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ABSTRACT

In this work, we propose the polynomial convolutional neural network (PolyCNN),
as a new design of a weight-learning efficient variant of the traditional CNN. The
biggest advantage of the PolyCNN is that at each convolutional layer, only one
convolutional filter is needed for learning the weights, which we call the seed
filter, and all the other convolutional filters are the polynomial transformations
of the seed filter, which is termed as an early fan-out. Alternatively, we can also
perform late fan-out on the seed filter response to create the number of response
maps needed to be input into the next layer. Both early and late fan-out allow the
PolyCNN to learn only one convolutional filter at each layer, which can dramatically
reduce the model complexity by saving 10× to 50× parameters during learning.
While being efficient during both training and testing, the PolyCNN does not
suffer performance due to the non-linear polynomial expansion which translates to
richer representational power within the convolutional layers. By allowing direct
control over model complexity, PolyCNN provides a flexible trade-off between
performance and efficiency. We have verified the on-par performance between
the proposed PolyCNN and the standard CNN on several visual datasets, such as
MNIST, CIFAR-10, SVHN, and ImageNet.

1 INTRODUCTION

Applications of deep convolutional neural networks (CNNs) have been overwhelmingly successful in
all aspect of perception tasks, ranging from computer vision to speech recognition and understanding,
from biomedical data analysis to quantum physics. In the past couple of years, we have seen the
evolution of many successful CNN architectures such as AlexNet (Krizhevsky et al., 2012), VGG
(Simonyan & Zisserman, 2015), Inception (Szegedy et al., 2015), and ResNet (He et al., 2016b;a).
However, training these networks end-to-end with fully learnable convolutional filters (as is standard
practice) is still very computationally expensive and is prone to over-fitting due to the large number
of parameters. To alleviate this issue, we have come to think about this question: can we arrive at a
more efficient CNN in terms of learnable parameters, without sacrificing the high CNN performance?

In this paper, we present an alternative approach to reducing the computational complexity of CNNs
while performing as well as standard CNNs. We introduce the polynomial convolutional neural
networks (PolyCNN). The core idea behind the PolyCNN is that at each convolutional layer, only
one convolutional filter is needed for learning the weights, which we call the seed filter, and all the
other convolutional filters are the polynomial transformations of the seed filter, which is termed as an
early fan-out. Alternatively, we could also perform late fan-out on the seed filter response to create
the number of response maps desired to be input into the next layer. Both early and late fan-out
allow the PolyCNN to learn only one convolutional filter at each layer, which can dramatically reduce
the model complexity. Parameter savings of at least 10×, 26×, 50×, etc. can be realized during the
learning stage depending on the spatial dimensions of the convolutional filters (3× 3, 5× 5, 7× 7
etc. sized filters respectively). While being efficient during both training and testing, the PolyCNN
does not suffer performance due to the non-linear polynomial expansion which translates to richer
representational power within the convolutional layers. We have verified the on-par performance
between the proposed PolyCNN and the standard CNN on several visual datasets, such as MNIST,
CIFAR-10, SVHN, and ImageNet.
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Figure 1: Basic module in (a) CNN and (b-e) PolyCNN (both early fan-out and late fan-out). Wl and Wl

(encircled in red dashed line) are the learnable weights for CNN and PolyCNN respectively. (b-c) Early fan-out
PolyCNN, single-seed and multi-seed cases. (d-e) Late fan-out PolyCNN, single-seed and multi-seed cases.
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The corresponding filter structure is shown in Figure 6.10.

6.4.1 Derivation of the solution

The objective is to find the filters hi(m, n) such that structure shown inFigure 6.10

optimizes a performance criterion of interest. We have shown earlier that, for

correlation purposes, a useful approach is to maximize the OT performance

criterion

J hð Þ ¼ mþhj j2

hþBh
(6:97)

where h is the filter vector in the frequency domain, B is a diagonal matrix

related to a spectral quantity, and m is the mean image vector, also in the

frequency domain. For example, MACH filter design involves maximizing the

metric in Eq. (6.66). The polynomial correlation filter can also be designed in a

similar way. Of course, the premise is that a higher-order (nonlinear) solution

will yield higher values of J(h) than the corresponding linear solutions.

For simplicity, we will firstly discuss the derivation of a second-order filter.

In this case, the polynomial has only two terms and the output is given by

g m; nð Þ ¼ x m; nð Þ � h1 m; nð Þ þ x2 m; nð Þ � h2 m; nð Þ (6:98)

The expression for J(h) is obtained by deriving the numerator and the denomi-

nator of Eq. (6.97). In vector notation, the average intensity of the correlation

peak for a second-order filter is given as follows:

average peakj j2¼ hþ1 m
1



 

2þ hþ2 m
2



 

2 þ 2 hþ1 m
1m2þh2 (6:99)

where h1 and h2 are vector versions of the filters associated with the first and

second terms of the polynomial, and m
k is the mean of the training images xi,

1� i�L, raised to the kth power. For illustration purposes, the denominator
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Figure 6.10 Nth-order polynomial correlation filter

232 Advanced correlation filters

Figure 2: (L) Polynomial expansion of the seed filter as well as the seed filter response map, with exponent
parameters β1, . . . , βi, (R) Image taken from Vijaya Kumar et al. (2005): polynomial correlation filter.
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2 PROPOSED METHOD

2.1 POLYNOMIAL CONVOLUTIONAL NEURAL NETWORKS

Two decades ago, Mahalanobis & Vijaya Kumar (1997) generalized the traditional correlation
filter and created the polynomial correlation filter (PCF), whose fundamental difference is that the
correlation output from a PCF is a nonlinear function of the input. As shown in Figure 2(R), the input
image x undergoes a set of point-wise nonlinear transformation (polynomial) for augmenting the
input channels. Based on some pre-defined objective function, usually in terms of simultaneously
maximizing average correlation peak and minimizing some correlation filter performance criterion
such as average similarity measure (ASM) (Mahalanobis et al., 1994), output noise variance (ONV)
(Vijaya Kumar et al., 2005), the average correlation energy (ACE) (Vijaya Kumar et al., 2005), or any
combination thereof, the filters h1,h2, . . . ,hN can be solved in closed-form (Mahalanobis & Vijaya
Kumar, 1997; Vijaya Kumar et al., 2005; Alkanhal & Vijaya Kumar, 2003).

We draw inspiration from the design principles of the polynomial correlation filter and propose the
polynomial convolutional neural network (PolyCNN) as a weight-learning efficient variant of the
traditional convolutional neural networks. The core idea of PolyCNN is that at each convolutional
layer, only one convolutional filter (seed filter) needs to be learned, and we can augment other filters
by taking point-wise polynomials of the seed filter. The weights of these augmented filters need not to
be updated during the network training. When convolved with the input data, the learnable seed filter
and k non-learnable augmented filters result in (k + 1) response maps. We call this procedure: early
fan-out. Similarly, one can instead fan-out the response map from the seed filter to create (k + 1)
response maps for the subsequent layers. We call this procedure: late fan-out. The details of both
early and late fan-out are shown in the following sections. The PolyCNN pipelines are depicted in
Figure 1 with distinctions between early and late fan-out, as well as single-seed vs. multi-seed cases.
Figure 2(L) shows the polynomial expansion of seed filters as well as seed filter response maps.

2.2 EARLY FAN-OUT: FILTER WEIGHTS

At any given layer, given the seed weightswi for that layer, we generate many new filter weights. The
weights are generated via a non-linear transformation v = f(wi) of the weights. The convolutional
outputs are computed as follows (1-D signals for simplicity):

y =

C∑

j=1

f
(
wj
i

)
∗ xj =⇒ y[`] =

C∑

j=1

∑

k

xj [`− k]f
(
wji [k]

)
(1)

where xj is the jth channel of the input image and wj
i is the jth channel of the ith filter. During the

forward pass weights are generated from the seed convolutional kernel and are then convolved with
the inputs i.e.,

z[i] = f(w[i]) = sign(w[i])|w[i]|α (2)

v[i] =
z[i]− 1

n

∑
i z[i](∑

i

(
z[i]− 1

n

∑
i z[i]

)2) 1
2

(3)

where we normalize the response maps to prevent the responses from vanishing or exploding and the
normalized response map is now called v. f(·) is a non-linear function that operates on each element
of w. Backpropagating through this filter transformation necessitates the computation of ∂l

∂w and ∂l
∂x .

∂l

∂w[i]
=
∑

j

∂l

∂y[j]

∂y[j]

∂w[i]
=
∑

j

∂l

∂y[j]

∂y[j]

∂f(w[i])

∂f(w[i])

∂w[i]
=
∑

j

∂l

∂y[j]
x[j − i]f ′(w[i]) (4)

∂l

∂w
=

(
∂l

∂y
∗ x
)
� f ′(w) (5)
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Plug in the normalized response map, we have:

∂v[i]

∂w[i]
=
∂v[i]

∂z[i]

∂z[i]

∂w[i]
(6)

∂v[i]

∂z[i]
=

1− 1
n(∑

i

(
z[i]− 1

n

∑
i z[i]

)2) 1
2

−
(
1− 1

n

) (
z[i]− 1

n

∑
j z[j]

)

(∑
i

(
z[i]− 1

n

∑
i z[i]

)2) 3
2

(7)

∂z[i]

∂w[i]
= sign (w[i]) jw[i]j−1 (8)

Similarly, we can compute the gradient with respect to input x as follows:

∂l

∂x[i]
=
∑

j

∂l

∂y[j]

∂y[j]

∂x[i]
=
∑

j

∂l

∂y[j]
f(w[j − i]) (9)

∂l

∂x
=

∂l

∂y
∗ f(w) (10)

2.3 LATE FAN-OUT: RESPONSE MAPS

At any given layer, we compute the new feature maps from the seed feature maps via non-linear
transformations of the feature maps. The forward pass for this layer involves the application of the
following non-linear function s[i] = f(x[i]),

s[i] = f(x[i]) = sign(x[i])|x[i]|α (11)

t[i] =
s[i]− 1

n

∑
i s[i](∑

i

(
s[i]− 1

n

∑
i s[i]

)2) 1
2

(12)

where we normalize the response maps to prevent the responses from vanishing or exploding and
the normalized response map is now called t. Backpropagating through such a transformation of the
response maps requires the computation of ∂l

∂x .

∂l

∂x[i]
=

∂l

∂t[i]

∂t[i]

∂s[i]

∂s[i]

∂x[i]
(13)

∂t[i]

∂s[i]
=

1− 1
n(∑

i

(
s[i]− 1

n

∑
i s[i]

)2) 1
2

−
(
1− 1
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) (
s[i]− 1

n

∑
j s[j]

)

(∑
i

(
s[i]− 1

n

∑
i s[i]

)2) 3
2

(14)

∂s[i]

∂x[i]
= sign (x[i]) jx[i]j−1 (15)

2.4 DESIGN OF THE BASIC POLYCNN MODULE

The core idea of the PolyCNN1 is to restrict the network to learn only one (or a few) convolutional
filter at each layer, and through polynomial transformations we can augment the convolutional filters,
or the response maps. The gist is that the augmented filters do not need to be updated or learned
during the network back-propagation. As shown in Figure 1, the basic module of PolyCNN (early
fan-out, single-seed) starts with just one learnable convolutional filterWl, which we call the seed
filter. If we desire m filters in total for one layer, the remaining m − 1 filters are non-learnable
and are the polynomial transformation of the seed filterWl. The input image xl is filtered by these
convolutional filters and becomes m response maps, which are then passed through a non-linear
activation gate, such as ReLU, and become m feature maps. Optionally, these m feature maps can
be further lineally combined using m learnable weights, which is essentially another convolution
operation with filters of size 1× 1.

1In this paper we assume convolutional filters do not have bias terms.
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Compared to the CNN module under the same structure (with 1× 1 convolutions), the number of
learnable parameters is significantly smaller in PolyCNN. Let us assume that the number of input
and output channels are p and q. Therefore, the size of each 3D filter in both CNN and PolyCNN is
p ·h ·w, where h and w are the spatial dimensions of the filter, and there are m such filters. The 1× 1
convolutions act on the m filters and create the q-channel output. For standard CNN, the number
of learnable weights is p · h · w · m + m · q. For PolyCNN, the number of learnable weights is
p · h · w · 1 +m · q. For simplicity let us assume p = q, which is usually the case for multi-layer
CNN architecture. Then we have the parameter saving ratio:

τ =
# parameters in CNN

# parameters in PolyCNN
=
p · h · w ·m+m · q
p · h · w · 1 +m · q =

h · w ·m+m

h · w +m
(16)

and when the spatial filter size h = w = 3 and the number of convolutional filters desired for each
layer m � 32, we have the parameter saving ratio τ = 10m

m+9 ≈ 10. Similarly for spatial filter
size h = w = 5 and m � 52, the parameter saving ratio τ = 26m

m+25 ≈ 26. For spatial filter size
h = w = 7 and m� 72, the parameter saving ratio τ = 50m

m+49 ≈ 50.

If we do not include the 1× 1 convolutions for both standard CNN and PolyCNN, and thus make
m = q = p, readers can verify that the parameter saving ratio τ becomes m. Numerically, PolyCNN
saves around 10×, 26×, and 50× parameters during learning for 3×3, 5×5, and 7×7 convolutional
filters respectively. The aforementioned calculation also applies to late fan-out of the PolyCNN.

2.5 TRAINING OF THE POLYCNN

The training of the PolyCNN is quite straightforward, where the back-propagation is the same for
the learnable weights and the augmented weights that do not update. Gradients get propagated
through the polynomial augmented filters just like they would with learnable filters. This is similar to
propagating gradients through layers without learnable parameters e.g., ReLU, Max Pooling etc.).
However, we do not compute the gradient with respect to the fixed filters nor update them during the
training process.

The non-learnable filter banks (tensor) of size p× h× w × (m− 1) (assuming a total of m filters in
each layer) in the PolyCNN can be generated by taking polynomial transformations from the seed
filter, by raising to some exponents, which can either be integer exponents, or fractional exponents
that are randomly sampled from a distribution. Strictly speaking, to qualify for polynomials, only
non-negative integer powers are allowed. In this work, without violating the forward and backward
pass derivation, we allow the exponents to take negative numbers (relating to Laurent series), and
even fractional numbers (relating to Puiseux series).

3 TOWARDS A GENERAL CONVOLUTIONAL LAYER

In this section, we will first analyze the PolyCNN layer and how the early fan-out and late fan-out
can very well approximate the standard convolutional layer. Then, we will extend the formulation to
a generalized convolutional layer representation.

3.1 UNDERSTANDING POLYCNN LAYER

At layer l, let xπ ∈ R(p·h·w)×1 be a vectorized single patch from the p-channel input maps at location
π, where h and w are the spatial sizes of the convolutional filter. Letw ∈ R(p·h·w)×1 be a vectorized
single convolution filter from the convolutional filter tensorW ∈ Rp×h×w×m which contains a total
of m fan-out convolutional filters at layer l. We drop the layer subscription l for brevity.

In a standard CNN, this patch xπ is taken dot-product with (projected onto) the filterw, followed by
the non-linear activation resulting in a single output feature value dπ , at the corresponding location π
on the feature map. Similarly, each value of the output feature map is a direct result of convolving the
entire input map x with a convolutional filter w. This microscopic process can be expressed as:

dπ = σrelu(w
>xπ) (17)

Without loss of generality, we assume single-seed PolyCNN case for the following analysis. For an
early fan-out PolyCNN layer, a single seed filter wS is expanded into a set of m convolutional filters
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W ∈ Rm×p×h×w where wi = w
◦βi

S , and the power terms β1, β2, . . . , βm are pre-defined and are
not updated during training. The ◦ is again the Hadamard power.

The corresponding output feature map value dearlyπ for early fan-out PolyCNN layer is a linear
combination of multiple elements from the intermediate response maps (implemented as 1 × 1
convolution). Each slice of this response map is obtained by convolving the input map x with
W , followed by a non-linear activation. The corresponding output feature map value dearlyπ is
thus obtained by linearly combining the m response maps via 1 × 1 convolution with parameters
α1, α2, . . . , αm. This entire process can be expressed as:

dearlyπ = σrelu(Wxπ)
>

︸ ︷︷ ︸
1×m

α︸︷︷︸
m×1

= c>reluα (18)

whereW is now a 2D matrix of size m× (p · h · w) with m filters vec(wi) stacked as rows, with a
slight abuse of notation. α = [α1, . . . , αm]> ∈ Rm×1. Comparing Equation 17 and 18, we consider
the following two cases (i) dπ = 0: since crelu = σrelu(Wxπ) ≥ 0, a vector α ∈ Rm×1 always
exists such that dearlyπ = dπ. However, when (ii) dπ > 0: it is obvious that the approximation does
not hold when crelu = 0. Therefore, under the mild assumption that crelu is not an all-zero vector,
the approximation dearlyπ ≈ dπ will hold.

For the late fan-out PolyCNN layer, a single response map is a direct result of convolving the input
map x with the seed convolutional filterwS . Then, we obtain a set of m response maps by expanding
the response map with Hadamard power coefficients β1, β2, . . . , βm which are pre-defined and not
updated during training, just like in the early fan-out case. The corresponding output feature map
value dlateπ is also a linear combination of the corresponding elements from the m response maps via
1× 1 convolution with parameters α1, α2, . . . , αm. This process follows:

dlateπ = σrelu



(w>S xπ)

◦β1

(w>S xπ)
◦β2

· · ·
(w>S xπ)

◦βm




>

︸ ︷︷ ︸
1×m

α︸︷︷︸
m×1

= σrelu



φβ1

(wS)
>φβ1

(xπ)
φβ2

(wS)
>φβ2

(xπ)
· · ·

φβm
(wS)

>φβm
(xπ)




>

α = c>reluα (19)

where φβi(·) is the point-wise polynomial expansion with Hadamard power βi. With similar reasoning
and the mild assumption that crelu is not an all-zero vector, the approximation dlateπ ≈ dπ will hold.

3.2 GENERAL CONVOLUTIONAL LAYER

The formulation of PolyCNN discussed in the previous sections has facilitated the forming of a
general convolution layer. To simplify the notation, we use 1D convolution as an example. The idea
can be extended to 2D and higher dimensional convolution as well. Here is a description of a general
convolutional layer:

y =

K∑

k=1

L∑

l=1

αklσ
(
φk(w) ∗ φ′

l(x)
)

(20)

where φk(·) and φl(·) are kernel functions, σ(·) is a non-linearity and αkl are linear weights. If
both φk(·) and φl(·) are linear functions then the expression reduces to a module consisting of
convolutional layer, non-linear activation and 1 × 1 convolutions. Under this general setting, the
learnable parameters are α and w. Setting the parameters w to fixed sparse binary values would
allow us to arrive a general version of local binary CNN (Juefei-Xu et al., 2017). Now we consider
some special cases. If φk(·) is a linear function, then the expression reduces to:

y =

L∑

l=1

αlσ
(
w ∗ φ′

l(x)
)

(21)

Similarly if φl(·) is a linear function, then the expression reduces to:

y =

K∑

k=1

αkσ (φk(w) ∗ x) (22)
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At location π of the input x, the convolutions can be reduced to:

y[π] =

K∑

k=1

L∑

l=1

αklσ
(
φk(w)>φ

′

l(xπ)
)
=

K∑

k=1

L∑

l=1

αklσ (Kkl(w,xπ)) (23)

where Kkl is a base kernel function defined between w and image patch xπ at the π location. The
base kernel can take many forms, including polynomials, random Fourier features, Gaussian radial
basis functions, etc., that adhere to the Mercer’s theorem (Schölkopf et al., 2002). The weights
αkl can be learned via 1× 1 convolutions. In general αkl > 0 must hold for a valid overall kernel
function, but perhaps this can be relaxed or imposed during the learning process. We can also think
of Equation 23 as a generalized learnable activation function if we get rid of σ(·). So φ(·)′ and α
together can approximate any desired activation function. There are several related work on the
combination of kernels and convolutional neural networks such as Mairal et al. (2014); Mairal (2016);
Zhang et al. (2016b; 2017). As can be seen, the early fan-out PolyCNN layer can be related to
Equation 22 and the late fan-out PolyCNN layer can be related to Equation 21 and 23.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We have experimented with 4 publicly available visual datasets, MNIST (LeCun et al., 1998),
SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky & Hinton, 2009), and ImageNet ILSVRC-2012
classification dataset (Russakovsky et al., 2015). The MNIST dataset contains a training set of 60K
and a testing set of 10K 32× 32 gray-scale images showing hand-written digits from 0 to 9. SVHN
is also a widely used dataset for classifying digits, house number digits from street view images in
this case. It contains a training set of 604K and a testing set of 26K 32× 32 color images showing
house number digits. CIFAR-10 is an image classification dataset containing a training set of 50K
and a testing set of 10K 32× 32 color images, which are across the following 10 classes: airplanes,
automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The ImageNet ILSVRC-2012
classification dataset consists of 1000 classes, with 1.28 million images in the training set and 50K
images in the validation set, where we use for testing as commonly practiced. For faster roll-out, we
first randomly select 100 classes with the largest number of images (1300 training images in each
class, with a total of 130K training images and 5K testing images.), and report top-1 accuracy on this
subset. Full ImageNet experimental results are also reported in the subsequent section.

4.2 IMPLEMENTATION DETAILS

Conceptually PolyCNN can be easily implemented in any existing deep learning framework. Since
the convolutional weights are fixed, we do not have to compute the gradients nor update the weights.
This leads to savings both from a computational point of view and memory as well. We have used a
custom implementation of backpropagation through the PolyCNN layers that is 3x-5x more efficient
than autograd-based back propagation in PyTorch.

We base the model architectures we evaluate in this paper on ResNet (He et al., 2016a), with default
3× 3 filter size. Our basic module is the PolyCNN module shown in Figure 1 along with an identity
connection as in ResNet. We experiment with different numbers of PolyCNN layers, 10, 20, 50, and
75, which is equivalent to 20, 40, 100, and 150 convolutional layers (1× 1 convolution counted).

For PolyCNN, the convolutional weights are generated following the procedure described in Sec-
tion 2.5. We use 511 randomly sampled fractional exponents for creating the polynomial filter
weights (512 convolutional filters in total at each layer), for all of our MNIST, SVHN, and CIFAR-10
experiments. Spatial average pooling is adopted after the convolution layers to reduce the spatial
dimensions of the image to 6 × 6. We use a learning rate of 1e-3 and following the learning rate
decay schedule from He et al. (2016a). We use ReLU nonlinear activation and batch normalization
(Ioffe & Szegedy, 2015) after PolyCNN convolutional module.

For our experiments with ImageNet-1k, we experiment with ad hoc CNN architectures such as the
AlexNet and the native ResNet family, including ResNet-18, ResNet-34, ResNet-50, ResNet-101,
and ResNet-152. Standard CNN layers are thus replaced with the proposed PolyCNN layers.
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Table 1: Classification accuracy (%). PolyCNN rows only show the best performing (single-seed) model and
the Baseline row shows the particular CNN counterpart.

MNIST SVHN CIFAR-10

PolyCNN (early fan-out) 99.37 93.29 90.56
PolyCNN (late fan-out) 98.77 90.11 85.98

Baseline 99.48 95.21 92.95
BC (Courbariaux et al., 2015) 98.99 97.85 91.73
BNN (Courbariaux & Bengio, 2016) 98.60 97.49 89.85
ResNet (He et al., 2016b) / / 93.57
Maxout (Goodfellow et al., 2013) 99.55 97.53 90.65
NIN (Lin et al., 2014) 99.53 97.65 91.19
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Figure 3: (L) Accuracy of the best performing single-seed PolyCNN (early fan-out) and single-seed PolyCNN
(late fan-out) on CIFAR-10. (R) Accuracy and loss on full ImageNet classification.

4.3 RESULTS ON MNIST, SVHN, AND CIFAR-10

For a fair comparison and to quantify the exact difference between our PolyCNN approach and
traditional CNN, we compare ours against the exact corresponding network architecture with dense
and learnable convolutional weights. We also use the exact same data and hyper-parameters in terms
of the number of convolutional weights, initial learning rate and the learning rate schedule. In this
sense, PolyCNN enjoys 10×, 26×, 50×, etc. savings in the number of learnable parameters because
the baseline CNNs also have the 1×1 convolutional layer. The best performing single-seed PolyCNN
models in terms of early fan-out are:

• For MNIST: 75 PolyCNN layers, m = 512, q = 256, 128 hidden units in the fc layer.

• For SVHN: 50 PolyCNN layers, m = 512, q = 256, 512 hidden units in the fc layer.

• For CIFAR-10: 50 PolyCNN layers, m = 512, q = 384, 512 hidden units in the fc layer.

Table 1 consolidates the images classification accuracies from our experiments. The best performing
PolyCNNs are compared to their particular baselines, as well as the state-of-the-art methods such
as BinaryConnect (Courbariaux et al., 2015), Binarized Neural Networks (BNN) (Courbariaux &
Bengio, 2016), ResNet (He et al., 2016b), Maxout Network (Goodfellow et al., 2013), Network in
Network (NIN) (Lin et al., 2014). The network structure for the late fan-out follows that of the early
fan-out. As can be seen, performance from late fan-out is slightly inferior, but early fan-out reaches
on-par performance while enjoying huge parameter savings.

4.3.1 EARLY FAN-OUT VS. LATE FAN-OUT

Table 2 compares the accuracy on CIFAR-10 achieved by various single-seed PolyCNN architectures
(both early and late fan-out) as well as their standard CNN counterparts. We can see that for a fixed
number of convolution layers and filters, the more output channels q leads to higher performance.
Also, PolyCNN (early fan-out) is on par with the CNN counterpart, while saves 10× parameters.
As can be seen from Table 2 and Figure 3(L), the early fan-out version of the PolyCNN is quite
comparable to the standard CNN, and is better than its late fan-out counterpart.
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Table 2: Classification accuracy (%) on CIFAR-10 with 20 convolution layers and 512 filters in each layer.

q 32 64 128 192 256 384

Baseline 86.30 88.77 90.86 91.69 92.15 92.93
PolyCNN (early fan-out) 83.49 86.11 88.60 89.47 90.01 90.06
PolyCNN (late fan-out) 79.23 81.77 84.01 85.36 85.44 85.50

Table 3: Classification accuracy (%) on CIFAR-10 with 20 convolution layers and 512 filters in each layer.

# Seed Filters 1 2 4 8 16 32 64 128 256 512

PolyCNN (early fan-out) 87.24 88.06 88.76 88.98 89.35 90.02 90.78 91.89 92.28 92.48
PolyCNN (late fan-out) 81.73 83.42 85.50 86.95 88.91 90.34 91.48 92.09 92.21 92.33

4.3.2 VARYING THE NUMBER OF SEED FILTERS

Here we report CIFAR-10 accuracy by varying the number of seed filters in Table 3. The network has
20 PolyCNN layers, and the total number of filters per layer is set to 512. We now vary the number
of seed filters from 1 to 512, by a factor of 2. So when the number of seed filters is approaching
512, PolyCNN reduces to standard CNN. As can be seen, as we increase the number of seed filters,
we are essentially increase the model complexity and the performance is rising monotonically. This
experiment will provide insight into trading-off between performance and model complexity.

4.4 RESULTS ON 100-CLASS IMAGENET SUBSET

We report the top-1 accuracy on 100-Class subset of ImageNet 2012 classification challenge dataset in
Table 4. The input images of ImageNet is much larger than those of MNIST, SVHN, and CIFAR-10,
which allows us to experiments with various convolutional filter sizes. Both the PolyCNN and our
baseline share the same architecture: 20 PolyCNN layers, 512 convolutional filters, 512 output
channels, 4096 hidden units in the fully connected layer. For this experiment, we omit the late fan-out
and only use the better performing early fan-out version of the PolyCNN.

4.5 RESULTS ON FULL IMAGENET

The first ad hoc network architecture we experiment with is the AlexNet (Krizhevsky et al., 2012). We
train a PolyCNN version of the AlexNet to take on the full ImageNet classification task. The AlexNet
architecture is comprised of five consecutive convolutional layers, and two fully connected layers,
mapping from the image (224×224×3) to the 1000-dimension feature for the classification purposes
in the forward pass. The number of convolutional filters used and their spatial sizes are tabulated in
Table 5. For this experiment, we create a single-seed PolyCNN (early fan-out) counterpart following
the AlexNet architecture. For each convolutional layer in AlexNet, we keep the same input and output
channels. Replacing the traditional convolution module with PolyCNN, we are allowed to specify
another hyper-parameter, the fan-out channel m. Table 5 shows the comparison of the number of
learnable parameters in convolutional layers in both AlexNet and its PolyCNN counterpart, by setting
fan-out channel m = 256. As can be seen, PolyCNN saves about 6.4873× learnable parameters
in the convolutional layers. What’s important is that, by doing so, PolyCNN does not suffer the
performance as can be seen in Figure 3(R) and Table 6. We have plotted accuracy curves and loss
curves after 55 epochs for both the AlexNet and its PolyCNN counterpart.

The second ad hoc network architecture we experiment with is the native ResNet family. We create a
single-seed PolyCNN (early fan-out) counterpart following the ResNet-18, ResNet-34, ResNet-50,
ResNet-101, and ResNet-152 architectures, with the same number of input and output channels. The
number of convolutional filters in each layer is equivalent for both models. The two baselines are the
CNN ResNet implemented by ourselves and by Facebook (Facebook, 2016). Table 7 shows the top-1
accuracy on the two baselines as well as the PolyCNN. Since ResNet is primarily composed of 3× 3

Table 4: Classification accuracy (%) on 100-class ImageNet with varying convolutional filter sizes.

Filter Size 3×3 5×5 7×7 9×9 11×11 13×13

Baseline 65.74 64.90 66.53 65.91 65.22 64.94
PolyCNN 60.47 60.21 60.76 61.16 60.98 60.32
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Table 5: Comparison of the number of learnable parameters in convolutional layers in AlexNet and AlexNet
with PolyCNN modules. The proposed method saves 6.4873× learnable parameters in the convolutional layers.

Layers AlexNet (Krizhevsky et al., 2012) PolyCNN (AlexNet)

Layer 1 96*(11*11*3)=34,848 (11*11*3)+96*256=24,576
Layer 2 256*(5*5*48)=307,200 (5*5*48)+256*256=65,536
Layer 3 384*(3*3*256)=884,736 (3*3*256)+384*256=98,304
Layer 4 384*(3*3*192)=663,552 (3*3*192)+384*256=98,304
Layer 5 256*(3*3*192)=442,368 (3*3*192)+256*256=65,536

Total 2, 332, 704 (∼ 2.333M) 359, 579 (∼ 0.3596M)

Table 6: Top-1 classification accuracy (%) on full ImageNet with AlexNet.

PolyCNN AlexNet (ours) AlexNet (BLVC)

ImageNet 51.9008 56.7821 56.9

convolutional filter, the PolyCNN enjoys around 10x parameters savings while achieving competitive
performance.

4.6 DISCUSSIONS

We have shown the effectiveness of the proposed PolyCNN. Not only can it achieve on-par perfor-
mance with the state-of-the-art, but also enjoy a significant utility savings. The PyTorch implementa-
tion of the PolyCNN will be made publicly available.

5 RELATED WORK

Given the proliferation and success of deep convolutional neural networks, there is growing interest
in improving the efficiency of such models both in terms computational and memory requirements.
Multiple approaches have been proposed to compress existing models as well as to directly train
efficient neural networks. Approaches include pruning unnecessary weights in exiting models, sharing
of parameters, binarization and more generally quantization of model parameters, transferring the
knowledge of high-performance networks into a smaller more more compact network by learning a
student network to mimic a teacher network.

The weights of existing networks can be pruned away using the magnitude of weights (Pratt, 1989),
or the Hessian of the loss function (Hassibi et al., 1993; LeCun et al., 1989). Ba & Caruana (2014)
showed that it is possible to train a shallow but wider student network to mimic a teacher network,
performing almost as well as the teacher. Similarly Hinton et al. (2015) proposed Knowledge
Distillation to train a student network to mimic a teacher network. Among recent approaches for
training high-performance CNNs, PolyNet (Zhang et al., 2016a) shares similar names to our proposed
PolyCNN. PolyNet considers higher-order compositions of learned residual functions while PolyCNN
considers higher-order polynomials of the weights and response maps.

6 CONCLUSIONS

Inspired by the polynomial correlation filter, in this paper, we have proposed the PolyCNN as an
alternative to the standard convolutional neural networks. The PolyCNN module enjoys significant
savings in the number of parameters to be learned at training, at least 10× to 50×. PolyCNN have
much lower model complexity compared to traditional CNN with standard convolutional layers. The
proposed PolyCNN demonstrates performance on par with the state-of-the-art architectures on several
image recognition datasets.

Table 7: Top-1 classification accuracy (%) on full ImageNet with native ResNet family.

ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

Baseline (Facebook, 2016) 69.57 73.27 75.99 77.56 77.84
Baseline (ours) 67.69 71.38 74.02 75.43 75.48
PolyCNN 62.26 65.46 67.98 69.49 69.69
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