The digits
are centered and size is normalized (LeCun, 1998).

• COIL20: Contains 1440, 32× 32 gray scale images of 20 objects (72 images per object).
The images of each object were taken 5 degrees apart (Nene et al., 1996).

Performance Table 1 shows the clustering performance in terms of accuracy and NMI for various
clustering DNN approaches. The results for all the methods are borrowed from their respective
publications. From the table it can be seen the proposed algorithm performs comparable, if not
better than a lot of state of the art approaches.

Figure 2 and 3 show the clustering spaces at different stages of training the proposed network, with
true cluster labels shown using different colors. The clustering spaces are 120-dimensional and 320-
dimensional for MNIST and COIL20, respectively. It can be seen from the visualizations that the
proposed method results in much more clustering-friendly spaces than the original image space and
the autoencoder space.

6 CONCLUSION

In this work, we present a taxonomy for clustering with deep learning, identifying the general frame-
work, and discussing different building blocks and possible options. In addition, a summary of meth-
ods in the field and their specific use of the taxonomy is presented alongside a general comparison

9



Under review as a conference paper at ICLR 2018

(a) k-Means (b) Autoencoder + k-Means (c) Proposed

Figure 2: t-SNE visualizations for clustering on MNIST dataset in (a) Original pixel space, (b)
Autoencoder hidden layer space and (c) Autoencoder hidden layer space with the proposed method.

(a) k-Means (b) Autoencoder + k-Means (c) Proposed

Figure 3: t-SNE visualizations for clustering on COIL20 dataset in (a) Original pixel space, (b)
Autoencoder hidden layer space and (c) Autoencoder hidden layer space with the proposed method.

of many of these methods. Using this taxonomy and the summary of previous methods, generating
new methods is clearer and easier and can be done by creating new combinations of the taxonomy’s
building blocks. Moreover, we present a new method to the field, which is based on such a new
combination. Our method overcomes the limitations of several previous ones, approaches state-of-
the-art performance and performs better in some cases.

REFERENCES

Cai, D., He, X., and Han, J. (2011). Locally consistent concept factorization for document clustering.
IEEE Transactions on Knowledge and Data Engineering, 23(6):902–913. (ˆ9)

Chen, D., Lv, J., and Yi, Z. (2017). Unsupervised multi-manifold clustering by learning deep rep-
resentation. In Workshops at the 31th AAAI conference on artificial intelligence (AAAI), pages
385–391. (ˆ8)

Chen, G. (2015). Deep learning with nonparametric clustering. arXiv preprint arXiv:1501.03084.
(ˆ8)

Ding, C. and He, X. (2004). K-means clustering via principal component analysis. In Proceedings
of the twenty-first international conference on Machine learning, page 29. ACM. (ˆ1)

Dizaji, K. G., Herandi, A., and Huang, H. (2017). Deep clustering via joint convolutional autoen-
coder embedding and relative entropy minimization. arXiv preprint arXiv:1704.06327. (ˆ4, 7,
8)

Harchaoui, W., Mattei, P.-A., and Bouveyron, C. (2017). Deep adversarial Gaussian mixture auto-
encoder for clustering. (ˆ8)

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507. (ˆ3)

10



Under review as a conference paper at ICLR 2018

Hsu, C.-C. and Lin, C.-W. (2017). Cnn-based joint clustering and representation learning with
feature drift compensation for large-scale image data. arXiv preprint arXiv:1705.07091. (ˆ4, 5,
7, 8)

Huang, P., Huang, Y., Wang, W., and Wang, L. (2014). Deep embedding network for clustering. In
Pattern Recognition (ICPR), 2014 22nd International Conference on, pages 1532–1537. IEEE.
(ˆ4, 7, 8)

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pages 448–
456. (ˆ9)

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM computing
surveys (CSUR), 31(3):264–323. (ˆ5)

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86. (ˆ4)

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/.
(ˆ9)

Li, F., Qiao, H., Zhang, B., and Xi, X. (2017). Discriminatively boosted image clustering with fully
convolutional auto-encoders. arXiv preprint arXiv:1703.07980. (ˆ1, 5, 7)

Liu, H., Shao, M., Li, S., and Fu, Y. (2016). Infinite ensemble for image clustering. In KDD, pages
1745–1754. (ˆ8)

Lukic, Y., Vogt, C., Dürr, O., and Stadelmann, T. (2016). Speaker identification and clustering using
convolutional neural networks. In Machine Learning for Signal Processing (MLSP), 2016 IEEE
26th International Workshop on, pages 1–6. IEEE. (ˆ8)

Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia object image library (COIL-20. Tech-
nical report. (ˆ9)

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing systems, pages 849–856. (ˆ4)

Premachandran, V. and Yuille, A. L. (2016). Unsupervised learning using generative adversarial
training and clustering. (ˆ8)

Saito, S. and Tan, R. T. (2017). Neural clustering: Concatenating layers for better projections. (ˆ2,
7, 8)

Song, C., Liu, F., Huang, Y., Wang, L., and Tan, T. (2013). Auto-encoder based data clustering. In
Iberoamerican Congress on Pattern Recognition, pages 117–124. Springer. (ˆ1)

Strehl, A. and Ghosh, J. (2002). Cluster ensembles—a knowledge reuse framework for combining
multiple partitions. Journal of machine learning research, 3(Dec):583–617. (ˆ9)

Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. (2014). Learning deep representations for graph
clustering. In AAAI, pages 1293–1299. (ˆ1)

Trigeorgis, G., Bousmalis, K., Zafeiriou, S., and Schuller, B. (2014). A deep semi-nmf model for
learning hidden representations. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1692–1700. (ˆ1)

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning
Research, 9(Nov):2579–2605. (ˆ3)

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11(Dec):3371–3408. (ˆ3)

11



Under review as a conference paper at ICLR 2018

Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clusterings compar-
ison: Variants, properties, normalization and correction for chance. Journal of Machine Learning
Research, 11(Oct):2837–2854. (ˆ9)

Wang, Z., Chang, S., Zhou, J., Wang, M., and Huang, T. S. (2016). Learning a task-specific deep
architecture for clustering. In Proceedings of the 2016 SIAM International Conference on Data
Mining, pages 369–377. SIAM. (ˆ8)

Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis.
In International Conference on Machine Learning, pages 478–487. (ˆ1, 3, 4, 5, 6, 7)

Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. (2016a). Towards k-means-friendly spaces:
Simultaneous deep learning and clustering. arXiv preprint arXiv:1610.04794. (ˆ1, 3, 5, 6, 7)

Yang, J., Parikh, D., and Batra, D. (2016b). Joint unsupervised learning of deep representations
and image clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5147–5156. (ˆ1, 5, 6, 7)

Zheng, Y., Tan, H., Tang, B., Zhou, H., et al. (2016). Variational deep embedding: A generative
approach to clustering. arXiv preprint arXiv:1611.05148. (ˆ8)

12


	Introduction
	Taxonomy
	Architecture of Main Neural Network Branch
	Set of Deep Features Used for Clustering
	Non-Clustering Loss
	Clustering Loss
	Method to Combine the Losses
	Cluster Updates
	After Network Training

	Related Methods
	Deep Embedded Clustering (DEC)
	Deep Clustering Network (DCN)
	Discriminatively Boosted Clustering (DBC)
	Joint Unsupervised Learning of Deep Representations and Image Clusters (JULE)
	Clustering CNN (CCNN)
	Other Methods

	Proposed Method
	Experimental Results
	Conclusion

