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Abstract

Generalization remains a central challenge in machine learning. In this work, we
propose Learning from Teaching (LOT ), a novel regularization technique for deep
neural networks to enhance generalization. Inspired by the human ability to capture
concise and abstract patterns, we hypothesize that generalizable correlations are
expected to be easier to imitate. LOT operationalizes this concept to improve the
generalization of the main model with auxiliary student learners. The student
learners are trained by the main model and, in turn, provide feedback to help the
main model capture more generalizable and imitable correlations. Our experimental
results across several domains, including Computer Vision, Natural Language
Processing, and methodologies like Reinforcement Learning, demonstrate that the
introduction of LOT brings significant benefits compared to training models on
the original dataset. The results suggest the effectiveness and efficiency of LOT in
identifying generalizable information at the right scales while discarding spurious
data correlations, thus making LOT a valuable addition to current machine learning.
Code is available at https://github.com/jincan333/LoT.

1 Introduction

Improving the generalization performance of models on unseen data is a major challenge in machine
learning [6, 7, 73, 79, 107]. Despite its significant advances, identifying the most generalizable
model within the vast space of potential models remains challenging. Existing deep learning ap-
proaches focus on crafting the hypothesis spaces where prediction errors are optimized using training
data [33, 69, 71]. These spaces are shaped by inductive biases [33, 70] embedded in the neural
architectures which include implicit assumptions about the data [1, 25, 95], objective functions
(notably regularizers) [20, 68, 103], and learning methodologies [14, 72, 87].

In this paper, to enhance generalization, we use the methodology of regularization [37, 51, 88],
which prioritizes specific regions in the hypothesis spaces. Regularization techniques often involve
employing auxiliary losses or regularizers [20, 38, 103] alongside the primary task losses. For instance,
L1 regularization [41, 92, 93] encourages sparsity within models [16, 40, 54, 57]. Other regularization
techniques include model averaging [44, 102], dropout techniques [37, 67, 100], and additional
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optimization components [43, 63, 104]. Due to its effectiveness and simplicity, regularization is
critical in modern machine learning techniques for achieving better generalization [37, 109].

We aim to answer the research question: Among all possible models fitting the training data, which
ones are inherently generalizable? A common belief in cognitive science is that human intelligence
development involves distilling information and filtering out extraneous details to discern ‘simple’
correlations among a few selected relevant abstract variables [18, 94]. This approach leads to the
formation of correlations through simple patterns [2, 56] at the right scales. However, identifying
simple correlations in deep learning remains challenging, mostly due to not being easy to identify the
right scale of the problem. Studies in emergent languages suggest that the more structured a language
is, the more efficiently it can be transmitted to message receivers [11, 56]. Inspired by this finding,
we propose defining simple and generalizable correlations at the right scales, as those that can be
readily imitated by other learners, provided they possess suitable inductive biases.

Based on this definition, we propose a novel regularization approach, Learning from Teaching (LOT ).
The core of LOT is to compute a measure of ‘imitability’ for the main model to learn data correlations
at the correct scales. By adding this measure to the objective function and optimizing it during
training, we encourage the teacher model to refine its learned multiscale correlations, making them
more accessible through teaching, which in turn leads to better generalization. LOT computes this
measure by jointly training the main model as the ‘teacher’ with one or more auxiliary ‘student’
models. The student models strive to distill and assimilate the correlations acquired by the teacher
model. Thus, the learning performance of the student defines the measure of imitability of the teacher,
which is then used as the LOT regularizer.

We conduct comprehensive experiments using LOT to improve the Reinforcement Learning (RL)
formulation, as well as in Natural Language Processing (NLP) and Computer Vision (CV) applica-
tions. In RL, the experimental results demonstrate that LOT attains an average normalized reward
enhancement of 44% on four Atari games. In language modeling tasks, LOT achieves significant
perplexity reductions on the Penn Tree Bank [64] and WikiText-103 [65]. Notably, LOT enhances
the supervised fine-tuning performance of LLaMA [96, 97] models on GSM8K [19] and MATH [35].
In image classification tasks, LOT achieves accuracy gains of 1.99% and 0.83% on CIFAR-100 [49]
and ImageNet-1K [23], respectively.

2 Methodology

2.1 Generalizable and Spurious Correlations

Given a dataset D = {(x1, y1), · · · , (xn, yn)} generated from a data-generating distribution D̂,
there are infinitely many continuous functions f such that f(x) = y for all (x, y) ∈ D. Therefore,
finding the f that precisely models the true generalizable correlation between x and y is challenging,
especially with real-world data like natural images, which are complex and multiscale. In such sce-
narios, a neural network may compute incorrect (according to the ground-truth relationship between
variables) yet perfect (in the empirical data distribution) correlations that explain the relationship
between x and y [32, 73]. This phenomenon is particularly evident when y is entirely noise-based and
independent of x, but the neural network still fits y to x perfectly [73, 107]. This process, often called
brute-force memorization [2, 13], involves the network creating intricate computational strategies to
encode all (x, y) pairs in the samples. Consequently, correlations established in this way are spurious,
originating from sampling noise in the data rather than ground-truth relationships.

But how do humans distinguish generalizable correlations from spurious ones? Instead of relying
on brute-force memorization to establish input-output correspondences, humans naturally focus on
understanding high-level concepts within the input data, selectively ignoring irrelevant details [18, 94].
This approach leads to the formation of correlations through simple, comprehensible patterns [2, 11].
Empirical evidence in emergent languages also suggests that the more compositional a language is,
the more learners will use it [11, 56].

We can, therefore, define the distinctions between generalizable and spurious correlations. First,
generalizable correlations are simple and comprehensible, exhibiting lower Kolmogorov Complex-
ity [31, 58, 90]. Second, while there is only one ground-truth correlation for a dataset, the number of
spurious correlations can be massive. These two major distinctions lead to the following hypothesis.
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Hypothesis: Generalizable correlations should be more easily imitable by learners compared to
spurious correlations. Specifically, assume TG and TS are two teacher models that capture the
generalizable correlation and spurious correlation from a dataset, respectively. We have student
learners SG and SS that separately imitate TG and TS :

• From an effectiveness perspective, the final training and test losses of learner SG after
training are typically lower than those of learner SS .

• From an efficiency perspective, during training, the test losses of learner SG decrease more
rapidly than those of SS .

This hypothesis emphasizes that generalizable correlations inherent in data are not only more in-
terpretable but also more readily imitable. It suggests that the inherent simplicity and uniqueness
of generalizable correlations make them more attainable and recognizable for learning algorithms,
in contrast to the complex and abundant nature of spurious correlations derived from noise. In the
following we present our novel approach.

2.2 Learning from Teaching Regularization

Building upon the Hypothesis, we propose that the ease of imitation of the teacher model by student
models can serve as a proxy for the generalizability of learned representations. By measuring
the ‘imitability’ of the teacher model in the learning process, we can infer the generalizability
of it. A teacher that is easier to imitate implies higher generalization. We then design a novel
regularization approach that involves training a teacher model T alongside student models S to
imitate T , subsequently measuring the imitability of the teacher during training. We maximize
imitability by incorporating it as an additional loss during the training of the teacher T . This
imitability loss is termed the Learning from Teaching regularizer (LOT regularizer). By doing so, T is
optimized to be a teacher that is easier to imitate and, thus, possesses superior generalization compared
to models without the LOT regularizer. We refer to this class of regularization methods as ‘Learning
from Teaching Regularization’ (LOT ). LOT aligns with the broader concept of regularization in
machine learning, where the goal is to promote generalizable representations and prevent overfitting.

Although LOT can be applied to supervised, unsupervised, and reinforcement learning, we begin our
discussion with supervised learning. We train a network Tθ , parameterized by θ, as the main model,
which also serves as the teacher model. Additionally, we train a set of K networks Si, i = 1, 2, · · · ,K,
as the student models1. The total set of parameters of the K networks is denoted by ϕ. Given
a training dataset Dt = {(x1, y1), · · · , (xn, yn)}, we train T and S to model p(y|x), denoted
as pt(y|x) and ps(y|x), respectively. Additionally, LOT includes a predefined imitability metric
µs,t(·) = µ(S(·), T (·)). Intuitively, µs,t measures the difference between S and T ’s predictions on
the same input (occasionally denoted as µ henceforth for convenience). There are many possible
choices for the metric µ, such as the L2 loss between the hidden representations of a specific layer.
In our experiments, we choose µ(x) = µKL(ps(y|x)||pt(y|x)), which is the KL-divergence [21], to
quantify the distribution similarity between S and T .

We first train the teacher model. The objective function of the teacher combines the regular task
loss with the additional LOT regularizer R(θ) (defined in Equation 3). For example, in supervised
learning, we can use the negative log-likelihood loss for the regular task loss, and the objective
function can be written as:

Lt(θ) = − 1

|Dt|
∑

(xi,yi)∈Dt

log pt(yi|xi) +R(θ), (1)

where |Dt| is the number of samples in the dataset Dt.

To train the student networks and enhance information diversity, we require an independent unlabelled
dataset, denoted as Ds = {x1, · · · ,xm}. This dataset can be identical to Dt, or generated either by
a generative model trained on Dt or through alternative augmentation methods (e.g. synthetic data
generation). This unlabelled dataset constitutes the environment for the student networks to follow
the prediction of the teacher and, therefore, explores and generalizes beyond the original training
data.

1For convenience, S is referred to as a single student learner henceforth.
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Specifically, the student networks’ goal is to imitate the correlations acquired by the teacher network
during the training process. The training loss for students can be written as:

Ls(ϕ) =
1

|Ds|
∑
x∈Ds

K∑
i=1

µsi,t(x), (2)

where |Ds| is the number of samples in the unlabelled dataset Ds. The loss function Ls encourages
the student networks to learn from the teacher network by minimizing the difference between their
predictions, as measured by the metric µs,t(x).

The feedback from all students Si constitutes the LOT regularizer:

R(θ) =
α

|Ds|
∑
x∈Ds

K∑
i=1

λiµt,si(x), (3)

where λi ≥ 0 represents the coefficient weight of the i-th student Si, with
∑K

i=1 λi = 1. The λi can
be either a learnable parameter or fixed, such as 1

K . Essentially, the LOT regularizer measures the
imitability of the teacher. The regularization coefficient α controls the trade-off between the original
task learning objective of T and the feedback from the students.

The detailed procedure of LOT for supervised and unsupervised learning is outlined in Algorithm 1,
and LOT regularization for RL (using PPO as an example) is outlined in Algorithm 2. The teacher
T and student Si networks are initialized differently to ensure they learn diverse features and
representations. In both algorithms, the teacher and student networks iteratively learn from each
other, with the students imitating the teacher’s correlations and the teacher incorporating the students’
feedback into the learning process.

Algorithm 1 Learning from Teaching Regularization
1: Input: Dataset Ds,Dt, Regularization Coefficient α > 0, Student Steps Ratio N > 0
2: Initialize teacher network T parameterized by θ and student networks Si, i = 1, 2, · · ·K,

parameterized by ϕ.
3: repeat
4: Sample a batch of data Bt ⊂ Dt,Bs ⊂ Ds

5: Compute R̃(θ) = α
|Bs|

∑
x∈Bs

∑K
i=1 λiµt,si(x)

6: Compute L̃t(θ) = − 1
|Bt|

∑
(x,y)∈Bt

log pt(y|x) + R̃(θ)

7: Update θ using gradient ∇θL̃t(θ)
8: for i = 1 to N do
9: Sample Bs ⊂ Ds

10: Compute L̃s(ϕ) =
1

|Bs|
∑

x∈Bs

∑K
i=1 µsi,t(x)

11: Update student networks’ parameters ϕ using loss gradient ∇ϕL̃s(ϕ)
12: end for
13: until T converges

2.3 Discussion

The works most related to LOT are knowledge distillation (KD) [29, 36] and ease-of-teaching [11,
56] in emergent languages. However, LOT differs significantly from these approaches. In KD, a
teacher model containing task-specific knowledge transmits this knowledge to a student model (often
smaller than the teacher), with the primary focus on the student’s performance post-distillation.
Conversely, in LOT , both the teacher and student models may lack or possess different task-specific
knowledge. Generalization is improved through joint training, incorporating additional signals from
student feedback. In emergent languages, Li and Bowling [56] propose that structured language is
easier to teach to other agents than less structured ones, achieving higher task success rates with
less training. Additionally, Chaabouni et al. [11] identify a strong positive correlation between
language transmission efficiency to new message receivers and the degree of compositionality
(structuredness) of the language. In LOT , we focus on tasks distinct from emergent languages,
finding that generalizable correlations are easier to imitate. Under our Hypothesis, we design a novel
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Figure 1: Training and test KL-divergence losses of student models in LOT using ViT-B/16 and
ViT-L/16 on CIFAR-100 with different teacher models. The sophisticated students achieve lower
losses than the deceptive students given the same computational budget.

LOT regularizer and algorithm to enhance the generalization of deep neural networks, extending the
ease-of-teaching concept to supervised, unsupervised, and reinforcement learning. In parallel work,
Ning et al. [74] proposes Learning by Teaching (LbT), which utilizes teacher and student models to
generate answers as training samples for the teacher model. However, the regularization method in
LOT is fundamentally distinct from that in Ning et al. [74].

3 Experiments

We first validate our Hypothesis in Section 3.1. Subsequently, we assess the performance of
LOT across several tasks: Atari games (Section 3.2), language modeling (Section 3.3), and image
classification (Section 3.4). We compare LOT to a Teacher-only baseline, wherein the regularization
coefficient α in R(θ) is set to 0, thereby blocking the student feedback. Unless specified otherwise,
we employ only one student model. Except for the Atari games where the student can learn from
the offline samples of the teacher, we set N = 1 to manage computation (we study the impact of N
in Section 3.6). Moreover, we study the computational efficiency and effects of hyperparameters of
LOT in Sections 3.5 and 3.6.

3.1 Generalizable Correlations are Easier to Imitate than Spurious Correlations.

In our Hypothesis, learners are presumed to more readily imitate generalizable correlations than
spurious ones. To investigate this, we design experiments involving two distinct teacher models:
a sophisticated teacher and a deceptive teacher. The sophisticated teacher effectively captures
generalizable correlations, while the deceptive teacher primarily learns spurious correlations. We
use an identical student model to learn from both teachers separately, monitoring the student-teacher
KL divergence during training and testing. The student that learns easier-to-imitate correlations is
expected to exhibit lower training and test KL losses with fewer training steps.

We employ the ViT-B/16 and ViT-L/16 architectures [24] for both the teachers and students. The
sophisticated teachers are trained on the full CIFAR-100 [49] training set for 10,000 steps to achieve
optimal convergence. The deceptive teachers, using the same hyperparameters and training steps
as the sophisticated teachers, are trained on a random subset of 2, 560 images from the CIFAR-100
training set, leading to over-fitting. Consequently, the sophisticated teachers are expected to exhibit
better generalization ability (their test accuracy surpasses that of the deceptive teachers by 14%).

The two student models referred to as the sophisticated student and the deceptive student, share
identical hyperparameters and initializations. They are trained to imitate the correlations from their
respective teachers on the full CIFAR-100 training set. The teacher models are kept frozen during the
training of the students, with the objective Ls(ϕ) defined as follows:

Ls(ϕ) =
1

|Ds|
∑
x∈Ds

µKL(ps(y|x)||pt(y|x)), (4)

where Ds represents the full training set of CIFAR-100.

We present the training and test losses in Figure 1 and make the following observations:
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Figure 2: The episodic return of the teacher agent in LOT and the Teacher-only on four Atari games
(averaged over ten runs). LOT demonstrates return gains over Teacher-only on all games.

• Given the same computational budget, the sophisticated students achieve lower final KL
losses on both the training and test sets compared to the deceptive students. This suggests
that the student can more effectively imitate the prediction distribution of a teacher that
captures generalizable correlations.

• The deceptive students require more training steps to achieve the same training and test
student-teacher KL losses as the sophisticated students. This indicates that learners tend to
grasp spurious correlations much more slowly than generalizable correlations.

These results suggest that generalizable correlations are easier to imitate than spurious ones. In LOT ,
we expect the teacher model to master generalizable correlations by incorporating feedback from
students via the LOT regularizer.

3.2 Atari Games

We conduct experiments on four Atari games, namely BeamRider, Breakout, UpNDown, and Gravitar,
following the implementation in Huang et al. [42]. Both the LOT and Teacher-only agents have
identical hyperparameters. All agents are trained using Proximal Policy Optimization (PPO) [83].
While the teacher agents interact with the game environment, the student agents are trained on the
most recent 10,240 samples generated by the teacher agents, ensuring that LOT and Teacher-only
experience the same environmental interactions. We use different α values for various games and set
N = 5 to efficiently imitate the teacher. More details are provided in Appendix D.

The empirical results are presented in Figure 2, and we make the following observations:

• LOT improves the agent return compared to the Teacher-only version with 20 million teacher
training steps. Specifically, LOT achieves {63.14%, 9.79%, 66.48%, 35.70%} normalized
return enhancements on {BeamRider, Gravitar, UpNDown, Breakout}.

• The performance gain of LOT becomes more prominent as the training progresses (from 15
million to 20 million steps).

These results suggest that LOT is an effective approach for enhancing the generalization of RL agents,
as it requires no additional environmental interactions while delivering significant performance gains.

3.3 Language Modeling

Language modeling is a widely acknowledged NLP task, and regularization techniques have been
demonstrated to significantly enhance performance in this domain [106]. To examine the impact
of LOT on language modeling, we conduct experiments in two scenarios: unsupervised language
pretraining and supervised fine-tuning.

3.3.1 Unsupervised Language Pretraining

We conduct experiments of LOT and Teacher-only using LSTM [39], AWD-LSTM [66], and
Transformer-XL [22] for teacher and student on Penn Tree Bank (PTB) [64] and WikiText-103 [65].
We follow the implementations outlined in Dai et al. [22], Merity et al. [66], Zaremba et al. [106].
In LOT , we utilize different coefficients α for various architectures and benchmarks to control the
LOT regularizer. To ensure a fair comparison, we maintain the same total number of training steps
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Table 1: The test perplexity of the teacher model in LOT and the baseline on PTB and WikiText-103.
Results are averaged over three runs. LOT achieves consistent perplexity reduction over different
choices of architectures and benchmarks.

Dataset Teacher Student Teacher #Param. Teacher-only LOT

PTB LSTM LSTM 20M 82.75± 0.36 71.72 ± 0.54
AWD-LSTM AWD-LSTM 24M 58.69± 0.37 53.31 ± 0.56

WikiText-103 Transformer-XL-B Transformer-XL-B 151M 23.72± 0.41 21.65 ± 0.38
Transformer-XL-L Transformer-XL-L 257M 18.50± 0.25 16.47 ± 0.23

(with teacher and student training steps accumulated) for LOT and the Teacher-only setup. Please
refer to Appendix D for more implementation details.

From the empirical results presented in Table 1, we observe that LOT achieves notable perplexity
(PPL) gains across various architectures and benchmarks under the same number of learning steps
as Teacher-only. Specifically, LOT achieves at least 2 points PPL gains across all settings, and a
11.03 gain for LSTM on PTB. It indicates that LOT can be effectively applied to both LSTM and
Transformer architectures in language pretraining.

3.3.2 Supervised Fine-tuning

Furthermore, to evaluate the effectiveness of LOT in fine-tuning pretrained large language models
(LLMs), we conduct supervised fine-tuning (SFT) experiments using LLaMA-1 [96] and LLaMA-
2 [97] on two mathematical reasoning benchmarks: GSM8K [19] and MATH [35].

We compare LOT to in-context learning (ICL) [9] and SFT. Following Touvron et al. [97], the number
of in-context examples is 8 for GSM8K and 4 for MATH. The SFT configuration follows Yue et al.
[105], and we fine-tune the LLaMA models for four epochs. In LOT , the teacher and student models
share the same architecture for simplicity. The models are trained for two epochs in LOT to match
the total training steps in SFT for fair comparison. All other configurations are consistent with those
used in SFT. More implementation details are described in Appendix D.

Table 2: The accuracy of the teacher model in
LOT and the baseline on GSM8K and MATH. Re-
sults are averaged over three runs.

Setting GSM8K MATH
LLaMA-1 7B+ICL 10.69± 0.87 2.84± 0.25
LLaMA-1 7B+SFT 34.39± 1.28 4.78± 0.23
LLaMA-1 7B+LOT 36.42 ± 1.46 5.39 ± 0.28

LLaMA-2 7B+ICL 14.62± 0.96 2.46± 0.25
LLaMA-2 7B+SFT 39.81± 1.34 5.79± 0.31
LLaMA-2 7B+LOT 41.87 ± 1.62 6.28 ± 0.22

We measure the accuracy of greedy decod-
ing results in Table 2, and we observe that
LOT enhances reasoning abilities on all archi-
tecture and dataset choices. This indicates the
competence of LOT in improving the fine-tuning
performance with a computational cost compa-
rable to SFT.

3.4 Image Classification

To investigate the effects of LOT on computer vi-
sion tasks, we apply LOT to image classification
by conducting experiments using ResNets [34],
MobileNetV2 [81], ViT [24], and Swin [61] ar-
chitectures pretrained on ImageNet-1K and ImageNet-21K [23] as teacher and student models. We
choose CIFAR-100 [49] and ImageNet-1K as the downstream datasets. The total training steps for
LOT and the Teacher-only approach are the same for a fair comparison. Further implementation
details are provided in Appendix D. We conclude the following observations from results in Table 3:

• LOT achieves accuracy gains across various architectures and datasets without additional
computational costs. For example, LOT improves test accuracy by almost 2 points using a
ResNet-18 teacher and a ResNet-50 student on CIFAR-100 after pretrained on ImageNet-1K.
Similarly, on the larger-scaled ImageNet dataset ImageNet-21K, LOT still obtains nearly 1
point improvement using ViT-B/16 as the teacher and ViT-L/16 as the student.

• The generalization of teacher models can be effectively enhanced by students of larger sizes.
For instance, ResNet-50, ViT-L/16, and Swin-L students can enhance the performance of
ResNet-18, ViT-B/16, and Swin-B teachers, respectively. Similarly, small student models
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can also enhance the generalization performance of larger teacher models using LOT . For
example, a MobileNetV2 student improves the performance of RestNet-18 and ResNet-50
by more than 1 point on CIFAR-100 with a much smaller model size. Similar results appear
on the ViT-L/16 teacher and ViT-B/16 student combination in the ImageNet-1K task.

• For transformer-based models, employing different architectures for teachers and students
achieves better performance than sharing the same architecture. For example, when applying
a ViT-B/16 student, a ViT-L/16 teacher achieves 0.27% more accuracy than using a ViT-L/16
student. This suggests that using different architectures for teacher and student increases
information diversity, which contributes to enhanced generalization for teacher models [84].

These experimental results demonstrate the effectiveness of LOT in enhancing the generalization of
pretrained CNN-based and Transformer-based vision models in image classification.

3.5 Analysis of Computational Cost and Efficiency
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Figure 3: Test accuracy of teacher mod-
els in LOT and Teacher-only using ViT-B/16
and ViT-L/16 on CIFAR-100. LOT achieves
higher test accuracy with fewer training steps.

For supervised and unsupervised tasks, LOT involves
training teacher models alongside student models
as outlined in Algorithm 1. Compared to Teacher-
only, the potential limitation of LOT is that it re-
quires additional computation and memory for the
student models. Therefore, in our results in Sec-
tion 3, we maintain the same total training steps be-
tween LOT (accumulated for the teacher and student)
and Teacher-only and demonstrate that LOT achieves
better generalization performance under the same
number of updates. In this regard, we show the test
accuracy of image classification between LOT and
Teacher-only using ViT models with respect to the
total training steps in Figure 3. We note that
LOT achieves better test accuracy than Teacher-only
in both ViT-B/16 and ViT-L/16 with fewer total
training steps. Moreover, we demonstrate that
LOT remains effective even when the student model
is smaller than the teacher model in Table 3, which further reduces the computation cost compared to
Teacher-only in the same total training steps and accommodates different student model choices with
resource constraints. We provide more results regards efficiency of LOT in Appendix H.

In RL tasks, only the teacher model interacts with the environment to collect samples, and the student
can learn from the teacher samples exclusively (please refer to Appendix G for the algorithm of

Table 3: The test accuracy of the teacher model for various teacher-student model combinations
in LOT and the baseline. Results are averaged over three runs. LOT consistently enhances test
performance in all model choices and datasets.

Pretrained Downstream Teacher Student Image Size Teacher/Student #Param. Teacher-only LOT

ImageNet-1K CIFAR-100

ResNet-18 MobileNetV2 2242 12M / 4M 81.14± 0.58 82.78 ± 0.36
ResNet-18 ResNet-18 2242 12M / 12M 81.14± 0.58 82.89 ± 0.25
ResNet-18 ResNet-50 2242 12M / 26M 81.14± 0.58 83.13 ± 0.26
ResNet-50 MobileNetV2 2242 26M / 4M 84.09± 0.32 85.38 ± 0.44
ResNet-50 ResNet-18 2242 26M / 12M 84.09± 0.32 85.77 ± 0.19
ResNet-50 ResNet-50 2242 26M / 26M 84.09± 0.32 86.04 ± 0.38

ImageNet-21K CIFAR-100

ViT-B/16 ViT-B/16 3842 86M / 86M 91.57± 0.31 93.17 ± 0.35
ViT-B/16 ViT-L/16 3842 86M / 307M 91.57± 0.31 93.25 ± 0.44
ViT-L/16 ViT-B/16 3842 307M / 86M 93.44± 0.28 94.29 ± 0.33
ViT-L/16 ViT-L/16 3842 307M / 307M 93.44± 0.28 94.18 ± 0.26

ImageNet-21K ImageNet-1K

ViT-B/16 ViT-B/16 3842 86M / 86M 83.97± 0.11 84.54 ± 0.15
ViT-B/16 ViT-L/16 3842 86M / 307M 83.97± 0.11 84.80 ± 0.08
ViT-L/16 ViT-B/16 3842 307M / 86M 85.15± 0.17 85.92 ± 0.09
ViT-L/16 ViT-L/16 3842 307M / 307M 85.15± 0.17 85.65 ± 0.11
Swin-B Swin-B 3842 88M / 88M 86.37± 0.06 86.68 ± 0.15
Swin-B Swin-L 3842 88M / 197M 86.37± 0.06 86.73 ± 0.14
Swin-L Swin-B 3842 197M / 88M 87.27± 0.11 87.64 ± 0.12
Swin-L Swin-L 3842 197M / 197M 87.27± 0.11 87.59 ± 0.09
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Table 4: Performance comparison of Teacher-only, BAN and LOT on CIFAR-100. LOT achieves
superior performance to Teacher-only and BAN.

Dataset Teacher Student Teacher-only BAN (Student) LOT (Teacher)
CIFAR-100 ResNet-18 ResNet-18 81.14 82.08 82.89
CIFAR-100 ResNet-50 ResNet-50 84.09 84.73 86.04
CIFAR-100 ViT-B/16 ViT-B/16 91.57 92.44 93.17
CIFAR-100 ViT-L/16 ViT-L/16 93.44 93.82 94.18

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Alpha

70
72
74
76
78
80
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84

Te
st
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Teacher-only
LoT
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Figure 4: Effects of regularization coefficient α (left) and student steps ratio N (right). α = 1 is the
best α value to achieve the lowest test perplexity of the teacher model, and moderate student steps
ratio N such as 4 and 5 benefit the teacher model the most.

PPO-version LOT ). Therefore, LOT introduces negligible computation costs since sample collections
are more resource-intensive than fitting the agent network to the samples in RL. For instance, in our
Atari games experiments, the training time of LOT (606 minutes) is comparable to the Teacher-only
setting (597 minutes) on a single NVIDIA A6000 GPU.

3.6 Additional Investigation

Comparison to KD. To investigate the effect of LOT compared to other student-teacher learning
paradigms, we compare LOT to the born-again networks (BAN) baseline [29]. In BAN, we select the
checkpoint with the best performance of the Teacher-only model as the (frozen) teacher and distill
its knowledge into a student model with an identical architecture. Equal weights are assigned to
the hard loss (from the dataset) and soft loss (from the teacher) to train the student model [36]. All
other configurations remain consistent with LOT . The results in Table 4 indicate that LOT achieves
superior performance than BAN with a strong feedback model, further indicating the significance of
the interactive learning process in LOT .

Effect of regularization coefficient α. The strength of regularization plays a crucial role in the
overall training effect [50]. To investigate the effects of LOT on the generalization of the teacher
model, we perform experiments on PTB using the LSTM architecture for both teacher and student
models. The configuration follows Section 3.3, except that we gradually increase the value of α
in LOT from 0 to 1.7 and examine the test PPL of the teacher model. The results are presented in
Figure 4 (left). We observe that the performance of the teacher model improves rapidly as α increases
from 0 to 1, and when the value exceeds this point, the performance of the teacher begins to decline.
This observation suggests that moderate feedback from the student is most beneficial for the teacher,
but an excessively strong signal can hinder the teacher’s learning process. Similar effects of large α
values have been noted in joint teacher-student training in knowledge distillation [75].

Effect of student steps ratio N . To demonstrate the importance of the student steps ratio N in
LOT , we conduct additional experiments by training LSTM teacher and student models on PTB
using various values of N . The empirical results presented in Figure 4 (right) indicate that the
teacher benefits most from a moderate N value, such as 4 or 5. This finding suggests that achieving a
balanced ratio between teacher and student model updates is crucial for optimal performance. When
N is too low, the student may not sufficiently learn from the teacher, thereby reducing the quality of
the feedback it provides. Conversely, if N is too high, the student may overfit the teacher’s errors,
resulting in less effective imitability measurement.
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4 Conclusion

Identifying generalizable multiscale correlations from the vast space of possible correlations remains
a significant challenge in machine learning. Inspired by cognitive science beliefs about human
intelligence, we have shown experimentally that generalizable correlations are more imitable by
other learners. In particular, we introduced a novel regularization method, LOT , which identifies
generalizable correlations by teaching student models and exploiting their feedback. We conducted
comprehensive experiments across various learning tasks and neural architectures. The results
demonstrate that our proposed regularizer enhances model performance effectively and efficiently. In
conclusion, our proposed LOT regularization offers a promising new approach to improve the gener-
alization of neural networks by leveraging the learning process of student models and incorporating
their feedback to refine the teacher model.
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A Ethics and Social Impacts

In this work, we propose a regularization method to improve the generalization of deep neural
networks. Our work focuses on technical contributions to deep learning and AI. Therefore, the
potential social impacts of AI in general apply to our work, including fake information, toxic content,
fairness concerns, and misuse of AI. For example, toxic content like hate speech can lead to data
contamination and therefore have harmful impacts on society, which has been observed in large-scale
pretrained models. By employing our method, such harmful behavior can potentially be amplified.

B Related Works

B.1 Regularization in Deep Learning

Regularization serves as a primary strategy to improve generalization capabilities and mitigate
over-fitting [52]. Various regularization techniques exist for deep neural networks. One of the
earliest and most straightforward approaches to regularization involves constraining the model’s
capacity by adding a penalty function to the original objective function. Techniques such as L1
regularization [41, 92, 93], L2 regularization [20, 50, 82], and weight decay [50, 104] fall into this
category. Introducing noise [38, 77] to the system can also judiciously enhance generalizability and
prevent over-fitting. Dropout [4, 37, 88, 100] is a widely used regularization technique that randomly
drops certain neural network connections during training.

B.2 Student-Teacher Learning Paradigms

B.2.1 Knowledge Distillation

Knowledge distillation (KD) is a technique that transfers knowledge from a teacher model to a student
model by training the student to imitate the teacher’s outputs [36]. This approach is widely applied in
areas such as model compression, transparency, and interpretability [8, 10, 27, 36, 60, 91]. Model
compression is often motivated by resource constraints. Pioneering works include Buciluǎ et al. [10],
which compresses ensemble neural networks into a single network, and Ba and Caruana [3], which
improves shallow neural network accuracy by mimicking deep networks. KD is also applied in various
domains, including deep reinforcement learning [80], continual learning [28, 59, 85], and learning
privileged information theory [62, 76]. The dark knowledge method [36] further develops KD, where
a student model aims to fully match the output distribution of the teacher. Intuitively, distillation is
effective because the teacher’s output distribution over classes provides a more informative training
signal than a one-hot label. Additionally, in born-again networks (BAN) [29], the teacher and student
have identical neural architecture and model sizes, but the student can surprisingly surpass the
teacher’s accuracy.

B.2.2 Language Emergence

In a cooperative environment, agents can learn emergent languages for communication to solve
specific tasks. The emergence of such communication protocols is extensively studied in the context
of multi-agent referential games [26, 55]. In these games, one agent is required to describe its
observations to another agent, which is then tasked with deducing the initial agent’s observations [53].
The majority of methods employed to learn discrete communication protocols between agents utilize
RL [26, 99]. Compositionality is a desirable feature in the language used by agents, as it facilitates
flawless generalization for previously unseen combinations of attributes [5, 11, 17, 48]. However, the
community still lacks strong research indicating what general conditions are necessary or sufficient
for compositional language emergence. Chaabouni et al. [11, 12], Galke et al. [30], Li and Bowling
[56] postulate that compositional languages are more straightforward to learn.

C Motivation and Insights of Our Method

The concept of Learning from Teaching originates in cognitive psychology and linguistics, particularly
within the iterated learning theory of language emergence [45–47, 86]. This theory posits that the
generalizable nature of languages arises from the iterative learning process across generations in a
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society. The core hypothesis is that a generalizable language is inherently easier to teach and learn
[56, 78, 98], which aligns with our main hypothesis.

In the AI community, recent research has aimed to employ iterated learning to enhance the general-
ization of emergent languages and language acquisition among artificial learners. For example, some
studies have used iterated learning to improve the generalization of emergent languages between
AI agents [56, 78], while others have applied it to address generalization challenges in tasks like
compositional Visual Question Answering (VQA) [98]. LOT shares the same motivation as this line
of research. Our primary contribution extends the concept of “ease-of-teaching” [56] from language
learning to a broader range of machine learning tasks, including supervised, unsupervised learning,
and reinforcement learning.

LOT functions as a regularizer, similar to other commonly used regularizers like the L2 regularizer.
The L2 regularizer is effective because it encourages neural networks to learn simpler correlations,
thereby avoiding overfitting. It is widely accepted that correlations with lower Kolmogorov complexity
are more generalizable if they can perfectly explain a complex dataset. This aligns with the idea that
"generalization equals optimal compression," as discussed by Ilya Sutskever [89]. Essentially, this
notion adapts Occam’s Razor to the field of AI. Our key insight is that the "ease-of-teaching" metric
serves as an effective regularizer beyond language emergence tasks.

Consider an intuitive example: Student A learns math by rote memorization, while Student B
understands the core concepts and only memorizes essential rules, deducing the rest when needed.
Both approaches can perform similarly on simple problem sets. However, as data complexity
increases, Student A’s burden grows significantly, while Student B’s understanding-based approach
remains manageable. Consequently, Student B’s knowledge is easier to teach to another student, as it
involves less complexity. Therefore, teachability (or imitability) can serve as a proxy for complexity.

D Implementation Details.

Atari Games. We perform experiments on four Atari games, namely Beam-Rider, Breakout,
UpNDown, and Gravitar, following the implementation outlined in [42]. We set the regularization
coefficient α to 0.5 for BeamRider, Breakout, and UpNDown, and to 0.1 for Gravitar. The other
hyperparameters remain consistent across all four games. We use N of 5. For all agents, the optimizer
employed is Adam, with an initial learning rate of 0.00025. The teacher agent is trained for a total
of 20,000,000 timesteps. The temperature used in the KL loss is set to 1. The experiments are
implemented on the NVIDIA A6000 48GB GPUs.

Language Modeling. In the training-from-scratch experiments, we use the Transformer-XL ar-
chitecture following Dai et al. [22], the LSTM architecture following Zaremba et al. [106], and the
AWD-LSTM architecture following Merity et al. [66]. For supervised fine-tuning experiments with
LLaMA-1 and LLaMA-2, we employ the hyperparameters described in Yue et al. [105] and use
the HuggingFace Transformers library [101]. The hyperparameters for LOT are detailed in Table 5.
The experiments for LSTM and AWD-LSTM are implemented on one single NVIDIA A100 40GB
GPU. The Transformer-XL and LLaMA of LOT are trained on 4 and 8 NVIDIA A100 40GB GPUs,
respectively.

Model Dataset α N Optimizer Learning Rate Training Epochs/Steps Temperature

LSTM PTB 1.0 1 SGD 30 30 Epochs 1.5
AWD-LSTM PTB 1.0 1 ASGD 30 250 Epochs 1.5
Transformer-XL-B WikiText-103 0.1 1 ADAM 0.01 60,000 Steps 2
Transformer-XL-L WikiText-103 0.1 1 ADAM 0.01 150,000 Steps 2

LLaMA-1 7B GSM8K 0.01 1 ADAMW 2× 10−5 2 Epochs 2
LLaMA-1 7B MATH 0.01 1 ADAMW 2× 10−5 2 Epochs 2
LLaMA-2 7B GSM8K 0.01 1 ADAMW 2× 10−5 2 Epochs 2
LLaMA-2 7B MATH 0.01 1 ADAMW 2× 10−5 2 Epochs 2

Table 5: Hyperparameters for Language Modeling.

Image Classification. For CNN experiments, we use the ImageNet-1K pretrained architectures
MobileNetV2 and ResNets, which can be downloaded from the official PyTorch Model Zoo2. For

2https://pytorch.org/vision/stable/models.html
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ViT and Swin experiments, we follow the implementations described in Dosovitskiy et al. [24] and
Liu et al. [61], using the official ImageNet-1K or ImageNet-21K pretrained weights downloaded
from 3 and 4. The optimal hyperparameters for LOT are obtained through grid research. The
detailed hyperparameters are illustrated in Table 6. The experiments for MobileNetV2 and ResNets
are implemented on one single NVIDIA A100 40GB GPU. The ViT and Swin experiments are
implemented on 4 NVIDIA A100 40GB GPUs.

Model Dataset α N Optimizer Learning Rate Training Epochs/Steps Temperature

MobileNetV2 CIFAR-100 1.0 1 SGD 0.02 30 Epochs 1.5
ResNet-18 CIFAR-100 1.0 1 SGD 0.02 30 Epochs 1.5
ResNet-50 CIFAR-100 1.0 1 SGD 0.02 30 Epochs 1.5

ViT-B/16 CIFAR-100 1.0 1 SGD 0.02 5,000 Steps 1.5
ViT-L/16 CIFAR-100 1.0 1 SGD 0.02 5,000 Steps 1.5
ViT-B/16 ImageNet-1K 1.0 1 SGD 0.03 10,000 Steps 1.5
ViT-L/16 ImageNet-1K 1.0 1 SGD 0.03 10,000 Steps 1.5

Swin-B ImageNet-1K 0.5 1 ADAMW 2× 10−5 15 Epochs 1.5
Swin-L ImageNet-1K 0.5 1 ADAMW 2× 10−5 15 Epochs 1.5

Table 6: Hyperparameters for Image Classification.

E Scalability Analysis
From our extensive results shown in Section 3, LOT proves to be widely applicable across various
domains, including reinforcement learning (Section 3.2), unsupervised learning (Section 3.3), and
supervised learning (Section 3.4). It can be effectively applied to different architectures such as
CNN-based (Table 3), LSTM-based (Table 1), and Transformer-based(Table 1) models. LOT works
well on both small datasets like PTB (Table 1) and CIFAR-100 (Table 3), and large datasets such as
WikiText-103 (Table 1) and ImageNet (Table 3). It is also suitable for both small models like ResNets
(Table 3) and large models like ViT (Table 3) and LLaMA (Table 2). Additionally, LOT is compatible
with existing regularization methods such as weight decay and dropout. In our experiments with
ResNets, weight decay was applied to both LOT and Teacher-only setups. In the experiments with
Transformer-XL, ViT, and Swin, dropout is applied to both LOT and Teacher-only setups.

F Limitation
A potential limitation of LOT lies in the additional computational and memory costs required for
training the student models. However, as demonstrated in Section 3.5, LOT achieves better general-
ization with fewer training steps compared to Teacher-only models, and the flexibility in choosing
student models can accommodate varying resource constraints. In RL, the additional computational
costs introduced by LOT are negligible, as sample collection is more resource-intensive than fitting
the agent networks to the samples, as discussed in Section 3.5. Moreover, in real-world settings,
inference cost is more critical than training cost. The superior generalization achieved by LOT offers
significant benefits during inference without introducing additional inference costs.

G Algorithm for the PPO-version of Our Method

The LOT algorithm for Proximal Policy Optimization (PPO) is illustrated in Algorithm 2. In our
experiments, the teacher’s sampled data Bt is continuously added to the student sample collections
Ds. Meanwhile, the most recent samples from Ds are used to formulate the student training batch Bs

to ensure a high quality of its training dataset.

H Additional Results
Computational Efficiency. To further demonstrate the computational efficiency and superiority
of LOT , we conduct experiments using LSTM on PTB and ViT-B/16 on CIFAR-100 with varying
training epochs and steps, while keeping other configurations the same as in Section 3.3 and Sec-
tion 3.4. The results presented in Table 7 demonstrate that given equivalent computational budgets,
LOT consistently outperforms the Teacher-only model across various datasets and architectures, even
when the Teacher-only model trains for twice the number of epochs and steps. This further highlights

3https://github.com/google-research/vision_transformer
4https://github.com/microsoft/Swin-Transformer
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Algorithm 2 Learning from Teaching for PPO
1: Input: Regularization Coefficient α > 0, Student Steps Ratio N > 0.
2: Initialize teacher network T parameterized by θ and student networks Si, i = 1, 2, · · ·K,

parameterized by ϕ.
3: Initialize replay buffer Ds = ∅
4: repeat
5: Sample minibatch Bt by running T in simulator, add Bt to Ds

6: Sample a batch of data Bs ⊂ Ds

7: Compute R̃(θ) = α
|Bs|

∑
x∈Bs

∑K
i=1 λiµt,si(x)

8: Compute L̃t(θ) using the PPO loss on minibatch Bt

9: Update θ using gradient ∇θL̃t(θ)
10: Fit value network for PPO on minibatch Bt

11: for i = 1 to N do
12: Sample Bs ⊂ Ds

13: Compute L̃s(ϕ) =
1

|Bs|
∑

x∈Bs

∑K
i=1 µsi,t(x)

14: Update student networks’ parameters ϕ using loss gradient ∇ϕL̃s(ϕ)
15: end for
16: until T converges
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Figure 5: Training and test KL-divergence losses of student models in LOT using ResNet-18 and
ResNet-50 on CIFAR-100 with different teacher models.

LOT ’s effectiveness in improving the teacher model’s generalization while maintaining enhanced
computational efficiency.

Table 7: Performance of the teacher model in LOT and Teacher-only on image classification. The
hyperparameters are the same as the corresponding experiments in the paper.

Dataset Teacher Student Total Train Epochs/Steps Teacher-only LOT
CIFAR-100 ViT-B/16 ViT-B/16 10,000 steps 91.57 93.17
CIFAR-100 ViT-B/16 ViT-B/16 15,000 steps 91.74 93.23
CIFAR-100 ViT-B/16 ViT-B/16 20,000 steps 91.82 93.40

PTB LSTM LSTM 60 epochs 82.75 71.72
PTB LSTM LSTM 90 epochs 82.48 71.22
PTB LSTM LSTM 120 epochs 82.42 70.67

Additional Evidence for Hypothesis. We provide additional experimental results to validate our
hypothesis using ResNet-50 and ResNet-18 as both the teacher and student models on CIFAR-100,
following the same methodology described in Section 3.1, but with different model architectures.
The training and test KL-divergence of the sophisticated and deceptive students are shown in Figure
5. We observe that the sophisticated students achieve lower final KL losses compared to the deceptive
students with fewer training epochs, which further supports our hypothesis

Out-of-distribution Performance. We conduct additional experiments by fine-tuning models
on ImageNet-1K and evaluating them on ImageNet-R and ImageNet-Sketch using ViT-B/16 and
ViT-L/16 models to investigate the out-of-distribution robustness of LOT . The results, shown in
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Table 8, demonstrate that LOT also brings performance improvements on these datasets, indicating
the robustness of LOT across a broader set of scenarios.

Additional Comparison to KD. In Table 4, we show that LOT outperforms the distillation method
BAN. To provide stronger validation of LOT ’s effectiveness, we conduct additional experiments using
ResNet-50 and ViT-B/16 on CIFAR-100. We compare LOT to distillation methods such as BAN,
DKD [108], and ReviewKD [15], with the teacher weights in these methods being the best checkpoint
of Teacher-only. The results, shown in Table 9, indicate that LOT achieves better performance than
these distillation baselines, further underscoring the effectiveness of the unique interactive learning
process of LOT .

Table 8: Performance of LOT and Teacher-only on
ImageNet-R and ImageNet-Sketch.

Dataset Teacher Student Teacher-only / LOT
ImageNet-R ViT-B/16 ViT-B/16 49.11 / 52.27
ImageNet-R ViT-B/16 ViT-L/16 49.11 / 54.08
ImageNet-R ViT-L/16 ViT-B/16 54.42 / 58.18
ImageNet-R ViT-L/16 ViT-L/16 54.42 / 57.79

ImageNet-Sketch ViT-B/16 ViT-B/16 38.85 / 41.46
ImageNet-Sketch ViT-B/16 ViT-L/16 38.85 / 42.89
ImageNet-Sketch ViT-L/16 ViT-B/16 43.83 / 47.61
ImageNet-Sketch ViT-L/16 ViT-L/16 43.83 / 45.91

Table 9: Performance of LOT , BAN, Re-
viewKD, DKD on CIFAR100.

Method Teacher Student Accuracy
Teacher-only ResNet-50 N/A 84.09

BAN ResNet-50 ResNet-50 84.73
ReviewKD ResNet-50 ResNet-50 85.31

DKD ResNet-50 ResNet-50 85.17
LOT ResNet-50 ResNet-50 86.04

Teacher-only ViT-B/16 N/A 91.57
BAN ViT-B/16 ViT-B/16 92.44

ReviewKD ViT-B/16 ViT-B/16 92.73
DKD ViT-B/16 ViT-B/16 92.82
LOT ViT-B/16 ViT-B/16 93.17

Results on Validation Datasets. We provide additional results on the official validation datasets
for PTB and WikiText-103 in Table 10. These results demonstrate that LOT consistently outperforms
the Teacher-only approach on both the validation and test datasets for PTB and WikiText-103, further
validating the effectiveness of LOT .

Table 10: Test/Validation perplexity of LOT and Teacher-only on the official test/validation datasets.

Dataset Teacher Student Teacher-only (Valid) Teacher-only (Test) LOT (Valid) LOT (Test)
PTB LSTM LSTM 86.02 82.75 73.98 71.72
PTB AWD-LSTM AWD-LSTM 60.62 58.69 55.07 53.31

Wikitext-103 Transformer-XL-B Transformer-XL-B 24.68 23.72 22.24 21.65
Wikitext-103 Transformer-XL-L Transformer-XL-L 18.65 18.50 16.41 16.47

Performance of Student Models. We present the results for the student models in Table 11. Our
observations indicate that when the student and teacher models share the same architecture, the
student models can achieve performance levels comparable to those of the teacher models. While
the performance of the student models improves under LOT , it is important to highlight that LOT is
primarily designed to enhance the generalization capabilities of the teacher model.

Detialed Computation Cost. We provide a detailed comparison of the computational budget for
LOT and Teacher-only in Table 12. Our analysis shows that LOT uses the same number of CPU cores
as Teacher-only, with GPU usage being 12% to 55% higher. Despite this, LOT exhibits lower training
times compared to Teacher-only (except in RL tasks) when subjected to the same total training
epochs/steps, while still achieving significant performance improvements.

Table 11: The performance of student models in LoT on language modeling and image classification.

Task Dataset Teacher Student Teacher-only LOT (Teacher) LOT (Student)
Language Modeling PTB LSTM LSTM 82.75 71.72 73.33
Language Modeling WikiText-103 Transformer-XL-L Transformer-XL-L 18.50 16.47 16.89

Image Classification CIFAR100 ResNet-50 ResNet-18 84.09 85.77 83.24
Image Classification CIFAR100 ResNet-50 ResNet-50 84.09 86.04 85.72
Image Classification ImageNet-1K ViT-B/16 ViT-B/16 91.57 93.17 92.95
Image Classification ImageNet-1K ViT-B/16 ViT-L/16 91.57 93.25 93.89
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Table 12: Computational resources, memory usage, and training time of LOT and Teacher-only.

Dataset Teacher Model / Student Model Total Train Steps Computational Resources CPU Usage GPU Usage Training Time Performance
(teacher+student) (Teacher-only/LOT ) (Teacher-only/LoT) (Teacher-only/LOT ) (Teacher-only/LOT )

BeamRider Standard Network / Standard Network 20M frames 1 NVIDIA A6000 48GB GPU 16 core / 16 core 0.8 GB / 0.9 GB 10 h / 10.1 h 3,651 score / 5,956 score (↑)
PTB LSTM / LSTM 60 epochs 1 × NVIDIA A100 40GB GPU 1 core / 1 core 1.1 GB / 1.5 GB 0.6 h / 0.3 h 82.8 ppl / 71.7 ppl (↓)

WikiText-103 Transformer-XL-L / Transformer-XL-L 0.3M steps 4 × NVIDIA A100 40GB GPU 4 core / 4 core 4 × 21.4 GB / 4 × 33.2 GB 85.6 h / 67.7 h 18.5 ppl / 16.5 ppl (↓)
GSM8K LLaMA-2 7B / LLaMA-2 7B 4 epochs 8 × NVIDIA A100 40GB GPU 8 core / 8 core 8 × 27.4 GB / 8 × 39.8 GB 8.1 h / 6.7 h 39.8 acc / 41.9 acc (↑)

CIFAR100 ResNet-50 / ResNet-18 60 epochs 1 × NVIDIA A100 40GB GPU 1 core / 1 core 13.6 GB / 16.7 GB 0.7 h / 0.5 h 84.1 acc / 85.8 acc (↑)
ImageNet-1K ViT-L/16 / ViT-B/16 20K steps 4 × NVIDIA A100 40GB GPU 4 core / 4 core 4 × 17.5 GB / 4 × 23.1 GB 28.9 h / 18.7 h 85.2 acc / 86.0 acc (↑)

Ablation of Metrics in LOT Regularizer. We conduct experiments with different metrics for the
“imitability” measurement, such as L2 loss. However, we find that using KL-divergence achieves
better performance compared to L2 loss. The results of utilizing L2 loss for the LOT regularizer
with ViT-B/16 and ViT-L/16 on CIFAR-100 are presented in Table 13. These results show that
using L2 loss for the LOT regularizer also brings performance improvements, further indicating the
effectiveness of LOT regularization.

Table 13: Performance of using L2 loss for the LOT regularizer on CIFAR100.

Dataset Teacher Student Teacher-only LOT (KL-Divergence) LOT (L2)
CIFAR100 ViT-B/16 ViT-B/16 91.57 93.17 92.77
CIFAR100 ViT-B/16 ViT-L/16 91.57 93.25 92.94
CIFAR100 ViT-L/16 ViT-B/16 93.44 94.29 94.12
CIFAR100 ViT-L/16 ViT-L/16 93.44 94.18 94.05
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Introduction (Section 1) in this paper reflect the contributions
of our method. The strong results in our experiments further reflect our contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The potential limitation of LOT lies in the additional computational and
memory costs required for training the student models. However, we demonstrate that
LOT achieves better generalization with fewer training steps compared to Teacher-only
models and the flexibility in choosing student models can accommodate varying resource
constraints. We provide discussions in Section 3.5 and Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details of this paper is fully illustrated in Appendix D and
we make an extensive effort to ensure the reproducibility of the results in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code of this paper in the additional supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting and details are introduced in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All our main results are averaged over multiple runs and the error bar are
provided in our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources details are provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts of this paper is discussed in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release new models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly popular datasets and models and obtain the license of using
LLaMA models. We credit the license and term of use in the code in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include license in the code in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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