
Published as a conference paper at ICLR 2018

LEARNING FROM BETWEEN-CLASS EXAMPLES
FOR DEEP SOUND RECOGNITION

Yuji Tokozume1, Yoshitaka Ushiku1, Tatsuya Harada1,2

1The University of Tokyo, 2RIKEN
{tokozume,ushiku,harada}@mi.t.u-tokyo.ac.jp

ABSTRACT

Deep learning methods have achieved high performance in sound recognition
tasks. Deciding how to feed the training data is important for further performance
improvement. We propose a novel learning method for deep sound recognition:
Between-Class learning (BC learning). Our strategy is to learn a discriminative
feature space by recognizing the between-class sounds as between-class sounds.
We generate between-class sounds by mixing two sounds belonging to different
classes with a random ratio. We then input the mixed sound to the model and
train the model to output the mixing ratio. The advantages of BC learning are not
limited only to the increase in variation of the training data; BC learning leads
to an enlargement of Fisher’s criterion in the feature space and a regularization
of the positional relationship among the feature distributions of the classes. The
experimental results show that BC learning improves the performance on various
sound recognition networks, datasets, and data augmentation schemes, in which
BC learning proves to be always beneficial. Furthermore, we construct a new deep
sound recognition network (EnvNet-v2) and train it with BC learning. As a result,
we achieved a performance surpasses the human level1.

1 INTRODUCTION

Sound recognition has been conventionally conducted by applying classifiers such as SVM to local
features such as MFCC or log-mel features (Logan et al., 2000; Vacher et al., 2007; Łopatka et al.,
2010). Convolutional neural networks (CNNs) (LeCun et al., 1998), which have achieved success in
image recognition tasks (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al., 2016),
have recently proven to be effective in tasks related to series data, such as speech recognition
(Abdel-Hamid et al., 2014; Sainath et al., 2015a;b) and natural language processing (Kim, 2014;
Zhang et al., 2015). Some researchers applied CNNs to sound recognition tasks and achieved high
performance (Aytar et al., 2016; Dai et al., 2017; Tokozume & Harada, 2017).

The amount and quality of training data and how to feed it are important for machine learning, partic-
ularly for deep learning. Various approaches have been proposed to improve the sound recognition
performance. The first approach is to efficiently use limited training data with data augmentation.
Researchers proposed increasing the training data variation by altering the shape or property of
sounds or adding a background noise (Tokozume & Harada, 2017; Salamon & Bello, 2017). Re-
searchers also proposed using additional training data created by mixing multiple training examples
(Parascandolo et al., 2016; Takahashi et al., 2016). The second approach is to use external data or
knowledge. Aytar et al. (2016) proposed learning rich sound representations using a large amount of
unlabeled video datasets and pre-trained image recognition networks. The sound dataset expansion
was also conducted (Salamon et al., 2014; Piczak, 2015b; Gemmeke et al., 2017).

In this paper, as a novel third approach we propose a learning method for deep sound recognition:
Between-Class learning (BC learning). Our strategy is to learn a discriminative feature space by
recognizing the between-class sounds as between-class sounds. We generate between-class sounds
by mixing two sounds belonging to different classes with a random ratio. We then input the mixed
sound to the model and train the network to output the mixing ratio. Our method focuses on the char-
acteristic of the sound, from which we can generate a new sound simply by adding the waveform

1The code is publicly available at https://github.com/mil-tokyo/bc_learning_sound/.

1

Published as a conference paper at ICLR 2018

data of two sounds. The advantages of BC learning are not limited only to the increase in varia-
tion of the training data; BC learning leads to an enlargement of Fisher’s criterion (Fisher, 1936)
(i.e., the ratio of the between-class distance to the within-class variance) in the feature space, and a
regularization of the positional relationship among the feature distributions of the classes.

The experimental results show that BC learning improves the performance on various sound recogni-
tion networks, datasets, and data augmentation schemes, in which BC learning proves to be always
beneficial. Furthermore, we constructed a new deep sound recognition network (EnvNet-v2) and
trained it with BC learning. As a result, we achieved a 15.1% error rate on a benchmark dataset
ESC-50 (Piczak, 2015b), which surpasses the human level.

We argue that our BC learning is different from the so-called data augmentation methods we in-
troduced above. Although BC learning can be regarded as a data augmentation method from the
viewpoint of using augmented data, the novelty or key point of our method is not mixing multiple
sounds, but rather learning method of training the model to output the mixing ratio. This is a fun-
damentally different idea from previous data augmentation methods. In general, data augmentation
methods aim to improve the generalization ability by generating additional training data which is
likely to appear in testing phase. Thus, the problem to be solved is the same in both training and
testing phase. On the other hand, BC learning uses only mixed data and labels for training, while
mixed data does not appear in testing phase. BC learning is a method to improve the classification
performance by solving a problem of predicting the mixing ratio between two different classes. To
the best of our knowledge, this is the first time a learning method that employs a mixing ratio be-
tween different classes has been proposed. We intuitively describe why such a learning method is
effective and demonstrate the effectiveness of BC learning through wide-ranging experiments.

2 RELATED WORK

2.1 SOUND RECOGNITION NETWORKS

We introduce recent deep learning methods for sound recognition. Piczak (2015a) proposed to apply
CNNs to the log-mel features extracted from raw waveforms. The log-mel feature is calculated
for each frame of sound and represents the magnitude of each frequency area, considering human
auditory perception (Davis & Mermelstein, 1980). Piczak created a 2-D feature-map by arranging
the log-mel features of each frame along the time axis and calculated the delta log-mel feature, which
was the first temporal derivative of the static log-mel feature. Piczak then classified these static and
delta feature-maps with 2-D CNN, treating them as a two-channel input in a manner quite similar to
the RGB inputs of the image. The log-mel feature-map exhibits locality in both time and frequency
domains (Abdel-Hamid et al., 2014). Therefore, we can accurately classify this feature-map with
CNN. We refer to this method as Logmel-CNN.

Some researchers also proposed methods to learn the sounds directly from 1-D raw waveforms,
including feature extraction. Aytar et al. (2016) proposed a sound recognition network using 1-
D convolutional and pooling layers named SoundNet and learned the sound feature using a large
amount of unlabeled videos (we describe the details of it in the next section). Dai et al. (2017) also
proposed a network using 1-D convolutional and pooling layers, but they stacked more layers. They
reported that the network with 18 layers performed the best. Tokozume & Harada (2017) proposed
a network using both 1-D and 2-D convolutional and pooling layers named EnvNet. First, EnvNet
extracts a frequency feature of each short duration of section with 1-D convolutional and pooling
layers and obtain a 2-D feature-map. Next, it classifies this feature-map with 2-D convolutional
and pooling layers in a similar manner to Logmel-CNN. Learning from the raw waveform is still
a challenging problem because it is difficult to learn raw waveform features from limited training
data. However, the performance of these systems is close to that of Logmel-CNN.

2.2 APPROACHES TO ACHIEVE HIGH PERFORMANCE

We describe the approaches to achieve high sound recognition performance from two views: ap-
proaches involving efficient use of limited training data and those involving external data/knowledge.
First, we describe data augmentation as an approach of efficiently using limited training data. One of
the most standard and important data augmentation methods is cropping (Piczak, 2015a; Aytar et al.,
2016; Tokozume & Harada, 2017). The training data variation increases, and we are able to more

2

Published as a conference paper at ICLR 2018

Training Dataset

Dog

Cat
Label

Random Select
& Augment

Bird

x1

x2

mixr(x1,x2)
r ⇠ U(0, 1)

Input

Model
Output

KL Dog 0.7

Cat 0.3

Bird 0

mixr(x1, x2) =
px1 + (1� p)x2p

p

2 + (1� p)2
where p =

1

1 + 10
G1�G2

20 · 1� r
r

r t1 + (1� r) t2

Figure 1: Pipeline of BC learning. We create each training example by mixing two sounds belonging to different
classes with a random ratio. We input the mixed sound to the model and train the model to output the mixing
ratio using the KL loss.

efficiently train the network when the short section (approximately 1–2 s) of the training sound
cropped from the original data, and not the whole section, is input to the network. A similar method
is generally used in the test phase. Multiple sections of test data are input with a stride, and the av-
erage of the output predictions is used to classify the test sound. Salamon & Bello (2017) proposed
the usage of additional training data created by time stretching, pitch shifting, dynamic range com-
pression, and adding background noise chosen from an external dataset. Researchers also proposed
using additional training data created by mixing multiple training examples. Parascandolo et al.
(2016) applied this method to polyphonic sound event detection. Takahashi et al. (2016) applied
this method to single-label sound event classification, but only the sounds belonging to the same
class were mixed. Our method is different from both of them in that we employ a mixing ratio
between different classes for training.

Next, we describe the approaches of utilizing external data/knowledge. Aytar et al. (2016) proposed
to learn rich sound representations using pairs of image and sound included in a large amount of
unlabeled video dataset. They transferred the knowledge of pre-trained large-scale image recogni-
tion networks into sound recognition network by minimizing the KL-divergence between the output
predictions of the image recognition networks and that of the sound network. They used the out-
put of the hidden layer of the sound recognition network as the feature when applying to the target
sound classification problem. They then classified it with linear SVM. They could train a deep sound
recognition network (SoundNet8) and achieve a 74.2% accuracy on a benchmark dataset, ESC-50
(Piczak, 2015b), with this method.

3 BETWEEN-CLASS LEARNING FOR SOUND RECOGNITION

3.1 OVERVIEW

In this section, we propose a novel learning method for deep sound recognition BC learning. Fig. 1
shows the pipeline of BC learning. In standard learning, we select a single training example from
the dataset and input it to the model. We then train the model to output 0 or 1. By contrast, in BC
learning, we select two training examples from different classes and mix these two examples using
a random ratio. We then input the mixed data to the model and train the model to output the mixing
ratio. BC learning uses only mixed data and labels, and thus never uses pure data and labels for
training. Note that we do not mix any examples in testing phase. First, we provide the details of
BC learning in Section 3.2. We mainly explain the method of mixing two sounds, which should
be carefully designed to achieve a good performance. Then, in Section 3.3, we explain why BC
learning leads to a discriminative feature space.

3.2 METHOD DETAILS

3.2.1 MIXING METHOD

BC learning optimizes a model using mini-batch stochastic gradient descent the same way the stan-
dard learning does. Each data and label of a mini-batch is generated by mixing two training examples
belonging to different classes. Here, we describe how to mix two training examples.

3

Published as a conference paper at ICLR 2018

Let x1 and x2 be two sounds belonging to different classes randomly selected from the training
dataset, and t1 and t2 be their one-hot labels. Note that x1 and x2 may have already been
preprocessed or applied data augmentation, and they have the same length as that of the input of
the network. We generate a random ratio r from U(0, 1) , and mix two sets of data and labels
with this ratio. We mix two labels simply by r t1 + (1 − r) t2 , because we aim to train the model
to output the mixing ratio. We then explain how to mix x1 and x2 . The simplest method is
r x1 + (1− r)x2 . However, the following mixing formula is slightly better, considering that sound
energy is proportional to the square of the amplitude:

mixr(x1, x2) =
r x1 + (1− r)x2√

r2 + (1− r)2
. (1)

However, auditory perception of a sound mixed with Eqn. (1) would not be x1 : x2 = r : (1 − r)
if the difference of the sound pressure level of x1 and x2 is large. For example, if the amplitude
of x1 is 10 times as large as that of x2 and we mix them with 0.2 : 0.8, the sound of x1 would
still be dominant in the mixed sound. In this case, training the model with a label of {0.2, 0.8}
is inappropriate. We then consider using a new coefficient p(r, G1, G2) instead of r , and mix
two sounds by px1 +(1− p)x2√

p2 +(1− p)2
, where G1 and G2 is the sound pressure level of x1 and x2 [dB],

respectively. We define p so that the auditory perception of the mixed sound becomes r : (1 − r).
We hypothesize that the ratio of auditory perception for the network is the same as that of amplitude
because the main component functions of CNNs, such as conv/fc, relu, max pooling, and average
pooling, satisfy homogeneity (i.e., f(αx) = αf(x)) if we ignore the bias. We then set up an
equation about the ratio of amplitude p · 10

G1
20 : (1− p) · 10

G2
20 = r : (1− r) using unit conversion

from decibels to amplitudes and solve it for p. Finally, we obtain the proposed mixing method:

mixr(x1, x2) =
px1 + (1− p)x2√

p2 + (1− p)2
where p =

1

1 + 10
G1−G2

20 · 1− r
r

. (2)

We show this mixing method performs better than Eqn. (1) in the experiments.

We calculate the sound pressure level G1 and G2 using A-weighting, considering that human audi-
tory perception is not sensitive to low and high frequency areas. We can also use simpler sound pres-
sure metrics such as root mean square (RMS) energy instead of an A-weighting sound pressure level.
However, the performance worsens, as we show in the experiments. We create short windows (∼ 0.1
s) on the sound and calculate a time series of A-weighted sound pressure levels {g1, g2, . . . , gt} .
Then, we define G as the maximum of those time series (G = max{g1, g2, . . . , gt}).

3.2.2 OPTIMIZATION

We define the f and θ as the model function and the model parameters, respectively. We input
the generated mini-batch data {x(i)}ni=1 to the model and obtain the output {fθ(x(i))}ni=1. We
expect that our mini-batch ratio labels {t(i)}ni=1 represent the expected class probability distribution.
Therefore, we use the KL-divergence between the labels and the model outputs as the loss function,
instead of the usual cross-entropy loss. We optimize KL-divergence with back-propagation and
stochastic gradient descent because it is differentiable:

L =
1

n

n∑
i=1

DKL(t
(i)∥fθ(x(i))) =

1

n

n∑
i=1

m∑
j=1

t
(i)
j log

t
(i)
j

{fθ(x(i))}j
, (3)

θ ← θ − η
∂L

∂θ
, (4)

where m is the number of classes, and η is the learning rate.

3.3 HOW BC LEARNING WORKS

3.3.1 ENLARGEMENT OF FISHER’S CRITERION

BC leaning leads to an enlargement of Fisher’s criterion (i.e., the ratio of the between-class dis-
tance to the within-class variance). We explain the reason in Fig. 2. In deep neural networks,
linearly-separable features are learned in a hidden layer close to the output layer (An et al., 2015).

4

Published as a conference paper at ICLR 2018

Feature Space

BC learning (ours)

A

B

Input space

class A

class B

Standard learning

A

B

f(mixr(x1,x2))

f(x1)

f(x2)

f

mixr(A,B)

mixr(A,B)

f(mixr(x1,x2))

f(x1)

f(x2)

x2

mixr(x1,x2)

x1

Figure 2: BC learning enlarges Fisher’s criterion in the feature space, by training the model to output the mixing
ratio between two classes. We hypothesize that a mixed sound mixr(x1, x2) is projected into the point near
the internally dividing point of f(x1) and f(x2) , considering the characteristic of sounds. Middle: When
Fisher’s criterion is small, some mixed examples are projected into one of the classes, and BC learning gives a
large penalty. Right: When Fisher’s criterion is large, most of the mixed examples are projected into between-
class points, and BC learning gives a small penalty. Therefore, BC learning leads to such a feature space.

-30 -20 -10 0 10 20
-30

-20

-10

0

10

20

dog bark
rain
others
mixed

r = 0.8

r = 1

r = 0

Figure 3: Visualization of the
feature space using PCA. The
features of the mixed sounds are
distributed between two classes.

Besides, we can generate a new sound simply by adding the wave-
form data of two sounds, and humans can recognize both of two
sounds and perceive which of two sounds is louder or softer from
the mixed sound. Therefore, it is expected that an internally dividing
point of the input space almost corresponds to that of the semantic
feature space, at least for sounds. Then, the feature distribution of
the mixed sounds of class A and class B with a certain ratio would
be located near the internally dividing point of the original feature
distribution of class A and B, and the variance of the feature dis-
tribution of the mixed sounds is proportional to the original feature
distribution of class A and B. To investigate whether this hypoth-
esis is correct or not, we visualized the feature distributions of the
standard-learned model using PCA. We used the activations of fc6 of
EnvNet (Tokozume & Harada, 2017) against training data of ESC-
10 (Piczak, 2015b). The results are shown in Fig. 3. The magenta
circles represent the feature distribution of the mixed sounds of dog bark and rain with a ratio of
0.8 : 0.2, and the black dotted line represents the trajectory of the feature when we input a mixture
of two particular sounds to the model changing the mixing ratio from 0 to 1. This figure shows
that the mixture of two sounds is projected into the point near the internally dividing point of two
features, and the features of the mixed sounds are distributed between two classes, as we expected.

If Fisher’s criterion is small, the feature distribution of the mixed sounds becomes large, and would
have a large overlap with one or both of the feature distribution of class A and B (Fig. 2(middle)).
In this case, some mixed sounds are projected into one of the classes as shown in this figure, and
the model cannot output the mixing ratio. BC learning gives a penalty to this situation because BC
learning trains a model to output the mixing ratio. If Fisher’s criterion is large, on the other hand,
the overlap becomes small (Fig. 2(right)). The model becomes able to output the mixing ratio, and
BC learning gives a small penalty. Therefore, BC learning enlarges Fisher’s criterion between any
two classes in the feature space.

3.3.2 REGULARIZATION OF POSITIONAL RELATIONSHIP AMONG FEATURE DISTRIBUTIONS

We expect that BC learning also has the effect of regularizing the positional relationship among the
class feature distributions. In standard learning, there is no constraint on the positional relationship
among the classes, as long as the features of each two classes are linearly separable. We found
that a standard-learned model sometimes misclassifies a mixed sound of class A and class B as
a class other than A or B. Fig. 4(lower left) shows an example of transition of output probability
of standard-learned model when we input a mixture of two particular training sounds (dog bark
and rain) to the model changing the mixing ratio from 0 to 1. The output probability of dog bark
monotonically increases and that of rain monotonically decreases as we expected, but the model
classifies the mixed sound as baby cry when the mixing ratio is within the range of 0.45 – 0.8. This
is an undesirable state because there is little possibility that a mixed sound of two classes becomes

5

Published as a conference paper at ICLR 2018

0 0.2 0.4 0.6 0.8 1
mixing ratio

0

0.2

0.4

0.6

0.8

1

pr
ed

ic
tio

n

A: dog bark
B: rain
C: baby cry

0 0.2 0.4 0.6 0.8 1
mixing ratio

0

0.2

0.4

0.6

0.8

1

pr
ed

ic
tio

n

A: dog bark
B: rain

Standard learning

A

B

C

BC learning (ours)

A

B

C

r = 0

r = 1

r = 0

r = 1

Figure 4: BC learning regularizes the positional re-
lationship of the classes in the feature space, by
training the model not to misclassify the mixed
sound as different classes. BC learning avoids the
situation in which the decision boundary of other
class appears between any two classes.

a sound of other classes. In this case, we assume
that the features of each class are distributed as in
Fig. 4(upper left). The decision boundary of class
C appears between class A and class B, and the tra-
jectory of the features of the mixed sounds crosses
the decision boundary of class C.

BC learning can avoid the situation in which the
decision boundary of other class appears between
two classes, because BC learning trains a model to
output the mixing ratio instead of misclassifying
the mixed sound as different classes. We show the
transition of the output probability in Fig. 4(lower
right), when using the same two examples as that
used in Fig. 4(lower left). We assume that the fea-
tures of each class are distributed as in Fig. 4(upper
right). The feature distributions of the three classes
make an acute-angled triangle, and the decision
boundary of class C does not appear between class
A and class B. Note that it is assumed that the di-
mension of the feature space is greater than or equal to the number of classes minus 1. However,
because the network is generally designed as such, it is not a problem. In this way, BC learning
enlarges Fisher’s criterion, and at the same time, regularizes the positional relationship among the
classes in the feature space. Hence, BC learning improves the generalization ability.

4 EXPERIMENTS

4.1 COMPARISON BETWEEN STANDARD LEARNING AND BC LEARNING

In this section, we train various types of sound recognition networks with both standard and BC
learning, and demonstrate the effectiveness of BC learning.

Datasets. We used ESC-50, ESC-10 (Piczak, 2015b), and UrbanSound8K (Salamon et al., 2014)
to train and evaluate the models. ESC-50, ESC-10, and UrbanSound8K contain a total of 2,000,
400, and 8,732 examples consisting of 50, 10, and 10 classes, respectively. We removed completely
silent sections in which the value was equal to 0 at the beginning or end of examples in the ESC-50
and ESC-10 datasets. We converted all sound files to monaural 16-bit WAV files. We evaluated
the performance of the methods using a K-fold cross-validation (K = 5 for ESC-50 and ESC-10,
and K = 10 for UrbanSound8K), using the original fold settings. We performed cross-validation 5
times for ESC-50 and ESC-10, and showed the standard error.

Preprocessing and data augmentation. We used a simple preprocessing and data augmentation
scheme. Let T be the input length of a network [s]. In the training phase, we padded T/2 s of zeros
on each side of a training sound and randomly cropped a T -s section from the padded sound. We
mixed two cropped sounds with a random ratio when using BC learning. In the testing phase, we
also padded T/2 s of zeros on each side of a test sound and cropped 10 T -s sections from the padded
sound at regular intervals. We then input these 10 crops to the network and averaged all softmax
outputs. Each input data was regularized into a range of from −1 to +1 by dividing it by 32,768,
that is, the full range of 16-bit recordings.

Learning settings. All models were trained with Nesterov’s accelerated gradient using a momen-
tum of 0.9, weight decay of 0.0005, and mini-batch size of 64. The only difference in the learning
settings between standard and BC learning is the number of training epochs. BC learning tends to
require more training epochs than does standard learning, while standard learning tends to overfit
with many training epochs. To validate the comparison, we first identified an appropriate standard
learning setting for each network and dataset (details are provided in the appendix), and we dou-
bled the number of training epochs when using BC learning. Later in this section, we examine the
relationship between the number of training epochs and the performance.

6

Published as a conference paper at ICLR 2018

Table 1: Comparison between standard learning and our BC learning. We performed K-fold cross validation
using the original fold settings. We performed cross-validation 5 times for the ESC-50 and ESC-10 datasets,
and show the standard error. BC learning improves the performance of all models on all datasets, even when
we use a strong data augmentation scheme. Our EnvNet-v2 trained with BC learning performs the best and
surpasses the human performance on ESC-50.

Error rate (%) on

Model Learning ESC-50 ESC-10 UrbanSound8K

EnvNet (Tokozume & Harada, 2017) Standard 29.2± 0.1 12.8± 0.4 33.7
BC (ours) 24.1± 0.2 11.3± 0.6 28.9

SoundNet5 (Aytar et al., 2016) Standard 33.8± 0.2 16.4± 0.8 33.3
BC (ours) 27.4± 0.3 13.9± 0.4 30.2

M18 (Dai et al., 2017) Standard 31.5± 0.5 18.2± 0.5 28.8
BC (ours) 26.7± 0.1 14.2± 0.9 26.5

Logmel-CNN (Piczak, 2015a) + BN Standard 27.6± 0.2 13.2± 0.4 25.3
BC (ours) 23.1± 0.3 9.4± 0.4 23.5

EnvNet-v2 (ours) Standard 25.6± 0.3 14.2± 0.8 30.9
BC (ours) 18.2± 0.2 10.6± 0.6 23.4

EnvNet-v2 (ours) + strong augment Standard 21.2± 0.3 10.9± 0.6 24.9
BC (ours) 15.1± 0.2 8.6± 0.1 21.7

SoundNet8 + Linear SVM (Aytar et al., 2016) 25.8 7.8 -
Human (Piczak, 2015b) 18.7 4.3 -

10

15

20

25

30

35

40

45

0 300 600 900 1200

er
ro

r r
at

e
(%

)

epochs

EnvNet standard

EnvNet BC (ours)
10

15

20

25

30

35

40

45

0 300 600 900 1200 1500 1800

er
ro

r r
at

e
(%

)

epochs

EnvNet-v2 standard
EnvNet-v2 BC
EnvNet-v2 std.+augment
EnvNet-v2 BC+augment

Figure 5: Training curves of EnvNet and EnvNet-v2 on ESC-50 (average of all trials).

4.1.1 EXPERIMENT ON EXISTING NETWORKS

First, we trained various types of existing networks. We selected EnvNet (Tokozume & Harada,
2017) as a network using both 1-D and 2-D convolutions, SoundNet5 (Aytar et al., 2016) and M18
(Dai et al., 2017) as networks using only 1-D convolution, and Logmel-CNN (Piczak, 2015a) + BN
as a network using log-mel features. Logmel-CNN + BN is an improved version of Logmel-CNN
that we designed in which, to convolutional layers, we apply batch normalization (Ioffe & Szegedy,
2015) to the output and remove the dropout (Srivastava et al., 2014). Note that all networks and
training codes are our implementation using Chainer v1.24 (Tokui et al., 2015).

The results are summarized in the upper half of Table 1. Our BC learning improved the performance
of all networks on all datasets. The performance on ESC-50, ESC-10, and UrbanSound8K was
improved by 4.5–6.4%, 1.5–4.0%, and 1.8–4.8%, respectively. We show the training curves of
EnvNet on ESC-50 in Fig. 5(left). Note that the curves show the average of all trials.

4.1.2 EXPERIMENT ON A DEEPER NETWORK

To investigate the effectiveness of BC learning on deeper networks, we constructed a deep sound
recognition network based on EnvNet, which we refer to as EnvNet-v2, and trained it with both

7

Published as a conference paper at ICLR 2018

standard and BC learning. The main differences between EnvNet and EnvNet-v2 are as follows:
1) EnvNet uses a sampling rate of 16 kHz for the input waveforms, whereas EnvNet-v2 uses 44.1
kHz; and 2) EnvNet consists of 7 layers, whereas EnvNet-v2 consists of 13 layers. A detailed
configuration is provided in the appendix.

The results are also shown in the upper half of Table 1, and the training curves on ESC-50 are
given in Fig. 5(right). The performance was also improved with BC learning, and the degree of
the improvement was greater than other networks (7.4%, 3.6%, and 7.5% on ESC-50, ESC-10,
and UrbanSound8K, respectively). The error rate of EnvNet-v2 trained with BC learning was the
lowest on ESC-50 and UrbanSound8K among all the models including Logmel-CNN + BN, which
uses powerful hand-crafted features. Moreover, the error rate on ESC-50 (18.2%) is comparable to
human performance reported by Piczak (2015b) (18.7%). The point is not that our EnvNet-v2 is
well designed, but that our BC learning successfully elicits the true value of a deep network.

4.1.3 EXPERIMENT WITH STRONG DATA AUGMENTATION

We compared the performances of standard and BC learning when using a stronger data augmen-
tation scheme. In addition to zero padding and random cropping, we used scale augmentation with
a factor randomly selected from [0.8, 1.25] and gain augmentation with a factor randomly selected
from [−6 dB,+6 dB]. Scale augmentation was performed before zero padding (thus, before mixing
when employing BC learning) using linear interpolation, and gain augmentation was performed just
before inputting to the network (thus, after mixing when using BC learning).

The results for EnvNet-v2 are shown in the lower half of Table 1, and the training curves on ESC-50
are given in Fig. 5(right). With BC learning, the performance was significantly improved even when
we used a strong data augmentation scheme. Furthermore, the performance on ESC-50 (15.1%) sur-
passes the human performance (18.7%). BC learning performs well on various networks, datasets,
and data augmentation schemes, and using BC learning is always beneficial.

4.1.4 RELATIONSHIP WITH # OF TRAINING EPOCHS

0 300 600 900 1200
total epochs

10

12

14

16

18

20

er
ro

r r
at

e
(%

)

ESC-10

EnvNet standard
EnvNet BC (ours)

0 300 600 900 1200
total epochs

22

24

26

28

30

32

34

36

er
ro

r r
at

e
(%

)
ESC-50

EnvNet standard
EnvNet BC (ours)

Figure 6: Error rate vs. # of training epochs.

We investigated the relationship between the
performance and the number of training
epochs, because the previously described ex-
periments were conducted using different num-
bers of training epochs (we used 2× training
epochs for BC learning). Fig. 6 shows the er-
ror rate of EnvNet on ESC-10 and ESC-50 with
various numbers of training epochs. This figure
shows that for standard learning, approximately
600 training epochs are sufficient for both ESC-
10 and ESC-50. However, this number is insufficient for BC learning. Although BC learning per-
formed better than standard learning with 600 epochs, improved performance was achieved when
using more training epochs (900 and 1,200 epochs for ESC-10 and ESC-50, respectively). However,
if the number of training epochs was small, the performance of BC learning was lower than that of
standard learning. We can say that BC learning always improves the performance as long as we use
a sufficiently large number of training epochs. Additionally, the number of training epochs needed
would become large when there are many classes.

4.2 ABLATION ANALYSIS

To understand the part that is important for BC learning, we conducted an ablation analysis. We
trained EnvNet on ESC-50 using various settings. All results are shown in Table 2. We also per-
formed 5-fold cross-validation five times and show the standard error.

Mixing method. We compared the mixing formula (Eqn. 1 vs. Eqn. 2, which consider the sound
pressure levels of two sounds) and the calculation method for sound pressure levels (RMS vs. A-
weighting). As shown in Table 2, the proposed mixing method using Eqn. 2 and A-weighting per-
formed the best. Considering the difference in the sound pressure levels is important for BC learning,
and the method used to define the sound pressure levels also has an effect on the performance.

8

Published as a conference paper at ICLR 2018

Table 2: Ablation analysis. We trained EnvNet on ESC-50
using various settings. The results show that the training
data variation is not the only matter.

Comparison of Setting Err. rate (%)

Mixing method

Eqn. (1) 26.8± 0.1
(2) + RMS 26.5± 0.2
(2) + A-weighting
(proposed) 24.1± 0.2

Label
Single 26.5± 0.2
Multi 25.0± 0.3
Ratio (proposed) 24.1± 0.2

mixed classes

N = 1 27.3± 0.2
N = 1 or 2 24.8± 0.3
N = 2 (proposed) 24.1± 0.2
N = 2 or 3 24.1± 0.2
N = 3 25.3± 0.2

Where to mix

Input (proposed) 24.1± 0.2
pool2 27.1± 0.3
pool3 28.7± 0.3
pool4 28.8± 0.2
fc5 28.5± 0.1
fc6 28.6± 0.2

Standard learning 29.2± 0.1

Label. We compared the different labels
that we applied to the mixed sound. As
shown in Table 2, the proposed ratio label of
t = r t1 + (1 − r) t2 performed the best.
When we applied a single label of the dom-
inant sound (i.e., t = t1 if r > 0.5, oth-
erwise t = t2) and trained the model using
softmax cross entropy loss, the performance
was improved compared to that of standard
learning. When we applied a multi-label (i.e.,
t = t1 + t2) and trained the model using sig-
moid cross entropy loss, the performance was
better than when using a single label. How-
ever, the performance was worse than when
using our ratio label in both cases. The model
can learn the between-class examples more
efficiently when using our ratio label.

Number of mixed classes. We investigated
the relationship between the performance and
the number of sound classes that we mixed.
N = 1 in Table 2 means that we mixed two
sounds belonging to the same class, which is
similar to Takahashi et al. (2016). N = 1 or 2
means that we completely randomly selected
two sounds to be mixed; sometimes these two sounds were the same class. N = 2 or 3 means
that we mixed two and three sounds belonging to different classes with probabilities of 0.5 and 0.5,
respectively. When we mixed three sounds, we generated a mixing ratio from Dir(1,1,1) and mixed
three sounds using a method that is an extended version of Eqn. 2 to three classes. As shown in
Table 2, the proposed N = 2 performed the best. N = 2 or 3 also achieved a good performance. It
is interesting to note that the performance of N = 3 is worse than that of N = 2 despite the larger
variation in training data. We believe that the most important factor is not the training data variation
but rather the enlargement of Fisher’s criterion and the regularization of the positional relationship
among the feature distributions. Mixing more than two sounds leads to increased training data
variation, but we expect that cannot efficiently achieve them.

Where to mix. Finally, we investigated what occurs when we mix two examples within the net-
work. We input two sounds to be mixed into the model and performed the forward calculation to the
mixing point. We then mixed the activations of two sounds at the mixing point and performed the
rest of the forward calculation. We mixed two activations h1 and h2 simply by r h1 +(1− r)h2 .
As shown in Table 2, the performance tended to improve when we mixed two examples at the layer
near the input layer. The performance was the best when we mixed in the input space. Mixing in
the input space is the best choice, not only because it performs the best, but also because it does not
require additional forward/backward computation and is easy to implement.

5 CONCLUSION

We proposed a novel learning method for deep sound recognition, called BC learning. Our method
improved the performance on various networks, datasets, and data augmentation schemes. More-
over, we achieved a performance surpasses the human level by constructing a deeper network named
EnvNet-v2 and training it with BC learning. BC learning is a simple and powerful method that im-
proves various sound recognition methods and elicits the true value of large-scale networks. Further-
more, BC learning is innovative in that a discriminative feature space can be learned from between-
class examples, without inputting pure examples. We assume that the core idea of BC learning is
generic and could contribute to the improvement of the performance of tasks of other modalities.

ACKNOWLEDGEMENT

This work was supported by JST CREST Grant Number JPMJCR1403, Japan.

9

Published as a conference paper at ICLR 2018

REFERENCES

Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong Yu. Convolu-
tional neural networks for speech recognition. IEEE/ACM TASLP, 22(10):1533–1545, 2014.

Senjian An, Farid Boussaid, and Mohammed Bennamoun. How can deep rectifier networks achieve linear
separability and preserve distances? In ICML, 2015.

Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound representations from unlabeled
video. In NIPS, 2016.

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very deep convolutional neural networks for
raw waveforms. In ICASSP, 2017.

Steven B Davis and Paul Mermelstein. Comparison of parametric representations for monosyllabic word recog-
nition in continuously spoken sentences. IEEE TASSP, 28(4):357–366, 1980.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):179–188,
1936.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore,
Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for audio events. In
ICASSP, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In ICCV, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. In IEEE, 1998.

Beth Logan et al. Mel frequency cepstral coefficients for music modeling. In ISMIR, 2000.

Kuba Łopatka, Paweł Zwan, and Andrzej Czyżewski. Dangerous sound event recognition using support vector
machine classifiers. In Advances in Multimedia and Network Information System Technologies, pp. 49–57.
2010.

Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Recurrent neural networks for polyphonic
sound event detection in real life recordings. In ICASSP, 2016.

Karol J Piczak. Environmental sound classification with convolutional neural networks. In MLSP, 2015a.

Karol J Piczak. Esc: Dataset for environmental sound classification. In ACM Multimedia, 2015b.

Tara N Sainath, Oriol Vinyals, Andrew Senior, and Hasim Sak. Convolutional, long short-term memory, fully
connected deep neural networks. In ICASSP, 2015a.

Tara N Sainath, Ron J Weiss, Andrew Senior, Kevin W Wilson, and Oriol Vinyals. Learning the speech front-
end with raw waveform cldnns. In Interspeech, 2015b.

Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data augmentation for environ-
mental sound classification. IEEE SPL, 24(3):279–283, 2017.

Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and taxonomy for urban sound research.
In ACMMM, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In ICLR, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. JMLR, 15(Jun):1929–1958, 2014.

10

Published as a conference paper at ICLR 2018

Naoya Takahashi, Michael Gygli, Beat Pfister, and Luc Van Gool. Deep convolutional neural networks and
data augmentation for acoustic event detection. In Interspeech, 2016.

Yuji Tokozume and Tatsuya Harada. Learning environmental sounds with end-to-end convolutional neural
network. In ICASSP, 2017.

Seiya Tokui, Kenta Oono, and Shohei Hido. Chainer: a next-generation open source framework for deep
learning. In NIPS Workshop on Machine Learning Systems, 2015.

Michel Vacher, Jean-François Serignat, and Stephane Chaillol. Sound classification in a smart room environ-
ment: an approach using gmm and hmm methods. In SPED, 2007.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In
NIPS, 2015.

11

Published as a conference paper at ICLR 2018

A LEARNING SETTINGS

Table 3 shows the detailed learning settings of standard learning. We trained the model by beginning
with a learning rate of Initial LR, and then divided the learning rate by 10 at the epoch listed in LR
schedule. To improve convergence, we used a 0.1× smaller learning rate for the first Warmup
epochs. We then terminated training after # of epochs epochs. We doubled # of epochs and LR
schedule when using BC learning, as we mentioned in the paper.

Table 3: Details of learning settings.

Dataset Model # of epochs Initial LR LR schedule Warmup

ESC-50

EnvNet 600 0.01 {300, 450} 0
SoundNet5 300 0.1 {150, 225} 0
M18 400 0.1 {200, 300} 0
Logmel-CNN 300 0.01 {150, 225} 0
EnvNet-v2 1,000 0.1 {300, 600, 900} 10

ESC-10

EnvNet 600 0.01 {300, 450} 0
SoundNet5 300 0.1 {150, 225} 0
M18 400 0.1 {200, 300} 0
Logmel-CNN 300 0.01 {150, 225} 0
EnvNet-v2 600 0.01 {300, 450} 0

UrbanSound8K

EnvNet 400 0.01 {200, 300} 0
SoundNet5 200 0.1 {100, 150} 0
M18 300 0.1 {150, 225} 0
Logmel-CNN 200 0.01 {100, 150} 0
EnvNet-v2 600 0.1 {180, 360, 540} 10

B CONFIGURATION OF ENVNET-V2

Table 4 shows the configuration of our EnvNet-v2 used in the experiments. EnvNet-v2 consists of
10 convolutional layers, 3 fully connected layers, and 5 max-pooling layers. We use a sampling
rate of 44.1 kHz, which is the standard recording setting, and a higher resolution than existing
networks (Piczak, 2015a; Aytar et al., 2016; Dai et al., 2017; Tokozume & Harada, 2017), in order to
use rich high-frequency information. The basic idea is motivated by EnvNet (Tokozume & Harada,
2017), but the advantages of other successful networks are incorporated. First, we extract short-time
frequency features with the first two temporal convolutional layers and a pooling layer (conv1–
pool2). Second, we swap the axes and convolve in time and frequency domains with the later
layers (conv3–pool10). In this part, we hierarchically extract the temporal features by stacking the
convolutional and pooling layers with decreasing their kernel size in a similar manner to SoundNet
(Aytar et al., 2016). Furthermore, we stack multiple convolutional layers with a small kernel size
in a similar manner to M18 (Dai et al., 2017) and VGG (Simonyan & Zisserman, 2015), to extract
more rich features. Finally, we produce output predictions with fc11–fc13 and the following softmax
activation. Single output prediction is calculated from 66,650 input samples (approximately 1.5 s
at 44.1 kHz). We do not use padding in convolutional layers. We apply ReLU activation for all the
hidden layers and batch normalization (Ioffe & Szegedy, 2015) to the output of conv1–conv10. We
also apply 0.5 of dropout (Srivastava et al., 2014) to the output of fc11 and fc12. We use a weight
initialization of He et al. (2015) for all convolutional layers. We initialize the weights of each fully
connected layer using Gaussian distribution with a standard deviation of

√
1/n, where n is the input

dimension of the layer.

12

Published as a conference paper at ICLR 2018

Table 4: Configuration of EnvNet-v2. Data shape represents the dimension in (channel, frequency, time).

Layer ksize stride # of filters Data shape

Input (1, 1, 66,650)

conv1 (1, 64) (1, 2) 32
conv2 (1, 16) (1, 2) 64
pool2 (1, 64) (1, 64) (64, 1, 260)

swapaxes (1, 64, 260)

conv3, 4 (8, 8) (1, 1) 32
pool4 (5, 3) (5, 3) (32, 10, 82)

conv5, 6 (1, 4) (1, 1) 64
pool6 (1, 2) (1, 2) (64, 10, 38)

conv7, 8 (1, 2) (1, 1) 128
pool8 (1, 2) (1, 2) (128, 10, 18)

conv9, 10 (1, 2) (1, 1) 256
pool10 (1, 2) (1, 2) (256, 10, 8)

fc11 - - 4096 (4,096,)
fc12 - - 4096 (4,096,)
fc13 - - # of classes (# of classes,)

13

