
Under review as a conference paper at ICLR 2017

COOPERATIVE TRAINING OF DESCRIPTOR AND GEN-
ERATOR NETWORKS

Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu & Ying Nian Wu
Department of Statistics
University of California, Los Angeles
{jianwen, yanglv, ruiqigao}@ucla.edu, {sczhu, ywu}@stat.ucla.edu

ABSTRACT

This paper studies the cooperative training of two probabilistic models of signals
such as images. Both models are parametrized by convolutional neural networks
(ConvNets). The first network is a descriptor network, which is an exponential
family model or an energy-based model, whose feature statistics or energy func-
tion are defined by a bottom-up ConvNet, which maps the observed signal to the
feature statistics. The second network is a generator network, which is a non-
linear version of factor analysis. It is defined by a top-down ConvNet, which
maps the latent factors to the observed signal. The maximum likelihood training
algorithms of both the descriptor net and the generator net are in the form of al-
ternating back-propagation, and both algorithms involve Langevin sampling. We
observe that the two training algorithms can cooperate with each other by jump-
starting each other’s Langevin sampling, and they can be seamlessly interwoven
into a CoopNets algorithm that can train both nets simultaneously.

1 INTRODUCTION

1.1 TWO CONVNETS OF OPPOSITE DIRECTIONS

We begin with a story that the reader of this paper can readily relate to. A student writes up an initial
draft of a paper. His advisor then revises it. After that they submit the revised paper for review. The
student then learns from his advisor’s revision, while the advisor learns from the outside review. In
this story, the advisor guides the student, but the student does most of the work.

This paper is about two probabilistic models of signals such as images, and they play the roles
of student and advisor as described above. Both models are parametrized by convolutional neural
networks (ConvNets or CNNs) (LeCun et al., 1998; Krizhevsky et al., 2012). The two nets take
two opposite directions. One is bottom-up, and the other is top-down, as illustrate by the following
diagram:

Bottom-up ConvNet Top-down ConvNet
features latent variables
⇑ ⇓

signal signal
(a) Descriptor Net (b) Generator Net

(1)

The simultaneous training of such two nets was first studied by the recent work of Kim & Bengio
(2016). These two nets belong to two major classes of probabilistic models. (a) The exponential
family models or the energy-based models (LeCun et al., 2006) or the Markov random field models
(Zhu et al., 1997), where the probability distribution is defined by feature statistics or energy function
computed from the signal by a bottom-up process. (b) The latent variable models or the directed
graphical models, where the signal is assumed to be a transformation of the latent factors that follow
a known prior distribution. The latent factors generate the signal by a top-down process. A classical
example is factor analysis.

The two classes of models have been contrasted by Zhu (2003); Teh et al. (2003); Ngiam et al.
(2011). Zhu (2003) called the two classes of models the descriptive models and the generative

1



Under review as a conference paper at ICLR 2017

D2 updating

D1 Langevin

observed examples

Descriptor

synthesized examples

G1 Langevin 

inferred latent factors

G2 updating
Generator

observed examples

G1 Langevin 

generated latent factors

D2 updating

G2 updating

D1 Langevin

Generator

observed examples

Descriptor

initial synthesized examples

revised synthesized examples

(a) Algorithm D (b) Algorithm G (c) CoopNets algorithm

Figure 1: (a) Algorithm D involves sampling from the current model by Langevin dynamics. (b)
Algorithm G involves sampling from the posterior distribution of the latent factors by Langevin
dynamics. (c) CoopNets algorithm. The part of the flowchart for training the descriptor is similar
to Algorithm D, except that the D1 Langevin sampling is initialized from the initial synthesized
examples supplied by the generator. The part of the flowchart for training the generator can also be
mapped to Algorithm G, except that the revised synthesized examples play the role of the observed
data, and the known generated latent factors can be used as inferred latent factors (or be used to
initialize the G1 Langevin sampling of the latent factors).

models respectively. Both classes of models can benefit from the high capacity of the multi-layer
ConvNets. (a) In the exponential family models or the energy-based models, the feature statistics or
the energy function can be defined by a bottom-up ConvNet that maps the signal to the features and
the energy function (Ngiam et al., 2011; Xie et al., 2016). We call the resulting model a descriptive
network or a descriptor net following Zhu (2003), because it is built on descriptive feature statistics.
(b) In the latent variable models or the directed graphical models, the transformation from the latent
factors to the signal can be defined by a top-down ConvNet (Dosovitskiy et al., 2015), which maps
the latent factors to the signal. We call the resulting model a generative network or generator net
following Goodfellow et al. (2014), who proposed such a model in their work on the generative
adversarial networks (GAN).

1.2 TWO TRAINING ALGORITHMS AND THEIR COOPERATION

Fig. 1(a) and (b) display the flowcharts of the maximum likelihood learning algorithms for training
the descriptor and generator nets . We call the two algorithms Algorithm D and Algorithm G respec-
tively. Algorithm D (Xie et al., 2016) iterates two steps: Step D1 synthesizes examples by sampling
from the current model by Langevin dynamics. Step D2 updates the parameters to shift the density
from the synthesized examples towards the observed examples. Algorithm G (Han et al., 2017) also
iterates two steps. Step G1 infers latent factors for each observed example by sampling from their
posterior distribution by Langevin dynamics. Step G2 updates the parameters by a non-linear re-
gression of the observed examples on their corresponding latent factors. We use Langevin dynamics
for Markov chain Monte Carlo (MCMC) sampling because the gradient term of Langevin dynamics
can be readily computed via back-propagation. Thus all the steps D1, D2 and G1, G2 are powered
by back-propagation, and both Algorithms D and G are alternating back-propagation algorithms.

In this article, we propose to couple Algorithms D and G into a cooperative training algorithm that
interweaves the steps of the two algorithms seamlessly. We call the resulting algorithm the CoopNets
algorithm, and we show that it can train both nets simultaneously.

Figure 1(c) displays the flowchart of the CoopNets algorithm. The generator is like the student.
It generates the initial draft of the synthesized examples. The descriptor is like the advisor. It
revises the initial draft by initializing its Langevin dynamics from the initial draft in Step D1, which
produces the revised draft of the synthesized examples. The descriptor learns from the outside review
in Step D2, which is in the form of the difference between the observed examples and the revised

2



Under review as a conference paper at ICLR 2017

synthesized examples. The generator learns from how the descriptor revises the initial draft by
reconstructing the revised draft in Step G2. For each synthesized example, the generator knows the
latent factors that generate the initial draft, so that Step G1 can infer the latent factors by initializing
its Langevin dynamics from their known values.

In the CoopNets algorithm, the generator fuels the MCMC of the descriptor by supplying initial
synthesized examples, which can be obtained by direct ancestral sampling. The generator then
learns from the revised synthesized examples with virtually known latent factors. The cooperation
is thus beneficial to both nets.

2 RELATED WORK

Our work is inspired by the generative adversarial networks (GAN) (Goodfellow et al., 2014; Denton
et al., 2015; Radford et al., 2015). In GAN, the generator net is paired with a discriminator net. The
two nets play adversarial roles. In our work, the generator net and the descriptor net play cooperative
roles, and they feed each other the initial, revised and reconstructed synthesized data. The learning
of both nets is based on maximum likelihood, and the learning process is quite stable because of the
cooperative nature and the consistent directions of the two maximum likelihood training algorithms.

Another method to train the generator network is variational auto-encoder (VAE) (Kingma &
Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014), which learns an inferential or recogni-
tion network to approximate the posterior distribution of the latent factors.

The connection between the descriptor net and the discriminator net has been explored by Xie et al.
(2016), where the descriptor can be derived from the discriminator.

Our work is most similar to the recent work of Kim & Bengio (2016). In fact, the settings of the
two nets are the same. In their work, the generator learns from the descriptor by minimizing the
Kullback-Leibler divergence from the generator to the descriptor, which can be decomposed into an
energy term and an entropy term. In our work, the two nets interact with each other via synthesized
data, and the generator learns from the descriptor by reconstructing the revised draft of synthesized
examples. Our method does not need to approximate the intractable entropy term.

Our work is related to the contrastive divergence algorithm (Hinton, 2002) for training the descriptor
net. The contrastive divergence initializes the MCMC sampling from the observed examples. The
CoopNets algorithm initializes the MCMC sampling from the examples supplied by the generator.

3 TWO NETS AND TWO TRAINING ALGORITHMS

3.1 DESCRIPTOR NET AND TRAINING ALGORITHM

Let Y be the D-dimensional signal, such as an image. The descriptor model is in the form of
exponential tilting of a reference distribution (Xie et al., 2016):

PD(Y ;WD) =
1

Z(WD)
exp [f(Y ;WD)] q(Y ), (2)

where q(Y ) is the reference distribution such as Gaussian white noise q(Y ) ∝ exp
(
−‖Y ‖2/2s2

)
,

f(Y ;WD) (f stands for features) is the feature statistics or energy function, defined by a ConvNet
whose parameters are denoted by WD. This ConvNet is bottom-up because it maps the signal Y to
a number. See the diagram in (1). Z(WD) =

∫
exp [f(Y ;WD)] q(Y )dY = Eq{exp[f(Y ;WD)]}

is the normalizing constant, where Eq is the expectation with respect to q.

Suppose we observe training examples {Yi, i = 1, ..., n} from an unknown data distribution
Pdata(Y ). The maximum likelihood training seeks to maximize the log-likelihood function
LD(WD) = 1

n

∑n
i=1 logPD(Yi;WD). If the sample size n is large, the maximum likelihood es-

timator minimizes KL(Pdata|PD), the Kullback-Leibler divergence from the data distribution Pdata

to the model distribution PD. The gradient of the LD(WD) is

L′
D(WD) =

1

n

n∑
i=1

∂

∂WD
f(Yi;WD)− EWD

[
∂

∂WD
f(Y ;WD)

]
, (3)

3



Under review as a conference paper at ICLR 2017

where EWD denotes the expectation with respect to PD(Y ;WD).

The expectation in equation (3) is analytically intractable and has to be approximated by MCMC,
such as Langevin dynamics, which iterates the following step:

Yτ+1 = Yτ −
δ2

2

[
Yτ
s2
− ∂

∂Y
f(Yτ ;WD)

]
+ δUτ , (4)

where τ indexes the time steps of the Langevin dynamics, δ is the step size, and Uτ ∼ N(0, ID) is
the Gaussian white noise term.

We can run ñ parallel chains of Langevin dynamics according to (4) to obtain the synthesized ex-
amples {Ỹi, i = 1, ..., ñ}. The Monte Carlo approximation to L′

D(WD) is

L′
D(WD) ≈ 1

n

n∑
i=1

∂

∂WD
f(Yi;WD)−

1

ñ

ñ∑
i=1

∂

∂WD
f(Ỹi;WD), (5)

which is used to update WD.

Algorithm D (Xie et al., 2016) iterates the following two steps after initializing WD and {Ỹi, i =
1, ..., ñ}. Step D1: Run lD steps of Langevin from the current {Ỹ } according according to (4).
Step D2: update W (t+1)

D = W
(t)
D + γtL

′
D(W

(t)
D ) with learning rate γt. The convergence of such an

algorithm follows Younes (1999).

3.2 GENERATOR NET AND TRAINING ALGORITHM

The generator net (Goodfellow et al., 2014) seeks to explain the signal Y of dimensionD by a vector
of latent factors X of dimension d, and usually d� D. The model is of the following form:

X ∼ N(0, Id), Y = g(X;WG) + ε, ε ∼ N(0, σ2ID). (6)

g(X;WG) (g stands for generator) is a top-down ConvNet defined by the parameters WG . The
ConvNet g maps the latent factors X to the signal Y . See the diagram in (1).

The joint density of model (6) is PG(X,Y ;WG) = PG(X)PG(Y |X;WG), and

logPG(X,Y ;WG) = − 1

2σ2
‖Y − g(X;WG)‖2 −

1

2
‖X‖2 + constant, (7)

where the constant term is independent of X , Y and WG . The marginal density is obtained by inte-
grating out the latent factors X , i.e., PG(Y ;WG) =

∫
PG(X,Y ;WG)dX . The inference of X given

Y is based on the posterior density PG(X|Y ;WG) = PG(X,Y ;WG)/PG(Y ;WG) ∝ PG(X,Y ;WG)
as a function of X .

For the training data {Yi, i = 1, ..., n}, the generator net can be trained by maximizing the log-
likelihood LG(WG) = 1

n

∑n
i=1 logPG(Yi;WG). For large sample, the learned WG minimizes the

Kullback-Leibler divergence KL(Pdata|PG) from the data distribution Pdata to the model distribu-
tion PG . The gradient of LG(WG) is obtained according to the following identity

∂

∂WG
logPG(Y ;WG) =

1

PG(Y ;WG)

∂

∂WG

∫
PG(Y,X;WG)dX

=
1

PG(Y ;WG)

∫ [
∂

∂WG
logPG(Y,X;WG)

]
PG(Y,X;WG)dX

=

∫ [
∂

∂WG
logPG(Y,X;WG)

]
PG(Y,X;WG)

PG(Y ;WG)
dX

= EPG(X|Y ;WG)

[
∂

∂WG
logPG(X,Y ;WG)

]
, (8)

which underlies the EM algorithm. In general, the expectation in (8) is analytically intractable, and
has to be approximated by MCMC that samples from the posterior PG(X|Y ;WG), such as Langevin
dynamics, which iterates

Xτ+1 = Xτ +
δ2

2

∂

∂X
logPG(Xτ , Y ;WG) + δUτ , (9)

4



Under review as a conference paper at ICLR 2017

where Uτ ∼ N(0, Id). With Xi sampled from PG(Xi | Yi,WG) for each observation Yi, the Monte
Carlo approximation to L′

G(WG) is

L′
G(WG) ≈

1

n

n∑
i=1

∂

∂WG
logPG(Xi, Yi;WG) =

1

n

n∑
i=1

1

σ2
(Yi − g(Xi;WG))

∂

∂WG
g(Xi;WG). (10)

Algorithm G (Han et al., 2017) iterates the following two steps after initializing WG and {Xi, i =
1, ..., n}. Step G1: run lG steps of Langevin from the current {Xi} according to (9). Step G2: update
W

(t+1)
G =W

(t)
G +γtL

′
G(W

(t)
G ) with learning rate γt. The convergence of such an algorithm follows

Younes (1999).

4 COOPNETS ALGORITHM: RECONSTRUCTING THE REVISION

In Algorithms D and G, both steps D1 and G1 are Langevin dynamics, which may be slow to
converge. An interesting observation is that the two algorithms can cooperate with each other by
jumpstarting each other’s Langevin sampling.

Specifically, in Step D1, we can initialize the synthesized examples by generating examples from
the generator net. We first generate X̂i ∼ N(0, Id), and then generate Ŷi = g(X̂i;WG) + εi, for
i = 1, ..., ñ. If the current generator PG is close to the current descriptor PD, then the generated
{Ŷi} should be a good initialization for sampling from the descriptor net, i.e., starting from the
{Ŷi, i = 1, ..., ñ}, we run Langevin dynamics in Step D1 for lD steps to get {Ỹi, i = 1, ..., ñ},
which are revised versions of {Ŷi}. These {Ỹi} can be used as the synthesized examples from the
descriptor net. We can then update WD according to Step D2 of Algorithm D.

In order to update WG of the generator net, we treat the {Ỹi, i = 1, ..., ñ} produced by the above
Step D1 as the training data for the generator. Since these {Ỹi} are obtained by the Langevin
dynamics initialized from the {Ŷi, i = 1, ..., ñ} produced by the generator net with known latent
factors {X̂i, i = 1, ..., ñ}, we can update WG by learning from {(Ỹi, X̂i), i = 1, ..., ñ}, which is
a supervised learning problem, or more specifically, a non-linear regression of Ỹi on X̂i. At W (t)

G ,
the latent factors X̂i generates and thus reconstructs the initial example Ŷi. After updating WG , we
want X̂i to reconstruct the revised example Ỹi. That is, we revise WG to absorb the revision from Ŷi
to Ỹi, so that the generator shifts its density from {Ŷi} to {Ỹi}. The reconstruction error can tell us
whether the generator has caught up with the descriptor by fully absorbing the revision.

The left diagram in (11) illustrates the basic idea.

X̂i

Ŷi Ỹi

W
(t)
G W

(t+1)
G

W
(t)
D

X̂i Xi

Ŷi Ỹi

W
(t)
G

W
(t)
G W

(t+1)
G

W
(t)
D (11)

In the two diagrams in (11), the double-line arrows indicate generation and reconstruction by the
generator net, while the dashed-line arrows indicate Langevin dynamics for revision and inference
in the two nets. The diagram on the right in (11) illustrates a more rigorous method, where we
initialize the Langevin inference of {Xi, i = 1, ..., ñ} in Step G1 from {X̂i}, and then update WG
in Step G2 based on {(Ỹi, Xi), i = 1, ..., ñ}. The diagram on the right shows how the two nets
jumpstart each other’s Langevin dynamics.

Algorithm 1 describes the cooperative training that interweaves Algorithm D and Algorithm G. See
Figure 1(c) for the flowchart of the CoopNets algorithm. In our experiments, we set lG = 0 and infer
Xi = X̂i for simplicity, i.e., we follow the left diagram in (11).

See Appendix for a theoretical understanding of the convergence of the CoopNets algorithm.

5



Under review as a conference paper at ICLR 2017

Algorithm 1 CoopNets Algorithm
Input:

(1) training examples {Yi, i = 1, ..., n}
(2) numbers of Langevin steps lD ad lG
(3) number of learning iterations T

Output:
(1) estimated parameters WD and WG
(2) synthesized examples {Ŷi, Ỹi, i = 1, ..., ñ}

1: Let t← 0, initialize WD and WG .
2: repeat
3: Step G0: For i = 1, ..., ñ, generate X̂i ∼ N(0, Id), and generate Ŷi = g(X̂i;W

(t)
G ) + εi.

4: Step D1: For i = 1, ..., ñ, starting from Ŷi, Run lD steps of Langevin dynamics to obtain Ỹi,
each step following equation (4).

5: Step G1: Treat the current {Ỹi, i = 1, ..., ñ} as the training data, for each i, infer Xi = X̂i.
Or more rigorously, starting from Xi = X̂i, run lG steps of Langevin dynamics to update Xi,
each step following equation (9).

6: Step D2: Update W (t+1)
D = W

(t)
D + γtL

′
D(W

(t)
D ), where L′

D(W
(t)
D ) is computed according

to (5).
7: Step G2: Update W (t+1)

G = W
(t)
G + γtLG

′(W
(t)
G ), where LG

′(WG) is computed according
to (10), except that Yi is replaced by Ỹi, and n by ñ.

8: Let t← t+ 1
9: until t = T

5 EXPERIMENTS

We use the MatConvNet of Vedaldi & Lenc (2015) for coding. For the descriptor net, we adopt the
structure of Xie et al. (2016), where the bottom-up network consists of multiple layers of convolution
by linear filtering, ReLU non-linearity, and down-sampling. We adopt the structure of the generator
network of Radford et al. (2015); Dosovitskiy et al. (2015), where the top-down network consists of
multiple layers of deconvolution by linear superposition, ReLU non-linearity, and up-sampling, with
tanh non-linearity at the bottom-layer (Radford et al., 2015) to make the signals fall within [−1, 1].

5.1 QUANTITATIVE EXPERIMENT ON FACE COMPLETION

We conduct an experiment on learning from complete training images of human faces, and then
testing the learned model on completing the occluded testing images. The structure of the generator
network is the same as in (Radford et al., 2015; Dosovitskiy et al., 2015). We adopt a 4-layer
descriptor net. The first layer has 96 5 × 5 filters with sub-sampling of 2, the second layers has
128 5 × 5 filters with sub-sampling of 2, the third layer has 256 5 × 5 filters with sub-sampling
of 2, and the final layer is a fully connected layer with 50 channels as output. We use L=10 steps
of Langevin revision dynamics within each learning iteration, and the Langevin step size is set at
0.002. The learning rate is 0.07. The training data are 10, 000 human faces randomly selected from
CelebA dataset (Liu et al., 2015). We run 600 cooperative learning iterations. Figure 2 displays 144
synthesized human faces by the descriptor net.

To quantitatively test whether we have learned a good generator net g(X;WG) even though it has
never seen the training images directly in the training stage, we apply it to the task of recovering the
occluded pixels of testing images. For each occluded testing image Y , we use Step G1 of Algorithm
G to infer the latent factors X . The only change is with respect to the term ‖Y − g(X;WG)‖2,
where the sum of squares is over all the observed pixels of Y in back-propagation computation.
We run 1000 Langevin steps, initializing X from N(0, Id). After inferring X , the completed image
g(X;WG) is automatically obtained. We design 3 experiments, where we randomly place a 20×20,
30 × 30, or 40 × 40 mask on each 64 × 64 testing image. These 3 experiments are denoted by
M20 M30, and M40 respectively (M for mask). We report the recovery errors and compare our
method with 8 different image inpainting methods as well as the DCGAN of Radford et al. (2015).

6



Under review as a conference paper at ICLR 2017

Figure 2: Generating human face pattern. The synthesized images are generated by the CoopNets
algorithm that learns from 10, 000 images.

For DCGAN, we use the parameter setting in Radford et al. (2015) except changing the number
of learning iterations to 600. We use the same 10, 000 training images to learn DCGAN. After the
model is learned, we keep the generator and use the same method as ours to infer latent factors X ,
and recover the unobserved pixels. In 8 inpainting methods, Methods 1 and 2 are based on Markov
random field prior where the nearest neighbor potential terms are `2 and `1 differences respectively.
Methods 3 to 8 are interpolation methods. Please refer to D’Errico (2004) for more details. Table 1
displays the recovery errors of the 3 experiments, where the error is measured by per pixel difference
(relative to the range of pixel values) between the original image and the recovered image on the
occluded region, averaged over 100 testing images. Fig. 3 displays some recovery results by our
method. The first row shows the original images as the ground truth. The second row displays the
testing images with occluded pixels. The third row displays the recovered images by the generator
net trained by the CoopNets algorithm on the 10,000 training images.

Table 1: Comparison of recovery errors among different inpainting methods in 3 experiments
Exp Ours GAN 1 2 3 4 5 6 7 8
M20 .0966 .2535 .1545 .1506 .1277 .1123 .2493 .1123 .1126 .1277
M30 .1112 .2606 .1820 .1792 .1679 .1321 .3367 .1310 .1312 .1679
M40 .1184 .2618 .2055 .2032 .1894 .1544 .3809 .1525 .1526 .1894

Figure 3: Row 1: ground-truth images. Row 2: testing images with occluded pixels. Row 3:
recovered images by our method.

7



Under review as a conference paper at ICLR 2017

5.2 QUALITATIVE EXPERIMENT ON SYNTHESIS

We conduct an experiment on synthesizing images of categories from Imagenet ILSVRC2012
dataset (Deng et al., 2009) and MIT places205 dataset (Zhou et al., 2014). We adopt a 4-layer
descriptor net. The first layer has 64 5 × 5 filters with sub-sampling of 2, the second layers has
128 3 × 3 filters with sub-sampling of 2, the third layer has 256 3 × 3 filters with sub-sampling of
1, and the final layer is a fully connected layer with 100 channels as output. We set the number of
Langevin dynamics steps in each learning iteration to 10 and the step size to 0.002. The learning rate
is 0.07. For each category, we randomly choose 1,000 images as training data and resize the images
to 64× 64. We run 1, 000 cooperative learning iterations to train the model. Figures 4 and 5 display
the results for two categories, where for each category, we show 144 original images sampled from
the training set, and 144 synthesized images generated by our method. The appendix contains more
synthesis results.

As a comparison, we apply the Algorithm G alone and GAN code on the same 1,000 hotel room
training images to learn the generator of the same structure as in CoopNets. Figure 6 displays the
synthesis results.

We also try to synthesize images at high resolution (224× 224). We adopt a 4-layer descriptor net.
The first layer has 128 15× 15 filters with sub-sampling of 3, the second layer has 256 3× 3 filters
with sub-sampling of 2, the third layer has 512 3 × 3 filters with sub-sampling of 1, and the final
layer is a fully connected layer with 100 channels as output. We enlarge the filters of the final layer
of generator net to 14 × 14 to generate 224 × 224 images. The learning rate is 0.05. We run 1000
cooperative learning iterations to train the model. Figures 7 and 8 show the synthesized images of
two categories from MIT places205 dataset.

6 CONCLUSION

The most unique feature of our work is that the two networks feed each other the synthesized data
in the learning process, including initial, revised, and reconstructed synthesized data.

Another unique feature of our work is that the learning process interweaves the existing maximum
likelihood learning algorithms for the two networks.

A third unique feature of our work is that the MCMC for the descriptor keeps rejuvenating the chains
by refreshing the samples by independent replacements supplied by the generator, so that a single
chain effectively amounts to an infinite number of chains or the evolution of the whole marginal
distribution modeled by the generator.

CODE AND DATA

http://www.stat.ucla.edu/˜ywu/CoopNets/main.html

7 APPENDIX: CONVERGENCE

7.1 GENERATOR OF INFINITE CAPACITY

In the CoopNets algorithm, the descriptor learns from the observed examples, while the generator
learns from the descriptor through the synthesized examples. Therefore, the descriptor is the driving
force in terms of learning, although the generator is the driving force in terms of synthesis. In order
to understand the convergence of learning, we can start from Algorithm D for learning the descriptor.

Algorithm D is a stochastic approximation algorithm (Robbins & Monro, 1951), except that the
samples are generated by finite step MCMC transitions. According to Younes (1999), Algorithm D
converges to the maximum likelihood estimate under suitable regularity conditions on the mixing
of the transition kernel of the MCMC and the schedule of the learning rate γt, even if the number
of Langevin steps lD is finite or small (e.g., lD = 1), and even if the number of parallel chains ñ is
finite or small (e.g., ñ = 1). The reason is that the random fluctuations caused by the finite number
of chains, ñ, and the limited mixing caused by the finite steps of MCMC, lD, are mitigated if the

8

http://www.stat.ucla.edu/~ywu/CoopNets/main.html


Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 4: Generating forest road images. The category is from MIT places205 dataset.

9



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 5: Generating hotel room images. The category is from MIT places205 dataset.

10



Under review as a conference paper at ICLR 2017

(a) Generated by Algorithm G alone.

(b) Generated by DCGAN code.

Figure 6: Generating hotel room images by Algorithm G alone and by GAN.

11



Under review as a conference paper at ICLR 2017

Figure 7: Generating forest road images at high resolution (224× 224).

12



Under review as a conference paper at ICLR 2017

Figure 8: Generating hotel room images at high resolution (224× 224).

13



Under review as a conference paper at ICLR 2017

learning rate γt is sufficiently small. At learning iteration t, let W (t)
D be the estimated parameter of

the descriptor. Let P (t+1)
D be the marginal distribution of {Ỹi}. Even though P (t+1)

D 6= PD(Y ;W
(t)
D )

because lD is finite (P (t+1)
D = PD(Y ;W

(t)
D ) if lD → ∞), we still have W (t)

D → ŴD in probability
according to Younes (1999), where ŴD is the maximum likelihood estimate of WD.

The efficiency of Algorithm D increases if the number of parallel chains ñ is large because it leads
to more accurate estimation of the expectation in the gradient L′

D(WD) of equation (3), so that we
can afford to use larger learning rate γt for faster convergence.

Now let us come back to the CoopNets algorithm. In order to understand how the descriptor net helps
the training of the generator net, let us consider the idealized scenario where the number of parallel
chains ñ → ∞, and the generator has infinite capacity, and in each iteration it estimates WG by
maximum likelihood using the synthesized data from P

(t+1)
D . In this idealized scenario, the learned

generator PG(Y ;W
(t+1)
G ) will reproduce P (t+1)

D by minimizing KL(P
(t+1)
D (Y )|PG(Y ;WG)), with

P
(t+1)
D serving as its data distribution. Then eventually the learned generator PG(Y, ŴG) will repro-

duce PD(Y ; ŴD). Thus the cooperative training helps the learning of the generator. Note that the
learned generator PG(Y, ŴG) will not reproduce the distribution of the observed data Pdata, unless
the descriptor is of infinite capacity too.

Conversely, the generator net also helps the learning of the descriptor net in the CoopNets algorithm.
In Algorithm D, it is impractical to make the number of parallel chains ñ too large. On the other
hand, it would be difficult for a small number of chains {Ỹi, i = 1, ..., ñ} to explore the state space.
In the CoopNets algorithm, because PG(Y ;W

(t)
G ) reproduces P (t)

D , we can generate a completely

new batch of independent samples {Ŷi} from PG(Y ;W
(t)
G ), and revise {Ŷi} to {Ỹi} by Langevin

dynamics, instead of running Langevin dynamics from the same old batch of {Ỹi} as in the original
Algorithm D. This is like implementing an infinite number of parallel chains, because each iteration
evolves a fresh batch of examples, as if each iteration evolves a new set of chains. By updating
the generator WG , it is like we are updating the infinite number of parallel chains, because WG
memorizes the whole distribution. Even if ñ in the CoopNets algorithm is small, e.g., ñ = 1,
viewed from the perspective of Algorithm D, it is as if ñ→∞. Thus the above idealization ñ→∞
is sound.

7.2 GENERATOR OF FINITE CAPACITY

From an information geometry point of view, let D = {PD(Y ;WD),∀WD} be the manifold of
the descriptor models, where each distribution PD(Y ;WD) is a point on this manifold. Then the
maximum likelihood estimate of WD is a projection of the data distribution Pdata onto the manifold
D. Let G = {PG(Y ;WG),∀WG} be the manifold of the generator models, where each distribution
PG(Y ;WG) is a point on this manifold. Then the maximum likelihood estimate ofWG is a projection
of the data distribution Pdata onto the manifold G.

From now on, for notational simplicity and with a slight abuse of notation, we use WD to denote the
descriptor distribution PD(Y ;WD), and use WG to denote the generator distribution PG(Y ;WG).

We assume both the observed data size n and the synthesized data size ñ are large enough so that we
shall work on distributions or populations instead of finite samples. As explained above, assuming
ñ→∞ is sound because the generator net can supply unlimited number of examples.

The Langevin revision dynamics runs a Markov chain from W
(t)
G towards W (t)

D . Let LWD be the
Markov transition kernel of lD steps of Langevin revisions towards WD. The distribution of the
revised synthesized data is

P
(t+1)
D = L

W
(t)
D
·W (t)

G , (12)

where the notation L ·P denotes the marginal distribution obtained by running the Markov transition
L fromP . The distributionP (t+1)

D is in the middle between the two netsW (t)
G andW (t)

D , and it serves
as the data distribution to train the generator, i.e., we project this distribution onto the manifold
G = {PG(Y ;WG),∀WG} = {WG} (recall we use WG to denote the distribution PG(Y ;WG)) in the

14



Under review as a conference paper at ICLR 2017

information geometry picture, so that

W
(t+1)
G = argmin

G
KL(P

(t+1)
D |WG). (13)

The learning process alternates between Markov transition in (12) and projection in (13), as illus-
trated by Figure 9.

Markov 
transition 

projection 

Figure 9: The learning of the generator alternates between Markov transition and projection. The
family of the generator models G is illustrated by the black curve. Each distribution is illustrated by
a point.

In the case of lD →∞,

W
(t)
D → ŴD = argmin

D
KL(Pdata|WD), (14)

W
(t)
G → ŴG = argmin

G
KL(ŴD|WG). (15)

That is, we first project Pdata onto D, and from there continue to project onto G. Therefore, WD
converges to the maximum likelihood estimate with Pdata being the data distribution, while WG
converges to the maximum likelihood estimate with ŴD serving as the data distribution.

For finite lD, the algorithm may converge to the following fixed points. The fixed point for the
generator satisfies

ŴG = argmin
G

KL(LŴD
· ŴG |WG). (16)

The fixed point for the descriptor satisfies

ŴD = argmin
D

[
KL(Pdata|WD)−KL(LŴD

· ŴG |WD)
]
, (17)

which is similar to contrastive divergence (Hinton, 2002), except that ŴG takes the place of Pdata

in the second Kullback-Leibler divergence. Because ŴG is supposed to be close to ŴD, the second
Kullback-Leibler divergence is supposed to be small, hence our algorithm is closer to maximum
likelihood learning than contrastive divergence.

Kim & Bengio (2016) learned the generator by gradient descent on KL(WG |W (t)
D ) over G. The

objective function is KL(WG |W (t)
D ) = EWG [logPG(Y ;WG)]− EWG [logPD(Y ;W

(t)
D )], where the

first term is the negative entropy that is intractable, and the second term is the expected energy
that is tractable. Our learning method for the generator is consistent with the learning objective
KL(WG |W (t)

D ), because

KL(P
(t+1)
D |W (t)

D ) ≤ KL(W
(t)
G |W

(t)
D ). (18)

In fact, KL(P
(t+1)
D |W (t)

D ) → 0 monotonically as lD → ∞ due to the second law of thermody-
namics. The reduction of the Kullback-Leibler divergence in (18) and the projection in (13) in our
learning of the generator are consistent with the learning objective of reducing KL(WG |W (t)

D ) in
Kim & Bengio (2016). But the Monte Carlo implementation of L in our work avoids the need to
approximate the intractable entropy term.

7.3 MORE SYNTHESIS RESULTS

We display more synthesis results at the resolution of 64 × 64.

15



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 10: Generating swimming pool images. The category is from MIT places205 dataset.

16



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 11: Generating volcano images. The category is from MIT places205 dataset.

17



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 12: Generating rock images. The category is from MIT places205 dataset.

18



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 13: Generating desert images. The category is from MIT places205 dataset.

19



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 14: Generating schoolbus images. The category is from Imagenet ILSVRC2012 1000 object
categories.

20



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 15: Generating lifeboat images. The category is from Imagenet ILSVRC2012 1000 object
categories.

21



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 16: Generating zebra images. The category is from Imagenet ILSVRC2012 1000 object
categories.

22



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 17: Generating strawberry images. The category is from Imagenet ILSVRC2012 1000 object
categories.

23



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 18: Generating lemon images. The category is from Imagenet ILSVRC2012 1000 object
categories.

24



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 19: Generating apartment building images. The category is from Imagenet ILSVRC2012
1000 object categories.

25



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 20: Generating dinning table images. The category is from Imagenet ILSVRC2012 1000
object categories.

26



Under review as a conference paper at ICLR 2017

(a) Original images

(b) Synthesized images

Figure 21: Generating balloon images. The category is from Imagenet ILSVRC2012 1000 object
categories.

27



Under review as a conference paper at ICLR 2017

ACKNOWLEDGEMENT

We thank Hansheng Jiang for her work on this project as a summer visiting student. We thank Tian
Han for sharing the code on learning the generator network, and for helpful discussions.

The work is supported by NSF DMS 1310391, DARPA SIMPLEX N66001-15-C-4035, ONR MURI
N00014-16-1-2007, and DARPA ARO W911NF-16-1-0579.

28



Under review as a conference paper at ICLR 2017

REFERENCES

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a lapla-
cian pyramid of adversarial networks. In Advances in Neural Information Processing Systems,
pp. 1486–1494, 2015.

John D’Errico. Interpolation inpainting, 2004. URL https://www.mathworks.com/
matlabcentral/fileexchange/4551-inpaint-nans.

E Dosovitskiy, J. T. Springenberg, and T Brox. Learning to generate chairs with convolutional
neural networks. In IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680, 2014.

Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for generator
network. In 31st AAAI Conference on Artificial Intelligence, 2017.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based probability
estimation. arXiv preprint arXiv:1606.03439, 2016.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, pp. 1097–1105, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Sumit Chopra, Rata Hadsell, Mare’Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. In Predicting Structured Data. MIT Press, 2006.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738, 2015.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
ICML, 2014.

Jiquan Ngiam, Zhenghao Chen, Pang Wei Koh, and Andrew Y. Ng. Learning deep energy models.
In International Conference on Machine Learning, 2011.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In Tony Jebara and Eric P. Xing (eds.), ICML, pp.
1278–1286. JMLR Workshop and Conference Proceedings, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E Hinton. Energy-based models for
sparse overcomplete representations. Journal of Machine Learning Research, 4(Dec):1235–1260,
2003.

29

https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans
https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans


Under review as a conference paper at ICLR 2017

A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for matlab. In Proceeding of
the ACM Int. Conf. on Multimedia, 2015.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A theory of generative convnet. In
ICML, 2016.

Laurent Younes. On the convergence of markovian stochastic algorithms with rapidly decreasing
ergodicity rates. Stochastics: An International Journal of Probability and Stochastic Processes,
65(3-4):177–228, 1999.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep
features for scene recognition using places database. In Advances in neural information process-
ing systems, pp. 487–495, 2014.

Song-Chun Zhu. Statistical modeling and conceptualization of visual patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(6):691–712, 2003.

Song-Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and its application
to texture modeling. Neural Computation, 9(8):1627–1660, 1997.

30


	Introduction
	Two ConvNets of opposite directions
	Two training algorithms and their cooperation

	Related work
	Two nets and two training algorithms
	Descriptor net and training algorithm
	Generator net and training algorithm

	CoopNets algorithm: reconstructing the revision
	Experiments
	Quantitative experiment on face completion
	Qualitative experiment on synthesis

	Conclusion
	Appendix: Convergence
	Generator of infinite capacity
	Generator of finite capacity
	More synthesis results


