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ABSTRACT

The Bayesian deep learning is promising for its theoretical foundation. Especially,
it was probed that free energy can asymptotically identify the structure of the true
distribution consistently. In this paper, we derive the asymptotic expected varia-
tional free energy in the case of Gaussian trial posterior. The result shows that the
variance of the posterior reflects the relative structure of the true distribution and
the learning model. This result clarifies the theoretical insights of model selection
and model distillation in variational approximation of Bayesian methods.

1 INTRODUCTION

Bayesian learning of deep neural networks has several advantages over maximum likelihood method
and maximum a posteriori method (MAP). For example, the Bayesian method avoids over-fitting of
models and resolves model selection problems in a theoretically established way (Watanabe, 2009).
Since accurate calculation of posterior distribution using MCMC is computationally inefficient, ap-
proximation methods such as variational method are widely used. The variational method approxi-
mates the posterior distribution of parameters by the trial distribution using the variational principle
on free energy.

Free energy ≡ − log p(xn) = − log

∫
p(xn|θ)p(θ)dθ = − log

∫
p(xn|θ)p(θ)q(θ)

q(θ)
dθ

≤ E[− log p(xn|θ)]q(θ) +KL(q(θ)||p(θ)),
where xn is n points of sample x, p(x|θ) is learning model, p(θ) is prior of the parameters and q(θ)
is trial posterior. In this paper, as trial posterior, we deal with the product of univariate Gaussian
distribution q(θ) =

∏|θ|
i=1 N (θi|µi, σ

2
i ) (Hinton & Van Camp, 1993; Graves, 2011). This approxi-

mation is implemented by Bayesian deep learning frameworks such as Edward (Tran et al., 2016).
In mixture of exponential family and reduced rank regression case, the mean field type of variational
free energy is clarified (Watanabe & Watanabe, 2006; Nakajima & Watanabe, 2007). Despite being
widely used in practice, the theoretical properties of this approximation in deep learning have not
been clarified.

The contributions of this paper are as follows. First, we derive the asymptotic expected free energy
in the variational Bayesian deep learning. Second, we show that the asymptotic expected variational
free energy of deep learning depends on the true distribution, unlike the regular statistical models.
Third, we show that the variance of the posterior distribution reflects the relative structure of the true
distribution and the learning model.

2 SIMPLE EXAMPLE

In this section, we present the key points of our analysis by a simple example. We consider the
following learning model of which input and output is (x, y).

p(y|x, a, b, c) = 1

(2π)
1
2

exp

(
−1

2
(y − af(bx)− cx)2

)
, p(a), p(b), p(c) ∼ N (0, 1)
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where f(x) is the activate function, let f(x) = x + x2. To examine the behavior of the redundant
part of the learning model, we assume x and y are irrelevant and independently generated from
p0(x), p0(y) ∼ N (0, 1).

For parameters, we introduce trial posterior q(a) ∼ N (µa, σ
2
a), q(b) ∼ N (µb, σ

2
b ), q(c) ∼

N (µc, σ
2
c ). Then, the objective function of the expected variational free energy is given by

objFvb(n) ≡ E[E[− log p(yn|xn, a, b, c)]q(a),q(b),q(c)]p0(x),p0(y) +
∑

θi∈(a,b,c)

KL(q(θi)||p(θi))

= nS0 +
n

2

(
(µaµb + µc)

2 + µ2
aσ

2
b + µ2

bσ
2
a + σ2

aσ
2
b + σ2

c + 3(µ2
a + σ2

a)(3σ
4
b + 6µ2

bσ
2
b + µ4

b)
)

+
1

2
log

1

σ2
a

+
σ2
a

2
+

µ2
a

2
− 1

2
+

1

2
log

1

σ2
b

+
σ2
b

2
+

µ2
b

2
− 1

2
+

1

2
log

1

σ2
c

+
σ2
c

2
+

µ2
c

2
− 1

2
,

where S0 = 1
2 (2π+1) is the entropy of p0(y). We consider the minimization of this equation in the

asymptotic case (n → ∞). In its minimization, µ2
a, µ

2
b , µ

2
c is obviously 0.

objFvb(n) = nS0 +
n

2

(
σ2
aσ

2
b + σ2

c + 9σ2
aσ

4
b

)
+

1

2

(
log

1

σ2
a

1

σ2
b

1

σ2
c

)
+

σ2
a

2
+

σ2
b

2
+

σ2
c

2
− 3

2

This equation shows that the leading-order term of objFvb(n)− nS0 is determined by the variance
of the posterior. Thus, to determine the order of the variance, we assume σ2

i = O( 1
nαi

).

objFvb(n) = nS0 +
1

2

( n

nαa+αb
+

n

nαc
+ 9

n

nαa+2αb

)
+

1

2
(αa + αb + αc) log n+

1

2

(
1

nαa
+

1

nαb
+

1

nαc

)
+ terms independent from n.

This is the optimization problem under 0 ≤ αa, αb, αc ≤ 1.

• Second term : αa + αb ≥ 1 and αc ≥ 1 (The variance of the posterior is upper bounded.)
• Third term : minαa + αb + αc (Maximize the entropy of the posterior.)
• Fourth term : min 1

nαa + 1
nαb

= maxminA (As possible, make the variances equally.)
where A is the set of α not determined by the above conditions.

At the first condition, we ignored αa + 2αb ≥ 1 because it is satisfied when αa + αb ≥ 1 is
satisfied. It is noted that, in the same manner, the higher order terms than σ2

i can be ignored by the
characteristics of the moments of the Gaussian distributions. We use this fact in the general case. It
is understood that it is sufficient to solve as strong constraint conditions in order from the top. In
this example, the solution is αa = αb =

1
2 , αc = 1 and the variational free energy is given by

Fvb(n) = nS0 + log n+O(1).

3 GENERAL CASE

As the general case, we assume the following conditions. First, the true distribution and the learn-
ing model are feedforward type deep neural networks. Second, the learning model includes true
distribution p(y|x) and the true distribution p0 is parameterized by minimum number of parameters
which satisfy the condition KL(p0(y|x)||p(y|x)) = 0 and we define the entropy of the true distri-
bution S ≡ E[− log p0(y|x)]p0(y|x)p0(x). Third, the activation function f(x) has Taylor expansion
and the expansion begins with x term (such as tanh, sigmoid). Fourth, the prior distribution of the
parameters are N (0, σ2

0).

The general case can be solved in the same way. Let Path be the set of all paths including redundant
parameters on the computational graph and θ be all parameters. We consider the following terms of
the objective function,

n

2

∑
pathj∈Path

∏
θi∈pathj

(µ2
i + σ2

i ) +

|θ|∑
k=1

KL(q(θk)||p(θk)).

In this case, the mean of θi that belongs to the true distribution is µi = µ∗
i = const and the mean of

redundant parameter θi is µi = 0. Then, we need to solve the optimization for αi (σ
2
i = O( 1

nαi
)) :
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• αi = 1 if θi belongs to the true distribution.
• ∀ pathj ∈ Path

∑
αi∈pathj

g(αi) ≥ 1

where g(αi) returns 0 if θi belongs to the true distribution, otherwise αi.
• minα1 + · · ·+ α|θ|

• min 1
nα1

+ · · ·+ 1
n
α|θ| = maxminA

where A is the set of α not determined by the above conditions.

Then, using the solution of αi, the variational free energy is given by

Fvb(n) = nS +
λ

2
log n+O(1), λ = α1 + · · ·+ α|θ|.

4 FULLY CONNECTED DEEP LEARNING

For concrete example, we consider fully connected deep neural networks. We assume the network
has L layers and each layer i has ni nodes. Let the number of the nodes which belong to the true
distribution is ti > 0 and that of the other redundant nodes is ri ≥ 0. The output layer satisfies
tL = nL, rL = 0. In this case, by solving the above optimization, the variational free energy Fvb

(under the n → ∞) is given by

Fvb(n) = nS +
λ

2
log n+O(1), λ =

L−2∑
i=j

(ni − ni+2)ri+1 +

L−1∑
i=1

niti+1,

where j = minL−2
j=1

∑L−2
i=j (ni − ni+2)ri+1.

Specific examples are shown in Figure 1 and 2. Figure 1 is an example in which the numbers of
nodes in all layers are the same. All α of connections between redundant nodes are 1

L−1 = 1
4 . On

the other hand, Figure 2 is an example in which the number of nodes in a layer is smaller than other
layers. Around this layer, the symmetry breaks and α of connections between redundant nodes are
larger than other layers. In both examples, α of connections between true distribution nodes are
1. Thus, in variational Bayesian learning, it is theoretically possible to distinguish redundant nodes
using α (the variance behavior against n).

In these examples, we show that the order of the variances is not uniform but determined by the
relative structure of the true distribution and the learning model (Takamatsu et al., 2006). This
behavior is different from that of the regular statistical models whose variances of the posterior
are uniformly O( 1n ) and coefficient λ is the number of the model parameters. Moreover, the free
energy of exact Bayes differs from that of variational approximation due to the higher order terms
ignored by the Gaussian approximation of the posterior distribution (Aoyagi, 2013). Finally, in these
examples, the mean of the parameters µi is the same as MAP solution. The difference is occurred
when the objective function is not expected by the true distribution. For this problem, analyzing the
effect of integration by the trial posterior Eq(θ)[− log p(yn|xn, θ)] is the future work.
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Figure 1: α of the example that every layer
has the same number of nodes.
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Figure 2: α of the example that a layer has
small number of nodes.
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