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ABSTRACT

Although attention-based Neural Machine Translation have achieved great suc-
cess, attention-mechanism cannot capture the entire meaning of the source sen-
tence because the attention mechanism generates a target word depending heavily
on the relevant parts of the source sentence. The report of earlier studies has in-
troduced a latent variable to capture the entire meaning of sentence and achieved
improvement on attention-based Neural Machine Translation. We follow this ap-
proach and we believe that the capturing meaning of sentence benefits from im-
age information because human beings understand the meaning of language not
only from textual information but also from perceptual information such as that
gained from vision. As described herein, we propose a neural machine transla-
tion model that introduces a continuous latent variable containing an underlying
semantic extracted from texts and images. Our model, which can be trained end-
to-end, requires image information only when training. Experiments conducted
with an English—German translation task show that our model outperforms over
the baseline.

1 INTRODUCTION

Neural machine translation (NMT) has achieved great success in recent years (Sutskever et al., 2014;
Bahdanau et al., 2015). In contrast to statistical machine translation, which requires huge phrase and
rule tables, NMT requires much less memory. However, the most standard model, NMT with at-
tention (Bahdanau et al., 2015) entails the shortcoming that the attention mechanism cannot capture
the entire meaning of a sentence because it generates a target word while depending heavily on
the relevant parts of the source sentence (Tu et al., 2016). To overcome this problem, Variational
Neural Machine Translation (VNMT), which outperforms NMT with attention introduces a latent
variable to capture the underlying semantic from source and target (Zhang et al., 2016). We follow
the motivation of VNMT, which is to capture underlying semantic of a source.

Image information is related to language. For example, we human beings understand the meaning
of language by linking perceptual information given by the surrounding environment and language
(Barsalou, 1999). Although it is natural and easy for humans, it is difficult for computers to un-
derstand different domain’s information integrally. Solving this difficult task might, however, bring
great improvements in natural language processing. Several researchers have attempted to link lan-
guage and images such as image captioning by Xu et al. (2015) or image generation from sentences
by Reed et al. (2016). They described the possibility of integral understanding of images and text. In
machine translation, we can expect an improvement using not only text information but also image
information because image information can bridge two languages.

As described herein, we propose the neural machine translation model which introduces a latent
variable containing an underlying semantic extracted from texts and images. Our model includes an
explicit latent variable z, which has underlying semantics extracted from text and images by intro-
ducing a Variational Autoencoder (VAE) (Kingma et al., 2014; Rezende et al., 2014). Our model,

*First two authors contributed equally.
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Figure 1: Architecture of Proposed Model.
Green dotted lines denote that 7r and encoded y are used only when training.

which can be trained end-to-end, requires image information only when training. As described
herein, we tackle the task with which one uses a parallel corpus and images in training, while using
a source corpus in translating. It is important to define the task in this manner because we rarely
have a corresponding image when we want to translate a sentence. During translation, our model
generates a semantic variable z from a source, integrates variable z into a decoder of neural machine
translation system, and then finally generates the translation. The difference between our model and
VNMT is that we use image information in addition to text information.

For experiments, we used Multi30k (Elliott et al., 2016), which includes images and the correspond-
ing parallel corpora of English and German. Our model outperforms the baseline with two evaluation
metrics: METEOR (Denkowski & Lavie, 2014) and BLEU (Papineni et al., 2002). Moreover, we
obtain some knowledge related to our model and Multi30k. Finally, we present some examples in
which our model either improved, or worsened, the result.

Our paper contributes to the neural machine translation research community in three ways.

e We present the first neural machine translation model to introduce a latent variable inferred
from image and text information. We also present the first translation task with which one
uses a parallel corpus and images in training, while using a source corpus in translating.

e Our translation model can generate more accurate translation by training with images, es-
pecially for short sentences.

e We present how the translation of source is changed by adding image information compared
to VNMT which does not use image information.

2 BACKGROUND

Our model is the extension of Variational Neural Machine Translation (VNMT) (Zhang et al., 2016).
Our model is also viewed as one of the multimodal translation models. In our model, VAE is used
to introduce a latent variable. We describe the background of our model in this section.

2.1 VARIATIONAL NEURAL MACHINE TRANSLATION

The VNMT translation model introduces a latent variable. This model’s architecture shown in Figure
1 excludes the arrow from 7r. This model involves three parts: encoder, inferrer, and decoder. In
the encoder, both the source and target are encoded by bidirectional-Recurrent Neural Networks
(bidirectional-RNN) and a semantic representation is generated. In the inferrer, a latent variable z is
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modeled from a semantic representation by introducing VAE. In the decoder, a latent variable z is
integrated in the Gated Recurrent Unit (GRU) decoder; also, a translation is generated.

Our model is followed by architecture, except that the image is also encoded to obtain a latent
variable z.

2.2 MULTIMODAL TRANSLATION

Multimodal Translation is the task with which one might one can use a parallel corpus and images.
The first papers to study multimodal translation are Elliott et al. (2015) and Hitschler & Riezler
(2016). It was selected as a shared task in Workshop of Machine Translation 2016 (WMT16'). Al-
though several studies have been conducted (Caglayan et al., 2016; Huang et al., 2016; Calixto et al.,
2016; Libovicky et al., 2016; Rodriguez Guasch & Costa-jussa, 2016; Shah et al., 2016), they do not
show great improvement, especially in neural machine translation (Specia et al., 2016). Here, we in-
troduce end-to-end neural network translation models like our model.

Caglayan et al. (2016) integrate an image into an NMT decoder. They simply put source context
vectors and image feature vectors extracted from ResNet-50’s ‘res4f relu’ layer (He et al., 2016)
into the decoder called multimodal conditional GRU. They demonstrate that their method does not
surpass the text-only baseline: NMT with attention.

Huang et al. (2016) integrate an image into a head of source words sequence. They extract prominent
objects from the image by Region-based Convolutional Neural Networks (R-CNN) (Girshick, 2015).
Objects are then converted to feature vectors by VGG-19 (Simonyan & Zisserman, 2014) and are
put into a head of source words sequence. They demonstrate that object extraction by R-CNN
contributes greatly to the improvement. This model achieved the highest METEOR score in NMT-
based models in WMT16, which we compare to our model in the experiment. We designate this
model as CMU.

Caglayan et al. (2016) argue that their proposed model did not achieve improvement because they
failed to benefit from both text and images. We assume that they failed to integrate text and images
because they simply put images and text into neural machine translation despite huge gap exists
between image information and text information. Our model, however, presents the possibility of
benefitting from images and text because text and images are projected to their common semantic
space so that the gap of images and text would be filled.

2.3 VARIATIONAL AUTO ENCODER

VAE was proposed in an earlier report of the literature Kingma et al. (2014); Rezende et al. (2014).
Given an observed variable x, VAE introduces a continuous latent variable z, with the assump-
tion that x is generated from z. VAE incorporates pg(x|z) and g4(z|x) into an end-to-end neural
network. The lower bound is shown below.

Lyvar = —DxL [q4(2]%)||pe(2)] + Eq, (z/x) [log pe(x|z)] < log ps(x) (1)

3 NEURAL MACHINE TRANSLATION WITH LATENT SEMANTIC OF IMAGE
AND TEXT

We propose a neural machine translation model which explicitly has a latent variable containing an
underlying semantic extracted from both text and image. This model can be seen as an extension of
VNMT by adding image information.

Our model can be drawn as a graphical model in Figure 3. Its lower bound is

L = —Dkr [q¢(z|x7 Yy, 7T)||p6(z|x)] + Eq¢(Z\X,y,7r) [long(Y|zv X)] s (2

where x,y, 7, z respectively denote the source, target, image and latent variable, and pg and g re-
spectively denote the prior distribution and the approximate posterior distribution. It is noteworthy in
Eq. (2) that we want to model p(z|x, y, 7), which is intractable. Therefore we model ¢4 (z|x,y, 7)

'http://www.statmt.org/wmt16/
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Figure 2: VNMT @ @

Figure 3: Our model

instead, and also model prior py(z|x) so that we can generate a translation from the source in testing.
Derivation of the formula is presented in the appendix.

We model all distributions in Eq. (2) by neural networks. Our model architecture is divisible into
three parts: 1) encoder, 2) inferrer, and 3) decoder.

3.1 ENCODER

In the encoder, the semantic representation h, is obtained from the image, source, and target. We
propose several methods to encode an image. We show how these methods affect the translation
result in the Experiment section. This representation is used in the inferrer. This section links to the
green part of Figure 1.

3.1.1 TEXT ENCODING

The source and target are encoded in the same way as Bahdanau et al. (2015). The source is con-
verted to a sequence of 1-of-k vector and is embedded to d.,,; dimensions. We designate it as the
source sequence. Then, a source sequence is put into bidirectional RNN. Representation h; is ob-

tained by concatenating h;and h; : h; = RNN(Hi_l, Eu,), h; = RNN(R-H, Ey,) h; = [ﬁi; }_Ii],

where E,,, is the embedded word in a source sentence, h; € R, and ﬁi, BZ € RdTh. It is conducted
through ¢ = 0 to % = T, where T} is the sequence length. GRU is implemented in bidirectional
RNN so that it can attain long-term dependence. Finally, we conduct mean-pooling to h; and obtain

. T . .
the source representation vector as hy = T% >~; 7 h;. The exact same process is applied to target to
obtain target representation hy.

3.1.2 IMAGE ENCODING AND SEMANTIC REPRESENTATION

We use Convolutional Neural Networks (CNN) to extract feature vectors from images. We propose
several ways of extracting image features.

Global (G) The image feature vector is extracted from the image using a CNN. With this method,
we use a feature vector in the certain layer as 7r. Then 7 is encoded to the image represen-
tation vector h; simply by affine transformation as

h, = Wym 4+ by where W, € Ré*dier e R (3)

Global and Objects (G+0) First we extract some prominent objects from images in some way.
Then, we obtain fc7 image feature vectors 7r from the original image and extracted objects
using a CNN. Therefore 7 takes a variable length. We handle 7 in two ways: average and
RNN encoder.

In average (G+0-AVG), we first obtain intermediate image representation vector h/. by
affine transformation in Eq. (3). Then, the average of h/ becomes the image representation

1
_ bl
- l

vector: h, , where [ is the length of h’ .
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In RNN encoder (G+O-RNN), we first obtain h’_ by affine transformation in Eq. (3). Then,
we encode h’_ in the same way as we encode text in Section 3.1.1 to obtain h,.

Global and Objects into source and target (G+O-TXT) Thereby, we first obtain h’/ by affine
transformation in Eq. (3). Then, we put sequential vector h/. into the head of the source
sequence and target sequence. In this case, we set d; to be the same dimension as de;,p. In
fact, the source sequence including h/; is only used to model g4 (z|x,y, 7). Context vector
c (Eq. (15)) and py(z|x) are computed by a source sequence that does not include h!.. We
encode the source sequence including h. as Section 3.1.1 to obtain h; and h,,. In this case,
h is not obtained. Image information is contained in hy and h,.

All representation vectors hy, h, and h are concatenated to obtain a semantic representation vector
as h, = [hy;hg;h,], where h, € Rée=2Xdntdx (in G+O-TXT: h, = [hy;h,], where h, €
R?=2%dn) Tt is an input of the multimodal variational neural inferrer.

3.2 INFERRER

We model the posterior ¢,4(z|x,y, ) using a neural network and also the prior py(z|x) by neural
network. This section links to the black and grey part of Figure 1.

3.2.1 NEURAL POSTERIOR APPROXIMATOR

Modeling the true posterior pg(z|x,y, ) is usually intractable. Therefore, we consider model-
ing of an approximate posterior g4(z|x,y, ) by introducing VAE. We assume that the posterior
¢4(z|x,y, ) has the following form:

q¢(Z|X,y77T) :N(Z;/,L(X,y,ﬂ'),U'(X,y,ﬂ')QI). (4)

The mean p and standard deviation o of the approximate posterior are the outputs of neural net-
works.

Starting from the variational neural encoder, a semantic representation vector h. is projected to
latent semantic space as

h, = g(WVh, + b)), (5)

where Wz(l) € Rd=x(de) b(zl) € Ré=, g(+) is an element-wise activation function, which we set as
tanh(-). Gaussian parameters of Eq. (4) are obtained through linear regression as

p=W,h, +b, logo® = W,h, +b,, (©6)

where p,logo? € R%.

3.2.2 NEURAL PRIOR MODEL
We model the prior distribution py(z|x) as follows:
po(zlx) = N(zp'(x),0(x)’1).
(7

p’ and o’ are generated in the same way as that presented in Section 3.2.1, except for the absence
of y and 7 as inputs. Because of the absence of representation vectors, the dimensions of weight in

equation (5) for prior model are Wz(l) € R=xdn bz(l) € R?. We use a reparameterization trick
to obtain a representation of latent variable z: h, = p + o€, € ~ N(0, I). During translation, h, is
set as the mean of py(z|x). Then, h/, is projected onto the target space as

h, = gWPn, +b?)  where h/, € R%. (8)

h/ is then integrated into the neural machine translation’s decoder.
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3.3 DECODER
This section links to the orange part of Figure 1. Given the source sentence x and the latent variable
z, decoder defines the probability over translation y as

T
plylz.x) = [ p(y;ly<j,z%). ©)

j=1

How we define the probability over translation y is fundamentally the same as VNMT, except for
using conditional GRU instead of GRU. Conditional GRU involves two GRUs and an attention
mechanism. We integrate a latent variable z into the second GRU. We describe it in the appendix.

3.4 MODEL TRAINING

Monte Carlo sampling method is used to approximate the expectation over the posterior Eq. (2),

Eq, (zlx,y,m) ~ 1 Zlel log pe (y|x, hg)), where L is the number of samplings. The training objec-
tive is defined as

L(0,¢) = —Dxu [go(z[x,y, )] |po (2

h \

L T
ZZ 0gpo(y;ly<jx,h{)), (10)

where h, = p+ o - €, € ~ N(0, I). The first term, KL divergence, can be computed analytically
and is differentiable because both distributions are Gaussian. The second term is also differentiable.
We set L as 1. Overall, the objective L is differentiable. Therefore, we can optimize the parameter
0 and variational parameter ¢ using gradient ascent techniques.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We used Multi30k (Elliott et al., 2016) as the dataset. Multi30k have an English description and a
German description for each corresponding image. We handle 29,000 pairs as training data, 1,014
pairs as validation data, and 1,000 pairs as test data.

Before training, punctuation normalization and lowercase are applied to both English and German
sentences by Moses (Koehn et al., 2007) scripts’>. Compound-word splitting is conducted only to
German sentences using Sennrich et al. (2016)°. Then we tokenize sentences’ and use them as
training data. We produce vocabulary dictionaries from training data. The vocabulary becomes
10,211 words for English and 13,180 words for German after compound-word splitting.

Image features are extracted using VGG-19 CNN (Simonyan & Zisserman, 2014). We use 4096-
dimensional fc7 features. To extract the object’s region, we use Fast R-CNN (Girshick, 2015). Fast
R-CNN is trained on ImageNet and MSCOCO dataset *.

All weights are initialized by A (0, 0.01T). We use the adadelta algorithm as an optimization method.
The hyperparameters used in the experiment are presented in the Appendix. All models are trained
with early stopping. When training, VNMT is fine-tuned by NMT model and our models are fine-
tuned using VNMT. When translating, we use beam-search. The beam-size is set as 12. Before
evaluation, we restore split words to the original state and de-tokenize? generated sentences.

We implemented proposed models based on di4mt>. Actually, dl4mt is fundamentally the same
model as Bahdanau et al. (2015), except that its decoder employs conditional GRU®. We imple-
mented VNMT also with conditional GRU so small difference exists between our implementation

*https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/{ normalize-punctuation, low-
ercase, tokenizer, detokenizer}.perl

3https://github.com/rsennrich/subword-nmt

*https://github.com/rbgirshick/fast-rcnn/tree/coco

Shttps://github.com/nyu-dl/dl4mt-tutorial

SThe architecture is described at https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
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and originally proposed VNMT which employs normal GRU as a decoder. We evaluated results
based on METEOR and BLUE using MultEval ’.

4.2 RESULT

Table 1 presents experiment results. It shows that our models outperforms the baseline in both
METEOR and BLEU. Figure 4 shows the plot of METEOR score of baselines and our models
models in validation. Figure 5 shows the plot of METEOR score and the source sentence length.

Table 1: Evaluation Result on Multi30k dataset (English—-German). The scores in parentheses are
computed with ‘-norm’ parameter. NMT is dl4mt’s NMT (in the session3 directory). The score of
the CMU is from (Huang et al., 2016).

METEOR 1 BLEU 1
val test val test
NMT 51.5(55.8) 50.5(54.9) | 35.8 33.1
VNMT 52.2(56.3) 51.1(55.3) | 37.0 349
CMU - () - (541 - -
Our Model G 50.6 (54.8) 52.4(56.0) | 34.5 36.5
G+0O-AVG | 51.8(55.8) 51.8(55.8) | 357 358
G+O-RNN | 51.8 (56.1) 51.0(55.4) | 359 349
G+O-TXT | 52.6 (56.8) 51.7(56.0) | 36.6 35.1

4.3 QUANTITATIVE ANALYSIS

Table 1 shows that G scores the best in proposed models. In G, we simply put the feature of the
original image. Actually, proposed model does not benefit from R-CNN, presumably because we
can not handle sequences of image features very well. For example, G+O-AVG uses the average of
multiple image features, but it only makes the original image information unnecessarily confusing.

Figure 4 shows that G and G+0O-AVG outperforms VNMT almost every time, but all model scores
increase suddenly in the 17,000 iteration validation. We have no explanation for this behavior.
Figure 4 also shows that G and G+O-AVG scores fluctuate more moderately than others. We state
that G and G+O-AVG gain stability by adding image information. When one observes the difference
between the test score and the validation score for each model, baseline scores decrease more than
proposed model scores. Especially, the G score increases in the test, simply because proposed
models produce a better METEOR score on average, as shown in Figure 4.

Figure 5 shows that G and G+O-AVG make more improvements on baselines in short sentences
than in long sentences, presumably because ¢,(z|x,y,7) can model z well when a sentence is
short. Image features always have the same dimension, but underlying semantics of the image and
text differ. We infer that when the sentence is short, image feature representation can afford to
approximate the underlying semantic, but when a sentence is long, image feature representation can
not approximate the underlying semantic.

Multi30k easily becomes overfitted, as shown in Figure 8 and 9 in the appendix. This is presumably
because 1) Multi30k is the descriptions of image, making the sentences short and simple, and 2)
Multi30k has 29,000 sentences, which could be insufficient. In the appendix, we show how the
parameter setting affects the score. One can see that decay-c has a strong effect. Huang et al.
(2016) states that their proposed model outperforms the baseline (NMT), but we do not have that
observation. It can be assumed that their baseline parameters are not well tuned.

4.4 QUALITATIVE ANALYSIS

We presented the top 30 sentences, which make the largest METEOR score difference between G
and VNMT, to native speakers of German and get the overall comments. They were not informed of

"https://github.com/jhclark/multeval, we use meteorl.5 instead of meteorl.4, which is the default of
MultEval.
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Figure 4: METEOR score to the validation
data which are calculated for each 1000 itera-
tions.

Figure 5: METEOR score on different groups
of the source sentence length.

our model training with image in addition to text. These comments are summarized into two general
remarks. One is that G translates the meaning of the source material more accurately than VNMT.
The other is that our model has more grammatical errors as prepositions’ mistakes or missing verbs
compared to VNMT. We assume these two remarks are reasonable because G is trained with images
which mainly have a representation of noun rather than verb, therefore can capture the meaning of
materials in sentence.

Figure 6 presents the translation results and the corresponding image which G translates more ac-
curately than VNMT in METEOR. Figure 7 presents the translation results and the corresponding
image which G translates less accurately than VNMT in METEOR. Again, we note that our model
does not use image during translating. In Figure 6, G translates ”a white and black dog” correctly
while VNMT translates it incorrectly implying ~’a white dog and a black dog”. We assume that G
correctly translates the source because G captures the meaning of material in the source. In Figure
7, G incorrectly translates the source. Its translation result is missing the preposition meaning “at”,
which is hardly represented in image.We present more translation examples in appendix.

Source a woman holding a white and black dog.

Truth eine frau hilt einen weill-schwarzen hund.
VNMT eine frau hilt einen weiflen und schwarzen hund.
Our Model (G) | eine frau hilt einen wei3-schwarzen hund.

Figure 6: Translation 1
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Source a group of people running a marathon in the winter.

Truth eine gruppe von menschen lduft bei einem marathon im winter.
VNMT eine gruppe von menschen lauft bei einem marathon im winter.
Our Model (G) | eine gruppe leute lduft einen marathon im winter an.

Figure 7: Translation 2

5 CONCLUSION

As described herein, we proposed the neural machine translation model that explicitly has a latent
variable that includes underlying semantics extracted from both text and images. Our model outper-
forms the baseline in both METEOR and BLEU scores. Experiments and analysis present that our
model can generate more accurate translation for short sentences. In qualitative analysis, we present
that our model can translate nouns accurately while our model make grammatical errors.
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A DERIVATION OF LOWER BOUNDS

The lower bound of our model can be derived as follows:

p(ylx) = /p(y,ZIX)dZ
— [ plalx)p(ylzx)iz

zZ|X Z,X
logp(ylx) = IOg/Q(Z‘XaYaW)de
q(zlx,y,m)
> [ atebe,y,m)log HEIYIEX)
Q(Z|X,y7ﬂ')
p(z]x) >
= ZX, 777 lO 7+10 Z,X dz
/q(l y )( 8 J(zix.y) g p(y|z, x)
~Dxr, [q(z]x, y, ®)||p(2]x)] + Eq(six.y.x) [log p(y|z, x)]
L

B CoONDITIONAL GRU

Conditional GRU is implemented in d/4mt. Caglayan et al. (2016) extends Conditional GRU to
make it capable of receiving image information as input. The first GRU computes intermediate
representation s’ as

s;:(1—0;)®§;+0;-®sj71 1D
s = tanh(W'E [y;_1] + 1} © (U's;j_1)) (12)
r; = J(WT/E [yjfl] + U;ijl) (13)
o, =c(W,Ey;1] +Uls;j-1) (14)

where E € Réemv*dt signifies the target word embedding, s} € R% denotes the hidden state,
rg- € R and 0;- € R respectively represent the reset and update gate activations. d; stands for the
dimension of target; the unique number of target words. [W/, W/, W!] € Rén>*dems [ U! U!] €
R Xdn are the parameters to be learned.

Context vector c; is obtained as

Ty
C; = tanh Z Oéijhi (15)
i=1
exp(eij)
O Bty e— (16)
>owly expler;)
eij = Uagstanh(Weasthy + Waus)) a7

where [Uait, Weatt, Wat] € Rr*dn are the parameters to be learned.

The second GRU computes s; from s, ¢; and hy, as

sj=(1-0})Os; +0; O8] (18)

s; = tanh(Wc; +r; © (Us}) + Vhy) (19)
r; =c(W,c; + Urs; +V,h!) (20)

0j = o(W,c; + Uss); + V,hy) (2D

where s; € R4 stands for the hidden state, r; € R4 and 0; € R4 are the reset and update

gate activations. [W,W,.,W,] € R&>dn [U U, U,] € R%w>*dn [V V, V,] € R¥*2 are the

11
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parameters to be learned. We introduce h/, obtained from a latent variable here so that a latent
variable can affect the representation s; through GRU units.

Finally, the probability of y is computed as

u; = Lutanh(E [Yj—l] + LSSj + LICJ') (22)
P(y,ly;j-1,8;j,¢;) = Softmax(u;) (23)

where L,, € R¥>demv [, ¢ RdemvXdn and [, € Rm>>dn are the parameters to be learned.

C TRAINING DETAIL

C.1 HYPERPARAMETERS

Table 2 presents parameters that we use in the experiments.

Table 2: Hyperparameters. The name is the variable name of dl4mt except for dimv and dim_pic,
which are the dimension of the latent variables and image embeddings. We set dim (number of
LSTM unit size) and dim_word (dimensions of word embeddings) 256, batchsize 32, maxlen (max
output length) 50 and Ir (learning rate) 1.0 for all models. decay-c is weights on L2 regularization.

dimv | dim_pic | decay-c
NMT - 256 0.001
VNMT 256 | 256 0.0005
Our Model G 256 | 512 0.001
G+0O-AVG | 256 | 256 0.0005
G+O-RNN | 256 | 256 0.0005
G+O-TXT | 256 | 256 0.0005

We found that Multi30k dataset is easy to overfit. Figure 8 and Figure 9 present training cost and val-
idation METEOR score graph of the two experimental settings of the NMT model. Table 3 presents
the hyperparameters which were used in the experiments. Large decay-c ans small batchsize give the
better METEOR scores in the end. Training is stopped if there is no validation cost improvements
over the last 10 validations.

Training cost

Validation METEOR

cost
METEOR

0
0 10000 20000 30000 40000 50000 60000 70000 0 10 20 30 40 50 60 70
iteration iteration (x 1000)

Figure 8: NMT Training Cost Figure 9: NMT Validation METEOR score

Table 3: Hyperparameters using the experiments in the Figure 8 and 9

\ dim dimword Ir  decay-c maxlen batchsie
1]256 256 1.0 0.0005 30 128
2 | 256 256 1.0 0.001 50 32

12
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Figure 10 presents the English word length histogram of the Multi30k test dataset. Most sentences
in the Multi30k are less than 20 words. We assume that this is one of the reasons why Multi30k is

easy to overfit.

10 15 20 25
Source Sentence Word Length

Figure 10: Word Length Histogram of the Multi30k Test Dataset

C.2 COST GRAPH

Figure 11 and 12 present the training cost and validation cost graph of each models. Please note that

VNMT fine-tuned NMT, and other models fine-tuned VNMT.

NMT

— cost

0 10000 20000 30000 40000 50000 _ 60000 70
iteration

(a) NMT

G+0-AVG

i
5000 10000
iter

(d) G+O-AVG

15000 20000 25

C.3 TRANSLATION EXAMPLES

We present some selected translations from VNMT and our proposed model (G). As of translation
3 to 5 our model give the better METEOR scores than VNMT and as of translation 6 to 8 VNMT

00

VNMT

5000 10000 15000 20000
iteration

(b) VNMT

G+O-RNN

25000

30000

5000 10000 15000
iteration

(¢) G+O-RNN

give the better METEOR scores than our models.
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Figure 11: Training cost
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G+O-TXT

20000
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NMT VNMT G
fao ) B
30 30 F—
(a) NMT (b) VNMT ©) G
G+0-AVG G+0-RNN G+O-TXT
a0 ) )
F— T 3D\N\’—’\/\/\_'\ JO\N\W
(d) G+O-AVG (e) G+O-RNN (f) G+O-TXT

Figure 12: Validation cost

Source two boys inside a fence jump in the air while holding a basketball.

Truth zwei jungen innerhalb eines zaunes springen in die luft und halten dabei einen basketball.
VNMT zwel jungen in einem zaun springen in die luft, wahrend sie einen basketball hailt.

Our Model (G) | zwei jungen in einem zaun springen in die luft und halten dabei einen basketball.

Figure 13: Translation 3
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Source

a dog runs through the grass towards the camera.

Truth

ein hund rennt durch das gras auf die kamera zu.

VNMT

ein hund rennt durch das gras in die kamera.

Our Model (G) | ein hund rennt durch das gras auf die kamera zu.

Figure 14: Translation 4

a couple of men walking on a public city street.

Source

Truth einige manner gehen auf einer 6ffentlichen strafle in der stadt.
VNMT ein paar manner gehen auf einer 6ffentlichen stadtstraBe.

Our Model (G) | ein paar minner gehen auf einer 6ffentlichen strafe in der stadt.

Figure 15: Translation 5
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.‘—E T

POST

Source a bunch of police officers are standing outside a bus.
Truth eine gruppe von polizisten steht vor einem bus.
VNMT eine gruppe von polizisten steht vor einem bus.

Our Model (G) | mehrere polizisten stehen vor einem bus.

Figure 16: Translation 6

Source a man is walking down the sidewalk next to a street.
Truth ein mann geht neben einer strale den gehweg entlang.
VNMT ein mann geht neben einer stral3e den biirgersteig entlang.
Our Model (G) | ein mann geht auf dem biirgersteig an einer straf3e.

Figure 17: Translation 7
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& Y el

Source a blond-haired woman wearing a blue shirt unwraps a hat.

Truth eine blonde frau in einem blauen t-shirt packt eine miitze aus.
VNMT eine blonde frau in einem blauen t-shirt wirft einen hut.
Our Model (G) | eine blonde frau triagt ein blaues hemd und einen hut.

Figure 18: Translation 8
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