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ABSTRACT

We introduce the adversarially learned inference (ALI) model, which jointly learns
a generation network and an inference network using an adversarial process. The
generation network maps samples from stochastic latent variables to the data space
while the inference network maps training examples in data space to the space
of latent variables. An adversarial game is cast between these two networks and
a discriminative network is trained to distinguish between joint latent/data-space
samples from the generative network and joint samples from the inference network.
We illustrate the ability of the model to learn mutually coherent inference and gen-
eration networks through the inspections of model samples and reconstructions and
confirm the usefulness of the learned representations by obtaining a performance
competitive with state-of-the-art on the semi-supervised SVHN and CIFAR10
tasks.

1 INTRODUCTION

Deep directed generative model has emerged as a powerful framework for modeling complex high-
dimensional datasets. These models permit fast ancestral sampling, but are often challenging to
learn due to the complexities of inference. Recently, three classes of algorithms have emerged
as effective for learning deep directed generative models: 1) techniques based on the Variational
Autoencoder (VAE) that aim to improve the quality and efficiency of inference by learning an
inference machine (Kingma & Welling, 2013; Rezende et al., 2014), 2) techniques based on Generative
Adversarial Networks (GANs) that bypass inference altogether (Goodfellow et al., 2014) and 3)
autoregressive approaches (van den Oord et al., 2016b;c;a) that forego latent representations and
instead model the relationship between input variables directly. While all techniques are provably
consistent given infinite capacity and data, in practice they learn very different kinds of generative
models on typical datasets.

VAE-based techniques learn an approximate inference mechanism that allows reuse for various
auxiliary tasks, such as semi-supervised learning or inpainting. They do however suffer from a well-
recognized issue of the maximum likelihood training paradigm when combined with a conditional
independence assumption on the output given the latent variables: they tend to distribute probability
mass diffusely over the data space (Theis et al., 2015). The direct consequence of this is that image
samples from VAE-trained models tend to be blurry (Goodfellow et al., 2014; Larsen et al., 2015).
Autoregressive models produce outstanding samples but do so at the cost of slow sampling speed and
foregoing the learning of an abstract representation of the data. GAN-based approaches represent
a good compromise: they learn a generative model that produces higher-quality samples than the
best VAE techniques (Radford et al., 2015; Larsen et al., 2015) without sacrificing sampling speed
and also make use of a latent representation in the generation process. However, GANs lack an
efficient inference mechanism, which prevents them from reasoning about data at an abstract level.
For instance, GANs don’t allow the sort of neural photo manipulations showcased in (Brock et al.,
2016). Recently, efforts have aimed to bridge the gap between VAEs and GANs, to learn generative
models with higher-quality samples while learning an efficient inference network (Larsen et al.,
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Figure 1: The adversarially learned inference (ALI) game.

2015; Lamb et al., 2016; Dosovitskiy & Brox, 2016). While this is certainly a promising research
direction, VAE-GAN hybrids tend to manifest a compromise of the strengths and weaknesses of both
approaches.

In this paper, we propose a novel approach to integrate efficient inference within the GAN framework.
Our approach, called Adversarially Learned Inference (ALI), casts the learning of both an inference
machine (or encoder) and a deep directed generative model (or decoder) in an GAN-like adversarial
framework. A discriminator is trained to discriminate joint samples of the data and the corresponding
latent variable from the encoder (or approximate posterior) from joint samples from the decoder while
in opposition, the encoder and the decoder are trained together to fool the discriminator. Not only are
we asking the discriminator to distinguish synthetic samples from real data, but we are requiring it to
distinguish between two joint distributions over the data space and the latent variables.

With experiments on the Street View House Numbers (SVHN) dataset (Netzer et al., 2011), the
CIFAR-10 object recognition dataset (Krizhevsky & Hinton, 2009), the CelebA face dataset (Liu
et al., 2015) and a downsampled version of the ImageNet dataset (Russakovsky et al., 2015), we show
qualitatively that we maintain the high sample fidelity associated with the GAN framework, while
gaining the ability to perform efficient inference. We show that the learned representation is useful
for auxiliary tasks by achieving results competitive with the state-of-the-art on the semi-supervised
SVHN and CIFAR10 tasks.

2 ADVERSARIALLY LEARNED INFERENCE

Consider the two following probability distributions over x and z:

• the encoder joint distribution q(x, z) = q(x)q(z | x),
• the decoder joint distribution p(x, z) = p(z)p(x | z).

These two distributions have marginals that are known to us: the encoder marginal q(x) is the
empirical data distribution and the decoder marginal p(z) is usually defined to be a simple, factorized
distribution, such as the standard Normal distribution p(z) = N (0, I). As such, the generative
process between q(x, z) and p(x, z) is reversed.

ALI’s objective is to match the two joint distributions. If this is achieved, then we are ensured that all
marginals match and all conditional distributions also match. In particular, we are assured that the
conditional q(z | x) matches the posterior p(z | x).
In order to match the joint distributions, an adversarial game is played. Joint pairs (x, z) are drawn
either from q(x, z) or p(x, z), and a discriminator network learns to discriminate between the two,
while the encoder and decoder networks are trained to fool the discriminator.

The value function describing the game is given by:

min
G

max
D

V (D,G) = Eq(x)[log(D(x, Gz(x)))] + Ep(z)[log(1−D(Gx(z), z))]

=

∫∫
q(x)q(z | x) log(D(x, z))dxdz

+

∫∫
p(z)p(x | z) log(1−D(x, z))dxdz.

(1)
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Algorithm 1 The ALI training procedure.
θg, θd ← initialize network parameters
repeat

x(1), . . . ,x(M) ∼ q(x) . Draw M samples from the dataset and the prior
z(1), . . . ,z(M) ∼ p(z)
ẑ(i) ∼ q(z | x = x(i)), i = 1, . . . ,M . Sample from the conditionals
x̃(j) ∼ p(x | z = z(j)), j = 1, . . . ,M

ρ
(i)
q ← D(x(i), ẑ(i)), i = 1, . . . ,M . Compute discriminator predictions
ρ
(j)
p ← D(x̃(j), z(j)), j = 1, . . . ,M

Ld ← − 1
M

∑M
i=1 log(ρ

(i)
q )− 1

M

∑M
j=1 log(1− ρ

(j)
p ) . Compute discriminator loss

Lg ← − 1
M

∑M
i=1 log(1− ρ

(i)
q )− 1

M

∑M
j=1 log(ρ

(j)
p ) . Compute generator loss

θd ← θd −∇θdLd . Gradient update on discriminator network
θg ← θg −∇θgLg . Gradient update on generator networks

until convergence

An attractive property of adversarial approaches is that they do not require that the conditional
densities can be computed; they only require that they can be sampled from in a way that allows
gradient backpropagation. In the case of ALI, this means that gradients should propagate from the
discriminator network to the encoder and decoder networks.

This can be done using the the reparametrization trick (Kingma, 2013; Bengio et al., 2013b;a). Instead
of sampling directly from the desired distribution, the random variable is computed as a deterministic
transformation of some noise such that its distribution is the desired distribution. For instance, if
q(z | x) = N (µ(x), σ2(x)I), one can draw samples by computing

z = µ(x) + σ(x)� ε, ε ∼ N (0, I). (2)

More generally, one can employ a change of variable of the form

v = f(u, ε) (3)

where ε is some random source of noise.

The discriminator is trained to distinguish between samples from the encoder (x, ẑ) ∼ q(x, z) and
samples from the decoder (x̃, z) ∼ p(x, z). The generator is trained to fool the discriminator, i.e., to
generate x, z pairs from q(x, z) or p(x, z) that are indistinguishable one from another. See Figure 1
for a diagram of the adversarial game and Algorithm 1 for an algorithmic description of the procedure.

In such a setting, and under the assumption of an optimal discriminator, the generator minimizes the
Jensen-Shannon divergence (Lin, 1991) between q(x, z) and p(x, z). This can be shown using the
same proof sketch as in the original GAN paper (Goodfellow et al., 2014).

2.1 RELATION TO GAN

ALI bears close resemblance to GAN, but it differs from it in the two following ways:

• The generator has two components: the encoder, Gz(x), which maps data samples x to
z-space, and the decoder Gx(z), which maps samples from the prior p(z) (a source of
noise) to the input space.
• The discriminator is trained to distinguish between joint pairs (x, ẑ = Gx(x)) and (x̃ =
Gx(z), z), as opposed to marginal samples x ∼ q(x) and x̃ ∼ p(x).

2.2 ALTERNATIVE APPROACHES TO FEEDFORWARD INFERENCE IN GANS

The ALI training procedure is not the only way one could learn a feedforward inference network in a
GAN setting.

In recent work, Chen et al. (2016) introduce a model called InfoGAN which minimizes the mutual
information between a subset c of the latent code and x through the use of an auxiliary distribution
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Q(c | x). However, this does not correspond to full inference on z, as only the value for c is inferred.
Additionally, InfoGAN requires thatQ(c | x) is a tractable approximate posterior that can be sampled
from and evaluated. ALI only requires that inference networks can be sampled from, allowing it to
represent arbitrarily complex posterior distributions.

One could learn the inverse mapping from GAN samples: this corresponds to learning an encoder to
reconstruct z, i.e. finding an encoder such that Ez∼p(z)[‖z −Gz(Gx(z))‖22] ≈ 0. We are not aware
of any work that reports results for this approach. This resembles the InfoGAN learning procedure
but with a fixed generative model and a factorial Gaussian posterior with a fixed diagonal variance.

Alternatively, one could decompose training into two phases. In the first phase, a GAN is trained
normally. In the second phase, the GAN’s decoder is frozen and an encoder is trained following the
ALI procedure (i.e., a discriminator taking both x and z as input is introduced). We call this post-hoc
learned inference. In this setting, the encoder and the decoder cannot interact together during training
and the encoder must work with whatever the decoder has learned during GAN training. Post-hoc
learned inference may be suboptimal if this interaction is beneficial to modeling the data distribution.

2.3 GENERATOR VALUE FUNCTION

As with GANs, when ALI’s discriminator gets too far ahead, its generator may have a hard time
minimizing the value function in Equation 1. If the discriminator’s output is sigmoidal, then the
gradient of the value function with respect to the discriminator’s output vanishes to zero as the output
saturates.

As a workaround, the generator is trained to maximize

V ′(D,G) = Eq(x)[log(1−D(x, Gz(x)))] + Ep(z)[log(D(Gx(z), z))] (4)

which has the same fixed points but whose gradient is stronger when the discriminator’s output
saturates.

The adversarial game does not require an analytical expression for the joint distributions. This means
we can introduce variable changes without having to know the explicit distribution over the new
variable. For instance, sampling from p(z) could be done by sampling ε ∼ N (0, I) and passing it
through an arbitrary differentiable function z = f(ε).

However, gradient propagation into the encoder and decoder networks relies on the reparametrization
trick, which means that ALI is not directly applicable to either applications with discrete data or to
models with discrete latent variables.

2.4 DISCRIMINATOR OPTIMALITY

Proposition 1. Given a fixed generator G, the optimal discriminator is given by

D∗(x, z) =
q(x, z)

q(x, z) + p(x, z)
. (5)

Proof. For a fixed generator G, the complete data value function is

V (D,G) = Ex,z∼q(x,z)[log(D(x, z))] + Ex,z∼p(x,z)[log(1−D(x, z))]. (6)

The result follows by the concavity of the log and the simplified Euler-Lagrange equation first order
conditions on (x, z)→ D(x, z).

2.5 RELATIONSHIP WITH THE JENSEN-SHANNON DIVERGENCE

Proposition 2. Under an optimal discriminator D∗, the generator minimizes the Jensen-Shanon
divergence which attains its minimum if and only if q(x, z) = p(x, z).

Proof. The proof is a straightforward extension of the proof in Goodfellow et al. (2014).
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(a) SVHN samples. (b) SVHN reconstructions.

Figure 2: Samples and reconstructions on the SVHN dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions (e.g.,
second column contains reconstructions of the first column’s validation set samples).

(a) CelebA samples. (b) CelebA reconstructions.

Figure 3: Samples and reconstructions on the CelebA dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 4: Samples and reconstructions on the CIFAR10 dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.
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2.6 INVERTIBILITY

Proposition 3. Assuming optimal discriminator D and generator G. If the encoder Gx is determin-
istic, then Gx = G−1z and Gz = G−1x almost everywhere.

Sketch of proof. Consider the event Rε = {x : ‖x − (Gx ◦ Gz)(x))‖ > ε} for some positive ε.
This set can be seen as a section of the (x, z) space over the elements z such that z = Gz(x).
The generator being optimal, the probabilities of Rε under p(x, z) and q(x, z) are equal. Now
p(x | z) = δx−Gx(z), where δ is the Dirac delta distribution. This is enough to show that there are no
x satisfying the event Rε and thus Gx = G−1z almost everywhere. By symmetry, the same argument
can be applied to show that Gz = G−1x .
The complete proof is given in (Donahue et al., 2016), in which the authors independently examine
the same model structure under the name Bidirectional GAN (BiGAN).

3 RELATED WORK

Other recent papers explore hybrid approaches to generative modeling. One such approach is to
relax the probabilistic interpretation of the VAE model by replacing either the KL-divergence term
or the reconstruction term with variants that have better properties. The adversarial autoencoder
model (Makhzani et al., 2015) replaces the KL-divergence term with a discriminator that is trained to
distinguish between approximate posterior and prior samples, which provides a more flexible approach
to matching the marginal q(z) and the prior. Other papers explore replacing the reconstruction term
with either GANs or auxiliary networks. Larsen et al. (2015) collapse the decoder of a VAE and the
generator of a GAN into one network in order to supplement the reconstruction loss with a learned
similarity metric. Lamb et al. (2016) use the hidden layers of a pre-trained classifier as auxiliary
reconstruction losses to help the VAE focus on higher-level details when reconstructing. Dosovitskiy
& Brox (2016) combine both ideas into a unified loss function.

ALI’s approach is also reminiscent of the adversarial autoencoder model, which employs a GAN to
distinguish between samples from the approximate posterior distribution q(z | x) and prior samples.
However, unlike adversarial autoencoders, no explicit reconstruction loss is being optimized in ALI,
and the discriminator receives joint pairs of samples (x, z) rather than marginal z samples.

Independent work by Donahue et al. (2016) proposes the same model under the name Bidirectional
GAN (BiGAN), in which the authors emphasize the learned features’ usefulness for auxiliary
supervised and semi-supervised tasks. The main difference in terms of experimental setting is that
they use a deterministic q(z | x) network, whereas we use a stochastic network. In our experience,
this does not make a big difference when x is a deterministic function of z as the stochastic inference
networks tend to become determinstic as training progresses. When using stochastic mappings from
z to x, the additional flexiblity of stochastic posteriors is critical.

4 EXPERIMENTAL RESULTS

We applied ALI to four different datasets, namely CIFAR10 (Krizhevsky & Hinton, 2009), SVHN
(Netzer et al., 2011), CelebA (Liu et al., 2015) and a center-cropped, 64× 64 version of the ImageNet
dataset (Russakovsky et al., 2015).1

Transposed convolutions are used in Gx(z). This operation corresponds to the transpose of the matrix
representation of a convolution, i.e., the gradient of the convolution with respect to its inputs. For
more details about transposed convolutions and related operations, see Dumoulin & Visin (2016); Shi
et al. (2016); Odena et al. (2016).

4.1 SAMPLES AND RECONSTRUCTIONS

For each dataset, samples are presented (Figures 2a, 3a 4a and 5a). They exhibit the same image
fidelity as samples from other adversarially-trained models.

1 The code for all experiments can be found at https://github.com/IshmaelBelghazi/ALI.
Readers can also consult the accompanying website at https://ishmaelbelghazi.github.io/ALI.
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(a) Tiny ImageNet samples. (b) Tiny ImageNet reconstructions.

Figure 5: Samples and reconstructions on the Tiny ImageNet dataset. For the reconstructions,
odd columns are original samples from the validation set and even columns are corresponding
reconstructions.

We also qualitatively evaluate the fit between the conditional distribution q(z | x) and the posterior
distribution p(z | x) by sampling ẑ ∼ q(z | x) and x̂ ∼ p(x | z = ẑ) (Figures 2b, 3b, 4b and 5b).
This corresponds to reconstructing the input in a VAE setting. Note that the ALI training objective
does not involve an explicit reconstruction loss.

We observe that reconstructions are not always faithful reproductions of the inputs. They retain
the same crispness and quality characteristic to adversarially-trained models, but oftentimes make
mistakes in capturing exact object placement, color, style and (in extreme cases) object identity. The
extent to which reconstructions deviate from the inputs varies between datasets: on CIFAR10, which
arguably constitutes a more complex input distribution, the model exhibits less faithful reconstructions.
This leads us to believe that poor reconstructions are a sign of underfitting.

This failure mode represents an interesting departure from the bluriness characteristic to the typical
VAE setup. We conjecture that in the underfitting regime, the latent variable representation learned
by ALI is potentially more invariant to less interesting factors of variation in the input and do not
devote model capacity to capturing these factors.

4.2 LATENT SPACE INTERPOLATIONS

As a sanity check for overfitting, we look at latent space interpolations between validation set
examples (Figure 6). We sample pairs of validation set examples x1 and x2 and project them into z1
and z2 by sampling from the encoder. We then linearly interpolate between z1 and z2 and pass the
intermediary points through the decoder to plot the input-space interpolations.

We observe smooth transitions between pairs of examples, and intermediary images remain believable.
This is an indicator that ALI is not concentrating its probability mass exclusively around training
examples, but rather has learned latent features that generalize well.

4.3 SEMI-SUPERVISED LEARNING

We investigate the usefulness of the latent representation learned by ALI through semi-supervised
benchmarks on SVHN and CIFAR10.

We first compare with GAN on SVHN by following the procedure outlined in Radford et al. (2015).
We train an L2-SVM on the learned representations of a model trained on SVHN. The last three
hidden layers of the encoder as well as its output are concatenated to form a 8960-dimensional feature
vector. A 10,000 example held-out validation set is taken from the training set and is used for model
selection. The SVM is trained on 1000 examples taken at random from the remainder of the training
set. The test error rate is measured for 100 different SVMs trained on different random 1000-example
training sets, and the average error rate is measured along with its standard deviation.

7



Published as a conference paper at ICLR 2017

Figure 6: Latent space interpolations on the CelebA validation set. Left and right columns corre-
spond to the original pairs x1 and x2, and the columns in between correspond to the decoding of
latent representations interpolated linearly from z1 to z2. Unlike other adversarial approaches like
DCGAN (Radford et al., 2015), ALI allows one to interpolate between actual data points.

Using ALI’s inference network as opposed to the discriminator to extract features, we achieve a
misclassification rate that is roughly 3.00 ± 0.50% lower than reported in Radford et al. (2015)
(Table 1), which suggests that ALI’s inference mechanism is beneficial to the semi-supervised
learning task.

We then investigate ALI’s performance when label information is taken into account during training.
We adapt the discriminative model proposed in Salimans et al. (2016). The discriminator takes x and
z as input and outputs a distribution over K + 1 classes, where K is the number of categories. When
label information is available for q(x, z) samples, the discriminator is expected to predict the label.
When no label information is available, the discriminator is expected to predict K + 1 for p(x, z)
samples and k ∈ {1, . . . ,K} for q(x, z) samples.

Interestingly, Salimans et al. (2016) found that they required an alternative training strategy for the
generator where it tries to match first-order statistics in the discriminator’s intermediate activations
with respect to the data distribution (they refer to this as feature matching). We found that ALI did
not require feature matching to obtain comparable results. We achieve results competitive with the
state-of-the-art, as shown in Tables 1 and 2. Table 2 shows that ALI offers a modest improvement
over Salimans et al. (2016), more specifically for 1000 and 2000 labeled examples.

Table 1: SVHN test set missclassification rate

.

Model Misclassification rate

VAE (M1 + M2) (Kingma et al., 2014) 36.02

SWWAE with dropout (Zhao et al., 2015) 23.56

DCGAN + L2-SVM (Radford et al., 2015) 22.18

SDGM (Maaløe et al., 2016) 16.61

GAN (feature matching) (Salimans et al., 2016) 8.11± 1.3

ALI (ours, L2-SVM) 19.14± 0.50

ALI (ours, no feature matching) 7.42± 0.65

Table 2: CIFAR10 test set missclassification rate for semi-supervised learning using different numbers
of trained labeled examples. For ALI, error bars correspond to 3 times the standard deviation.

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82

ALI (ours, no feature matching) 19.98± 0.89 19.09± 0.44 17.99± 1.62 17.05± 1.49
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We are still investigating the differences between ALI and GAN with respect to feature matching, but
we conjecture that the latent representation learned by ALI is better untangled with respect to the
classification task and that it generalizes better.

4.4 CONDITIONAL GENERATION

We extend ALI to match a conditional distribution. Let y represent a fully observed conditioning
variable. In this setting, the value function reads

min
G

max
D

V (D,G) = Eq(x) p(y)[log(D(x, Gz(x,y),y))] +Ep(z) p(y)[log(1−D(Gx(z,y), z,y))]

(7)
We apply the conditional version of ALI to CelebA using the dataset’s 40 binary attributes. The
attributes are linearly embedded in the encoder, decoder and discriminator. We observe how a single
element of the latent space z changes with respect to variations in the attributes vector y. Conditional
samples are shown in Figure 7.

Figure 7: Conditional generation sequence. We sample a single fixed latent code z. Each row has a
subset of attributes that are held constant across columns. The attributes are male, attractive, young
for row I; male, attractive, older for row II; female, attractive, young for row III; female, attractive,
older for Row IV. Attributes are then varied uniformly over rows across all columns in the following
sequence: (b) black hair; (c) brown hair; (d) blond hair; (e) black hair, wavy hair; (f) blond hair,
bangs; (g) blond hair, receding hairline; (h) blond hair, balding; (i) black hair, smiling; (j) black hair,
smiling, mouth slightly open; (k) black hair, smiling, mouth slightly open, eyeglasses; (l) black hair,
smiling, mouth slightly open, eyeglasses, wearing hat.

4.5 IMPORTANCE OF LEARNING INFERENCE JOINTLY WITH GENERATION

To highlight the role of the inference network during learning, we performed an experiment on a toy
dataset for which q(x) is a 2D gaussian mixture with 25 mixture components laid out on a grid. The
covariance matrices and centroids have been chosen such that the distribution exhibits lots of modes
separated by large low-probability regions, which makes it a decently hard task despite the 2D nature
of the dataset.

We trained ALI and GAN on 100,000 q(x) samples. The decoder and discriminator architectures
are identical between ALI and GAN (except for the input of the discriminator, which receives the
concatenation of x and z in the ALI case). Each model was trained 10 times using Adam (Kingma &
Ba, 2014) with random learning rate and β1 values, and the weights were initialized by drawing from
a gaussian distribution with a random standard deviation.

We measured the extent to which the trained models covered all 25 modes by drawing 10,000 samples
from their p(x) distribution and assigning each sample to a q(x) mixture component according to
the mixture responsibilities. We defined a dropped mode as one that wasn’t assigned to any sample.
Using this definition, we found that ALI models covered 13.4± 5.8 modes on average (min: 8, max:
25) while GAN models covered 10.4± 9.2 modes on average (min: 1, max: 22).
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Figure 8: Comparison of (a) ALI, (b) GAN with an encoder learned to reconstruct latent samples (c)
GAN with an encoder learned through ALI, (d) variational autoencoder (VAE) on a 2D toy dataset.
The ALI model in (a) does a much better job of covering the latent space (second row) and producing
good samples than the two GAN models (b, c) augmented with an inference mechanism.

We then selected the best-covering ALI and GAN models, and the GAN model was augmented with
an encoder using the learned inverse mapping and post-hoc learned inference procedures outlined in
subsection 2.2. The encoders learned for GAN inference have the same architecture as ALI’s encoder.
We also trained a VAE with the same encoder-decoder architecture as ALI to outline the qualitative
differences between ALI and VAE models.

We then compared each model’s inference capabilities by reconstructing 10,000 held-out samples
from q(x). Figure 8 summarizes the experiment. We observe the following:

• The ALI encoder models a marginal distribution q(z) that matches p(z) fairly well (row 2,
column a). The learned representation does a decent job at clustering and organizing the
different mixture components.

• The GAN generator (row 5, columns b-c) has more trouble reaching all the modes than the
ALI generator (row 5, column a), even over 10 runs of hyperparameter search.

• Learning an inverse mapping from GAN samples does not work very well: the encoder has
trouble covering the prior marginally and the way it clusters mixture components is not very
well organized (row 2, column b). As discussed in subsection 2.2, reconstructions suffer
from the generator dropping modes.

• Learning inference post-hoc doesn’t work as well as training the encoder and the decoder
jointly. As had been hinted at in subsection 2.2, it appears that adversarial training benefits
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from learning inference at training time in terms of mode coverage. This also negatively
impacts how the latent space is organized (row 2, column c). However, it appears to be
better at matching q(z) and p(z) than when inference is learned through inverse mapping
from GAN samples.

• Due to the nature of the loss function being optimized, the VAE model covers all modes
easily (row 5, column d) and excels at reconstructing data samples (row 3, column d).
However, they have a much more pronounced tendency to smear out their probability density
(row 5, column d) and leave “holes” in q(z) (row 2, column d). Note however that recent
approaches such as Inverse Autoregressive Flow (Kingma et al., 2016) may be used to
improve on this, at the cost of a more complex mathematical framework.

In summary, this experiment provides evidence that adversarial training benefits from learning an
inference mechanism jointly with the decoder. Furthermore, it shows that our proposed approach for
learning inference in an adversarial setting is superior to the other approaches investigated.

5 CONCLUSION

We introduced the adversarially learned inference (ALI) model, which jointly learns a generation
network and an inference network using an adversarial process. The model learns mutually coherent
inference and generation networks, as exhibited by its reconstructions. The induced latent variable
mapping is shown to be useful, achieving results competitive with the state-of-the-art on the semi-
supervised SVHN and CIFAR10 tasks.
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A HYPERPARAMETERS

Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3× 32× 32 input
Convolution 5× 5 1× 1 32

√
0.0 Leaky ReLU

Convolution 4× 4 2× 2 64
√

0.0 Leaky ReLU
Convolution 4× 4 1× 1 128

√
0.0 Leaky ReLU

Convolution 4× 4 2× 2 256
√

0.0 Leaky ReLU
Convolution 4× 4 1× 1 512

√
0.0 Leaky ReLU

Convolution 1× 1 1× 1 512
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 128 × 0.0 Linear

Gx(z) – 64× 1× 1 input
Transposed convolution 4× 4 1× 1 256

√
0.0 Leaky ReLU

Transposed convolution 4× 4 2× 2 128
√

0.0 Leaky ReLU
Transposed convolution 4× 4 1× 1 64

√
0.0 Leaky ReLU

Transposed convolution 4× 4 2× 2 32
√

0.0 Leaky ReLU
Transposed convolution 5× 5 1× 1 32

√
0.0 Leaky ReLU

Convolution 1× 1 1× 1 32
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 3 × 0.0 Sigmoid

D(x) – 3× 32× 32 input
Convolution 5× 5 1× 1 32 × 0.2 Maxout
Convolution 4× 4 2× 2 64 × 0.5 Maxout
Convolution 4× 4 1× 1 128 × 0.5 Maxout
Convolution 4× 4 2× 2 256 × 0.5 Maxout
Convolution 4× 4 1× 1 512 × 0.5 Maxout

D(z) – 64× 1× 1 input
Convolution 1× 1 1× 1 512 × 0.2 Maxout
Convolution 1× 1 1× 1 512 × 0.5 Maxout

D(x, z) – 1024× 1× 1 input
Concatenate D(x) and D(z) along the channel axis

Convolution 1× 1 1× 1 1024 × 0.5 Maxout
Convolution 1× 1 1× 1 1024 × 0.5 Maxout
Convolution 1× 1 1× 1 1 × 0.5 Sigmoid

Optimizer Adam (α = 10−4, β1 = 0.5, β2 = 10−3)
Batch size 100

Epochs 6475
Leaky ReLU slope, maxout pieces 0.1, 2

Weight, bias initialization Isotropic gaussian (µ = 0, σ = 0.01), Constant(0)

Table 3: CIFAR10 model hyperparameters (unsupervised). Maxout layers (Goodfellow et al., 2013)
are used in the discriminator.
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Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3× 32× 32 input
Convolution 5× 5 1× 1 32

√
0.0 Leaky ReLU

Convolution 4× 4 2× 2 64
√

0.0 Leaky ReLU
Convolution 4× 4 1× 1 128

√
0.0 Leaky ReLU

Convolution 4× 4 2× 2 256
√

0.0 Leaky ReLU
Convolution 4× 4 1× 1 512

√
0.0 Leaky ReLU

Convolution 1× 1 1× 1 512
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 512 × 0.0 Linear

Gx(z) – 256× 1× 1 input
Transposed convolution 4× 4 1× 1 256

√
0.0 Leaky ReLU

Transposed convolution 4× 4 2× 2 128
√

0.0 Leaky ReLU
Transposed convolution 4× 4 1× 1 64

√
0.0 Leaky ReLU

Transposed convolution 4× 4 2× 2 32
√

0.0 Leaky ReLU
Transposed convolution 5× 5 1× 1 32

√
0.0 Leaky ReLU

Convolution 1× 1 1× 1 32
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 3 × 0.0 Sigmoid

D(x) – 3× 32× 32 input
Convolution 5× 5 1× 1 32 × 0.2 Leaky ReLU
Convolution 4× 4 2× 2 64

√
0.2 Leaky ReLU

Convolution 4× 4 1× 1 128
√

0.2 Leaky ReLU
Convolution 4× 4 2× 2 256

√
0.2 Leaky ReLU

Convolution 4× 4 1× 1 512
√

0.2 Leaky ReLU
D(z) – 256× 1× 1 input

Convolution 1× 1 1× 1 512 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 512 × 0.2 Leaky ReLU

D(x, z) – 1024× 1× 1 input
Concatenate D(x) and D(z) along the channel axis

Convolution 1× 1 1× 1 1024 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 1024 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 1 × 0.2 Sigmoid

Optimizer Adam (α = 10−4, β1 = 0.5, β2 = 10−3)
Batch size 100

Epochs 100
Leaky ReLU slope 0.01

Weight, bias initialization Isotropic gaussian (µ = 0, σ = 0.01), Constant(0)

Table 4: SVHN model hyperparameters (unsupervised).
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Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3× 64× 64 input
Convolution 2× 2 1× 1 64

√
0.0 Leaky ReLU

Convolution 7× 7 2× 2 128
√

0.0 Leaky ReLU
Convolution 5× 5 2× 2 256

√
0.0 Leaky ReLU

Convolution 7× 7 2× 2 256
√

0.0 Leaky ReLU
Convolution 4× 4 1× 1 512

√
0.0 Leaky ReLU

Convolution 1× 1 1× 1 512 × 0.0 Linear
Gx(z) – 512× 1× 1 input

Transposed convolution 4× 4 1× 1 512
√

0.0 Leaky ReLU
Transposed convolution 7× 7 2× 2 256

√
0.0 Leaky ReLU

Transposed convolution 5× 5 2× 2 256
√

0.0 Leaky ReLU
Transposed convolution 7× 7 2× 2 128

√
0.0 Leaky ReLU

Transposed convolution 2× 2 1× 1 64
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 3 × 0.0 Sigmoid

D(x) – 3× 64× 64 input
Convolution 2× 2 1× 1 64

√
0.0 Leaky ReLU

Convolution 7× 7 2× 2 128
√

0.0 Leaky ReLU
Convolution 5× 5 2× 2 256

√
0.0 Leaky ReLU

Convolution 7× 7 2× 2 256
√

0.0 Leaky ReLU
Convolution 4× 4 1× 1 512

√
0.0 Leaky ReLU

D(z) – 512× 1× 1 input
Convolution 1× 1 1× 1 1024 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 1024 × 0.2 Leaky ReLU

D(x, z) – 1024× 1× 1 input
Concatenate D(x) and D(z) along the channel axis

Convolution 1× 1 1× 1 2048 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 2048 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 1 × 0.2 Sigmoid

Optimizer Adam (α = 10−4, β1 = 0.5)
Batch size 100

Epochs 123
Leaky ReLU slope 0.02

Weight, bias initialization Isotropic gaussian (µ = 0, σ = 0.01), Constant(0)

Table 5: CelebA model hyperparameters (unsupervised).
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Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3× 64× 64 input
Convolution 4× 4 2× 2 64

√
0.0 Leaky ReLU

Convolution 4× 4 1× 1 64
√

0.0 Leaky ReLU
Convolution 4× 4 2× 2 128

√
0.0 Leaky ReLU

Convolution 4× 4 1× 1 128
√

0.0 Leaky ReLU
Convolution 4× 4 2× 2 256

√
0.0 Leaky ReLU

Convolution 4× 4 1× 1 256
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 2048

√
0.0 Leaky ReLU

Convolution 1× 1 1× 1 2048
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 512 × 0.0 Linear

Gx(z) – 256× 1× 1 input
Convolution 1× 1 1× 1 2048

√
0.0 Leaky ReLU

Convolution 1× 1 1× 1 256
√

0.0 Leaky ReLU
Transposed convolution 4× 4 1× 1 256

√
0.0 Leaky ReLU

Transposed convolution 4× 4 2× 2 128
√

0.0 Leaky ReLU
Transposed convolution 4× 4 1× 1 128

√
0.0 Leaky ReLU

Transposed convolution 4× 4 2× 2 64
√

0.0 Leaky ReLU
Transposed convolution 4× 4 1× 1 64

√
0.0 Leaky ReLU

Transposed convolution 4× 4 2× 2 64
√

0.0 Leaky ReLU
Convolution 1× 1 1× 1 3 × 0.0 Sigmoid

D(x) – 3× 64× 64 input
Convolution 4× 4 2× 2 64 × 0.2 Leaky ReLU
Convolution 4× 4 1× 1 64

√
0.2 Leaky ReLU

Convolution 4× 4 2× 2 128
√

0.2 Leaky ReLU
Convolution 4× 4 1× 1 128

√
0.2 Leaky ReLU

Convolution 4× 4 2× 2 256
√

0.2 Leaky ReLU
Convolution 4× 4 1× 1 256

√
0.2 Leaky ReLU

D(z) – 256× 1× 1 input
Convolution 1× 1 1× 1 2048 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 2048 × 0.2 Leaky ReLU

D(x, z) – 2304× 1× 1 input
Concatenate D(x) and D(z) along the channel axis

Convolution 1× 1 1× 1 4096 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 4096 × 0.2 Leaky ReLU
Convolution 1× 1 1× 1 1 × 0.2 Sigmoid

Optimizer Adam (α = 10−4, β1 = 0.5, β2 = 10−3)
Batch size 128

Epochs 125
Leaky ReLU slope 0.01

Weight, bias initialization Isotropic gaussian (µ = 0, σ = 0.01), Constant(0)

Table 6: Tiny ImageNet model hyperparameters (unsupervised).
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B A GENERATIVE STORY FOR ALI

Xavier’s painting

Zelda’s description

Mr. Discriminator

Xena’s depiction

Zach’s description

Figure 9: A Circle of Infinite Painters’ view of the ALI game.

The Circle of Infinite Painters is a very prolific artistic group. Very little is known about the Circle,
but what we do know is that it is composed of two very brilliant artists. It has produced new paintings
almost daily for more than twenty years, each one more beautiful than the others. Not only are the
paintings exquisite, but their title and description is by itself a literary masterpiece.

However, some scholars believe that things might not be as they appear: certain discrepancies in
the Circle’s body of work hints at the Circle being composed of more than one artistic duo. This is
what Joseph Discriminator, art critique and world expert on the Circle, believes. He’s recently been
working intensively on the subject. Without knowing it, he’s right: the Circle is not one, but two
artistic duos.

Xavier and Zach Prior form the creative component of the group. Xavier is a painter and can, in
one hour and starting from nothing, produce a painting that would make any great painter jealous.
Impossible however for him to explain what he’s done: he works by intuition alone. Zach is an author
and his literary talent equals Xavier’s artistic talent. His verb is such that the scenes he describes
could just as well be real.

By themselves, the Prior brothers cannot collaborate: Xavier can’t paint anything from a description
and Zach is bored to death with the idea of describing anything that does not come out of his head.
This is why the Prior brothers depend on the Conditional sisters so much.

Zelda Conditional has an innate descriptive talent: she can examine a painting and describe it so well
that the original would seem like an imitation. Xena Conditional has a technical mastery of painting
that allows her to recreate everything that’s described to her in the most minute details. However,
their creativity is inversely proportional to their talent: by themselves, they cannot produce anything
of interest.

As such, the four members of the Circle work in pairs. What Xavier paints, Zelda describes, and what
Zach describes, Xena paints. They all work together to fulfill the same vision of a unified Circle of
Infinite Painters, a whole greater than the sum of its parts.

This is why Joseph Discriminator’s observations bother them so much. Secretly, the Circle put Mr.
Discriminator under surveillance. Whatever new observation he’s made, they know right away and
work on attenuating the differences to maintain the illusion of a Circle of Infinite Painters made of a
single artistic duo.

Will the Circle reach this ideal, or will it be unmasked by Mr. Discriminator?
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