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ABSTRACT

Generative models with both discrete and continuous latent variables are highly
motivated by the structure of many real-world data sets. They present, however,
subtleties in training often manifesting in the discrete latent variable not being lever-
aged. In this paper, we show why such models struggle to train using traditional
log-likelihood maximization, and that they are amenable to training using the Opti-
mal Transport framework of Wasserstein Autoencoders. We find our discrete latent
variable to be fully leveraged by the model when trained, without any modifications
to the objective function or significant fine tuning. Our model generates comparable
samples to other approaches while using relatively simple neural networks, since
the discrete latent variable carries much of the descriptive burden. Furthermore,
the discrete latent provides significant control over generation.

1 INTRODUCTION

Unsupervised learning using generative latent variable models provides a powerful and general
approach to learning the underlying, low-dimensional structure from large, unlabeled datasets.
Perhaps the two most common techniques for training such models are Variational Autoencoders
(VAEs) (Kingma & Welling, 2014; Rezende et al., 2014), and Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). Both have advantages and disadvantages. VAEs provide a
meaningful lower bound on the log likelihood that is stable under training, as well as an encoding
distribution from the data into the latent. However, they generate blurry samples due to their objective
being unable to handle deterministic decoders and tractability requiring simple priors (Hoffman &
Johnson, 2016). On the other hand, GANs naturally enable deterministic generative models with
sharply defined samples, but their training procedure is less stable (Arjovsky & Bottou, 2017).

A relatively new approach to training generative models has emerged based on minimizing the
Optimal Transport (OT) distance (Villani, 2008) between the generative model distribution and that
of the data. The OT approach provides a general framework for training generative models, which
promises some of the best of both GANs and VAEs. Though interesting first results have been given
in Arjovsky et al. (2017); Rubenstein et al. (2018); Tolstikhin et al. (2018), the OT approach to
generative modelling is still nascent.

Our contributions are twofold: we seek to improve generative modelling capabilities with discrete
and continuous latent variables, but importantly, we seek also to establish that training generative
models with OT can be significantly more effective than the traditional VAE approach.

Discrete latent-variable models are critical to the endeavor of unsupervised learning because of the
ubiquity of discreteness in the natural world, and hence in the datasets that describe it. However, they
are harder to train than their continuous counterparts. This has been tackled in a number of ways
(e.g., directly mitigating high-variance discrete samples (Eslami et al., 2016; Lawson et al., 2018),
parametrizing discrete distributions using continuous ones (Jang et al., 2017; Maddison et al., 2017;
Van den Oord et al., 2017), deliberate model design leveraging conjugacy (Johnson et al., 2016)).

However, even in the simple case where the number of mixtures is small enough that monte-carlo
sampling from the discrete latent is avoidable, training can still be problematic. For example, in
Dilokthanakul et al. (2016) a Gaussian-mixture latent-variable model (GM-LVM) was studied, and the
authors were unable to train their model on MNIST using variational inference without substantially
modifying the VAE objective. What appears to happen is that the model quickly learns to “hack” the
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VAE objective function by collapsing the discrete latent variational distribution. This problem only
occurs in the unsupervised setting, as Kingma et al. (2014) are able to learn the discrete latent in the
semi-supervised version of the same problem once they have labeled samples for the discrete latent
to latch onto. This is discussed in more detail in Section 2.1.

The OT approach to training generative models (in particular the Wasserstein distance, discussed in
Section 2.2) induces a weaker topology on the space of distributions, enabling easier convergence
of distributions than in the case of VAEs (Bousquet et al., 2017). Thus, one might conjecture that
the OT approach would enable easier training of GM-LVMs than the VAE approach. We provide
evidence that this is indeed the case, showing that GM-LVMs can be trained in the unsupervised
setting on MNIST, and motivating further the value of the OT approach to generative modelling.

2 GAUSSIAN-MIXTURE WASSERSTEIN AUTOENCODERS

We consider a hierarchical generative model pG with two layers of latent variables, the highest one
being discrete. Explicitly, if we denote the discrete latent k with density pD (D for discrete), and the
continuous latent z with density pC (C for continuous), the generative model is given by:

pG(x) =

K∑
k=1

∫
Z
dz pG(x|z) pC(z|k) pD(k) (1)

In this work, we consider a GM-LVM with categorical distribution pD = Cat(K) and continuous
distribution pC(z|k) = N (z;µ0

k,Σ
0
k). We refer to this GM-LVM as a GM-VAE when it is trained as

a VAE (Kingma & Welling, 2014; Rezende et al., 2014) or GM-WAE when trained as a Wasserstein
Autoencoder (Tolstikhin et al., 2018) (discussed in Section 2.2).

2.1 THE DIFFICULTY OF TRAINING GM-VAES

Training GM-LVMs in the traditional VAE framework (GM-VAEs) involves maximizing the evidence
lower bound (ELBO) averaged over the data. Such models are empirically hard to train (Dilok-
thanakul et al., 2016). This is likely due to the fact that the discrete latent variational distribution
learns on a completely different scale from the generative distribution. Consequently, the discrete
latent tends to instantly learn some unbalanced structure where its classes are meaningless in order to
accommodate the untrained generative distribution. The generative model then learns around that
structure, galvanizing the meaningless discrete distribution early in training.

More explicitly, if we choose a variational distribution q(z, k|x) = qC(z|k, x) qD(k|x) to mirror the
prior in Equation 1, the ELBO can be written as follows:

ELBO = EqD
[
EqC

[
log pG(x|z)

]
−DKL

[
qC(z|k, x)

∣∣∣∣pC(z|k)
]]
−DKL

[
qD(k|x)

∣∣∣∣pD(k)
]

(2)

Both the first and the second term in Equation 2 depend on qD(k|x). However, the second term
is much smaller than the first; it is bounded by logK for uniform pD over K classes, whereas
the first term is unbounded from above (though we will initialize the modes of qC to match those
of the priors making the continuous KL term initially small as well). As a consequence, qD(k|x)
will immediately shut off the k values (i.e., qD(k|x) = 0 ∀x) with large reconstruction losses,
EqC(z|k,x)[log pG(x|z)]. This is shown in the top row of Figure 1 where within the first 10 training
steps the reconstruction loss has substantially decreased (Figure 1a) by simply shutting off 9 values of
k in qD(k|x) (Figure 1b), resulting in a drastic increase of the discrete KL term (Figure 1a). However,
this increase in the discrete KL term is negligible since the term is multiple orders of magnitude
smaller than the reconstruction term in the ELBO. All of this takes place in the first few training
iterations; well before the generative model has learned to use its continuous latent (see Figure 1c).

Subsequently, on a slower timescale, the generative model starts to learn to reconstruct from its
continuous latent, causing qC(z|k, x) to shift away from its prior toward a more-useful distribution to
the generative model. We see this in Figure 1d: the continuous KL curve grows concurrently with
the downturn of the reconstruction loss term. Figure 1f shows that after this transition (taking a few
thousands training steps), the reconstructions from the model start to look more like MNIST digits.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Top row shows a snapshot of the GM-VAE after 10 training steps. Loss curves are shown
in (a), the discrete variational distribution in (b) with rows ` representing E{x|label(x)=`}qD(k|x), and
reconstructions are shown in (c). Bottom row shows the same snapshot after 6000 training steps.

While the generative model learns to use the continuous latent, the discrete distribution qD(k|x) never
revives the k values that it shut off. This is because the generative model would not know how to use
the z ∼ qC(z|k, x) values for those ks, implying a significant penalty in the reconstruction term of
the ELBO. This is evidenced in Figure 1d by the discrete KL staying flat, and in Figure 1e where the
columns corresponding to the shut off k values never repopulate.

We have discussed the difficulty of leveraging the structure of the latent variables in GM-VAEs using
our specific implementation designed to mirror the GM-WAE of Section 2.2. Many other variants
of this implementation performed similarly. Though the root cause of this difficulty has not been
ascertained in generality, we expect it to be in part due to the per-data-point nature of the ELBO
objective, in particular, the impact of the KL divergence term on learning the variational distribution.
This point will be elaborated upon with more empirical justification in Section 3.

2.2 OPTIMAL TRANSPORT FACILITATES TRAINING OF GM-LVMS

The difficulty associated with training GM-VAEs may be interpreted as a problem of restricted
convergence of a sequence of distributions, where the sequence is indexed by the training steps. If
that were so, an objective function that induces a weaker topology (and therefore, allows sequences
to converge more easily) might help GM-LVMs converge to a distribution that non-trivially uses its
discrete latent variable. Hence, we are motivated to consider approaching the training of such models
using the OT framework, and in particular the Wasserstein distance as our objective, as it is known to
induce a weaker topology than that of maximum likelihood.

Following the OT approach of Tolstikhin et al. (2018), we would like to minimize the 2-Wasserstein
distance between the underlying data distribution (from which we have samples) and our GM-LVM:

W †2
(
pdata, pG

)2
= inf

q(z,k|x)∈PZ×K
Epdata(x)[q(z,k|x)]=pC(z|k)pD(k)

Epdata(x)Eq(z,k|x)EpG(y|z)
[
||x− y|| 22

]
(3)
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where PZ×K is the set of all joint distributions over z and k, such that q(z, k|x) = qC(z|k, x)qD(k|x)
with qC and qD parametrized below. Any parametrization of q(z, k|x) reduces the search space of
the infimum, so W †2 is in fact an upper bound on the true 2-Wasserstein distance W2. Note that W †2
is only equal to the true 2-Wasserstein distance when pG(y|z) is deterministic, providing an upper
bound in the case of random generative models (Tolstikhin et al., 2018). We choose to model the
“variational” distribution q(z, k|x) deliberately to mirror the structure of the prior, which differs from,
for example, Makhzani et al. (2016) who assume conditional independence between z|x and k|x.

Since the constrained infimum is intractable, a relaxed version of W †2 is introduced as follows:

W̃ †2
(
pdata, pG

)2
= inf

q(z,k|x)∈PZ×K
Epdata(x) Eq(z,k|x) EpG(y|z)

[
||x− y|| 22

]
(4)

+ λD
(
Epdata(x)

[
q(z, k|x)

] ∣∣∣∣∣∣ pC(z|k) pD(k)
)

which is equivalent to the original distance when λ→∞. This equivalence requires only that D be a
divergence. As in Tolstikhin et al. (2018), we use the Maximum Mean Discrepancy (MMD) with a
mixture of inverse multiquadratic (IMQ) kernels with various bandwidth Ci. The MMD is a distance
on the space of densities and has an unbiased U-estimator (Gretton et al., 2012a). Explicitly, if k is a
reproducing positive-definite kernel and is characteristic, then the MMD associated to k is given by

MMD(q || p) = Ez1,z2∼q[k(z1, z2)] + Ez1,z2∼p[k(z1, z2)]− 2Ez1∼q,z2∼p[k(z1, z2)] (5)

IMQ kernels have fatter tails than the classic radial basis function kernels, proving more useful early
in training when the encoder has not yet learned to match the aggregated posterior with the prior. The
choice of bandwidth for the kernel can be fickle, so we take a mixture of kernels with bandwidths
Ci ∈ {10j , 2 × 10j , 5 × 10j | j ∈ {−2, . . . , 2}} reducing the sensitivity on any one choice (see
Dziugaite et al. (2015); Gretton et al. (2012b); Li et al. (2015)).

Given the discrete latent in our model, we cannot directly use Equation 4 with the MMD. Instead we
integrate out the discrete latent variable in Equation 3, arriving at our GM-WAE objective function:

W̃ †2
(
pdata, pG

)2
= inf∑

k q(z,k|x)∈PZ
Epdata(x) E∑

k q(z,k|x) EpG(y|z)
[
||x− y|| 22

]
(6)

+ λ MMD
(
Epdata(x)

[∑
k

q(z, k|x)
] ∣∣∣∣∣∣ ∑

k

pC(z|k) pD(k)
)

This allows us to compute the MMD between two continuous distributions, where it is defined.

As mentioned in Section 1, VAEs have the disadvantage that deterministic generative models cannot
be used; this is not the case for the Wasserstein distance. Thus we parametrize the generative density
pG(x|z) as a deterministic distribution x|z = gθ(z) where gθ is a mapping from the latent to the
data space specified by a deep neural network with parameters θ. This parametrization allows the
minimization the objective function using stochastic gradient descent with automatic differentiation.

To enable gradient-based minimization for the infimum in Equation 6, we parametrize q(z, k|x) =
qC(z|k, x) qD(k|x) with neural networks. We take qC(z|k, x) to be a Gaussian with diagonal
covariance for each k, mirroring the prior, and use the reparameterization trick (Kingma & Welling,
2014; Rezende et al., 2014) to compute gradients. In order to avoid back propagating through discrete
variables, the expectation over the distribution qD(k|x) is computed exactly. It could be computed by
sampling using standard techniques (Brooks et al. (2011); Jang et al. (2017); Maddison et al. (2017)).

As previously mentioned, the weakness of the topology induced by the Wasserstein distance on the
space of distributions may enable the GM-WAE to overcome the VAE training issues presented in
Section 2.1. With the objective in hand, a more precise argument can be made to support this claim.

Recall from Section 2.1 that the problem with the GM-VAE was that the objective function de-
mands the various distributions to be optimized at the individual data-point level. For example, the
DKL(qD(k|x)||pD(k)) term in Equation 2 breaks off completely and becomes irrelevant due to its
size. This causes the qD(k|x) distribution to shut off k values early, which becomes galvanized as
the generative model learns.

However, in posing the problem in terms of the most efficient way to move one distribution pG
onto another pdata, via the latent distribution q(z, k|x), the Wasserstein distance never demands the
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similarity of two distributions conditioned per data point. Indeed, the Epdata in Equation 6 is inside
both the infimum and the divergence D. We expect that “aggregating” the posterior as such will
allow q(z, k|x) (in particular, qD(k|x)) the flexibility to learn data-point specific information while
still matching the prior on aggregate. Indeed, it is also found in Makhzani et al. (2016) that using an
adversarial game to minimize the distance between an aggregated posterior and the prior is successful
at unsupervised training on MNIST with a discrete-continuous latent-variable model.

3 RESULTS

In this work we primarily seek to show the potential for OT techniques to enable the training of
GM-LVMs. Thus, we use relatively simple neural network architectures and train on MNIST.

We use a mixture of Gaussians for the prior, with 10 mixtures to represent the 10 digits in MNIST
and a non-informative uniform prior over these mixtures. Namely, for each k ∈ {0, . . . , 9}:

pD(k) =
1

10
, pC(z|k) = N (z;µ0

k, σ
0
kI) (7)

where the µ0
k and σ0

k represent the mean and covariance of each mixture and are fixed before training.
We found that choosing dim(z) = 9 worked well. We choose the µ0

k to be equidistant and for each k,
σ0
k = σ0 is chosen identically in order to admit ≈ 5% overlap between the 10 different modes of the

prior (i.e., the distance between any pair of means µ0
k1

and µ0
k2

is 4σ0).

For the variational distribution, we take q(z, k|x) = qC(z|k, x) qD(k|x) with

qD(k|x) = πk(x), qC(z|k, x) = N
(
z;µk(x), diag

(
σk(x)

))
(8)

where each component is parametrized by a neural network. For πk(x) a 3-layer DCGAN-style
network (Radford et al., 2015) is used with largest convolution layer composed of 64 filters. The
Guassian networks µk(x), σk(x) are taken to be 32-unit two-hidden-layer dense networks. Finally,
for the generative model, we take pθG(x|z) to be deterministic with x|z = gθ(z), using a 3-layer
DCGAN-style network with smallest transpose convolution layer composed of 128 filters. All the
convolutional filters have size 5× 5 except for the last layer which has size 1× 1.

We use batch normalisation (Ioffe & Szegedy, 2015), ReLU activation functions (Glorot et al., 2011)
after each hidden layer and Adam for optimization (Kingma & Ba, 2015) with a learning rate of
0.0005. We find that λ = 450 works well, although the value of λ does not impact performance
appreciably as long as it is larger than a few hundred. The (µk, σk) networks are pretrained to match
the prior moments, which accelerates training and improves stability (this was also done for GM-VAE
in Section 2.1).

3.1 RECONSTRUCTIONS AND SAMPLES

Our implementation of GM-WAE is able to reconstruct MNIST digits from its latent variables well.
In Figure 2a example data points from the held-out test set are shown on the odd rows, with their
reconstructions on the respective rows below. The encoding of the input points is a two step process,
first determining in which mode to encode the input via the discrete latent, and then drawing the
continuous encoding from the corresponding mode.

Samples from the GM-WAE are shown in Figure 2b and 2c. Since the discrete prior pD(k) is uniform,
we can sample evenly across the ks in order from 0 through 9, while still displaying representative
samples from p(z, k) = pC(z|k)pD(k). Again, this shows how the GM-WAE learns to leverage the
structure of the prior, whereas the GM-VAE results in the collapse of the several modes of the prior.

GM-WAE has a smooth manifold structure in its latent variables. In Figure 3a the reconstructions of
a linear interpolation with uniform step size in the continuous latent space is shown between pairs of
data points. This compares similarly to other WAE and VAE approaches to MNIST. In Figure 3b a
linear interpolation is performed between the prior mode µ0

6, and the other nine prior modes µ0
k 6=6.

This not only shows the smoothness of the learned latent manifold in all directions around a single
mode of the prior, but also shows that the variatonal distribution has learned to match the modes of
the prior. As one would hope given the suitability of a 10-mode GM-LVM to MNIST, almost every
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(a) (b) (c)

Figure 2: Shown in (a) are reconstructions of held-out data from the inferred latent variables. The
first, third, etc, rows are the raw data, and the rows below show the corresponding reconstructions.
Digit samples x ∼ pG(x|z) pC(z|k) for each discrete latent variable k are shown in (b) as well as
those samples closer to each mode of the prior in (c). The samples in (c) come from z values sampled
from Gaussians identical to pC(z|k), except with standard deviation scaled down by 3/5.

(a) (b)

Figure 3: Reconstructions from linear interpolations in the continuous latent space between two data
points (a), and between the prior mode µ0

6, and the other nine prior modes µ0
k 6=6 (b). In (a), the true

data points are shown in the first and last column next to their direct reconstructions.

mode of the prior now represents a different digit. This level of control built into the prior requires
not only a multi-modal prior, but also a training procedure that actually leverages the structure in
both the prior and variational distribution, which seems to not be the case for VAEs (see Section 2.1).

The quality of samples from our GM-WAE is related to the ability of the encoder networks to match
the prior distribution. Figure 2c and 3b demonstrate that the latent manifold learned is similar to
the prior. Near the modes of the prior the samples are credible handwritten digits, with the encoder
networks able to capture the structure within each mode of the data manifold (variation within each
column) and clearly separate each different mode (variation between rows).

We have argued that the VAE objective itself was responsible for the collapse of certain k values in
the discrete variational distribution, and that the per-data-point nature of the KL played a significant
role. To test this hypothesis, and to compare directly our trained WAE with the equivalent VAE
discussed in Section 2.1, we initialize the VAE with the parameters of the final trained WAE, and train
it according to the VAE objective. At initialization, the VAE with trained WAE parameters produces
high quality samples and reconstructions (Figure 4a). However, after a few hundred iterations, the
reconstructions deteriorate significantly (Figure 4b), and are not improved with further training.

The learning curves over the period of training between Figure 4a and 4b are shown in Figure 4c,
where the cause of the performance deterioration is clear: the continuous KL term in the VAE
objective is multiple orders of magnitude larger than the reconstruction term, causing optimization
to sacrifice reconstruction in order to reduce this KL term. Of course, the approximate posterior
aggregated over the data will not be far from the prior as that distance is minimized in the WAE
objective. However, this is not enough to ensure that the continuous KL term is small for every data
point individually. It is thus the per-data-point nature of the KL in the VAE objective that destroys the
reconstructions. Indeed, in order to minimize the per-data-point KL term in the GM-VAE objective,
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(a) (b) (c) (d)

Figure 4: (a) Reconstructions for an untrained VAE initialized with same parameters as our trained
WAE. (b) Those same reconstructions after a few dozen thousands training steps according to the
VAE objective. (c) Learning curves from an untrained VAE initialized with same parameters as our
trained WAE. (d) Reconstruction loss for different VAE variations.

qC(z|k, x) is forced toward the mean µ0
k for every x, causing it to lose much of its x dependence.

This can be seen in Figure 4b where the reconstructions are less customized and blurrier.

To compare the performance of GM-WAE against GM-VAE more quantitatively, we directly compare
the reconstruction loss from the VAE objective (the first term on the right hand side of Equation 2).
Strictly speaking, this quantity is ill-defined for the GM-WAE, as the generative model is chosen to be
deterministic. Instead we simply use the values returned by the GM-WAE generative model as if they
were the Bernoulli mean parameters of the GM-VAE (Kingma et al., 2014). These reconstruction loss
curves are shown Figure 4d. Also shown are the reconstruction losses for the GM-VAE with various
rescaling factors β in front of the KL terms of Equation 2. This rescaled KL term is inspired by both
Higgins et al. (2016), which studies the impact of rescaling the KL term in VAEs, as well as by the
WAE objective itself where λ plays the role of a regularization coefficient. While, the GM-WAE is
not trained to minimized this reconstruction loss, it actually achieves the best results. This shows that
GM-WAE performs better at reconstructing MNIST digits than its VAE counterpart, as measured by
the VAE’s own reconstruction objective.

We also show in Figure 4d the reconstruction curve of a GM-VAE initialized with trained GM-WAE
parameters. This echoes the previous discussion concerning the deterioration of the reconstructions
in GM-VAEs due to the per-data-point KL term. In Figures 4c and 4d, the GM-VAE initialized with
trained GM-WAE parameters uses a rescaling factor β = 10 for visualization purposes. The same
phenomenological behavior is observed with no rescaling factor, just less visually pronounced.

Overall, our results for GM-WAE are qualitatively competitive with other approaches (Tolstikhin
et al., 2018), despite a relatively low-complexity implementation. Furthermore, GM-WAE offers
more control over generation and inference due to its latent-variable structure, which cannot be
achieved with the GM-VAE objective.

3.2 LATENT VARIABLE FIDELITY

We have shown that the GM-WAE is able to both reconstruct data and generate new samples
meaningfully from the prior distribution. We now turn to studying the variational distributions
directly, including with how much fidelity a given class of digits is paired with a given discrete latent.

Consider first the discrete distribution qD(k|x) shown in Figure 5a, where E{x|label(x)=`}qD(k|x) is
shown in row `. From the staircase structure, it is clear that this distribution learns to approximately
assign each discrete latent value k to a different class of digit. However, it does not do so perfectly.
This is expected as the GM-WAE seeks only to reconstruct the data from its encoding, not to encode
it in any particular way. This does not mean GM-WAE is failing to use its discrete latent effectively.
Indeed, when comparing Figure 2c and Figure 5a, a meaningful source of overlap between different
values of k and a single digit class can be seen. For example, in Figure 5a the digit 5 is assigned
partially to k = 3 and k = 5. In Figure 2c, 5s drawn with a big-round lower loop are similar to digit
3 and 5s with a small loop and long upper bar are assigned to another cluster corresponding to digit 5.
A similar discussion holds for 8s and 9s.
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(a) (b) (c)

Figure 5: Visualization of the variational distributions. (a) shows E{x|label(x)=`}qD(k|x) in row
`. (b) shows the accuracy as a function of the training steps for our method and the same VAE
variations than Figure 4d. (c) shows z|x ∼

∑
k qC(z|k, x)qD(k|x) dimensionally reduced using

UMAP (McInnes & Healy, 2018). 1000 encoded test-set digits and 1000 samples from the prior are
used. Encoded points are colored by their digit label.

To assess the digit-class fidelity of the discrete encoder more quantitatively, we calculate the accuracy
of the digit-class assignment according to qD(k|x). To assign a digit-class label to each k value, we
follow a similar protocol to that of Makhzani et al. (2016): we assign the digit-class label to the k
value that maximizes the average discrete latent for that class, in decreasing order of that maximum.
Figure 5b shows the resulting accuracy throughout training. Our GM-WAE achieves an accuracy
on the held-out test set just shy of 70%. The corresponding accuracies for the GM-VAE variations
considered in Figure 4 are also shown. The best performing GM-VAE with a scaling factor of β = 20
achieves approximately 30%. This shows again the difficulty of the GM-VAE to capture meaningful
structure in the data. For reference, basic K-means clustering (MacQueen, 1967) achieves 50-60%,
and Makhzani et al. (2016) achieve 90% (using 16 discrete classes, and substantially different model
and training procedure).

Another way to study the latent variable structure of GM-WAE is to consider dimensionally reduced
visualizations of the continuous latent z. In Figure 5c such a visualization is shown using UMAP
(McInnes & Healy, 2018). Distinct clusters can indeed be seen in the prior and in the samples from
qC(z|k, x). Though the clusters of z ∼ qC(z|k, x) do not fully align with those from the prior
z ∼ pD(z|k), they maintain significant overlap. Samples from qC(z|k, x) in Figure 5c are colored
according to the true digit labels, and show how GM-WAE learns to assign digits to the different
clusters. In particular, the 7 / 9 cluster is clearly overlapping, as seen in Figures 5a, 2b and 2c.

We have see that the GM-WAE model is highly suited to the problem under study. It reconstructs
data and provides meaningful samples, it effectively uses both discrete and continuous variational
distributions, all while maintaining close proximity between the variational distribution and the prior.

4 CONCLUSIONS

We studied an unsupervised generative model with a mixture-of-Gaussians latent variable structure,
well suited to data containing discrete classes of objects with continuous variation within each class.
We showed that such a simple and critical class of models fails to train using the VAE framework, in
the sense that it immediately learns to discard its discrete-latent structure. We further exposed the root
cause of this phenomenon with empirical results. We then put to the test the abstract mathematical
claim that the Wasserstein distance induces a weaker topology on the space of distributions by
attempting to train the same mixture-of-Gaussians model in the WAE framework. We found the
Wasserstein objective is successful at training this model to leverage its discrete-continuous latent
structure fully. We provided promising results on MNIST and demonstrated the additional control
available to a highly structured model with both discrete and continuous latent variables. We hope this
motivates further study of the exciting but nascent field of Optimal Transport in generative modeling.
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