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Abstract

End-to-end automatic speech recognition (ASR) commonly transcribes audio sig-
nals into sequences of characters while its performance is evaluated by measuring
the word-error rate (WER). This suggests that predicting sequences of words di-
rectly may be helpful instead. However, training with word-level supervision can
be more difficult due to the sparsity of examples per label class. In this paper we
analyze an end-to-end ASR model that combines a word-and-character representa-
tion in a multi-task learning (MTL) framework. We show that it improves on the
WER and study how the word-level model can benefit from character-level supervi-
sion by analyzing the learned inductive preference bias of each model component
empirically. We find that by adding character-level supervision, the MTL model
interpolates between recognizing more frequent words (preferred by the word-level
model) and shorter words (preferred by the character-level model).

1 Introduction

End-to-end automatic speech recognition (ASR) allows for learning a direct mapping from audio
signals to character outputs. Usually, a language model re-scores the predicted transcripts during
inference to correct spelling mistakes [17]. If we map the audio input directly to words, we can use a
simpler decoding mechanism and reduce the prediction time. Unfortunately, word-level models can
only be trained on known words. Out-of-vocabulary (OOV) words have to be mapped to an unknown
token. Furthermore, decomposing transcripts into sequences of words decreases the available number
of examples per label class. These shortcomings make it difficult to train on the word-level [3].

Recent works have shown that multi-task learning (MTL) [9] on the word- and character-level
can improve the word-error rate (WER) of common end-to-end speech recognition architectures
[3, 4, 19, 22, 23, 25, 30]. MTL can be interpreted as learning an inductive bias with favorable
generalization properties [7]. In this work we aim at characterizing the nature of this inductive bias
in word-character-level MTL models by analyzing the distribution of words that they recognize.
Thereby, we seek to shed light on the learning process and possibly inform the design of better models.
We will focus on connectionist temporal classification (CTC) [16]. However, the analysis can also
prove beneficial to other modeling paradigms, such as RNN Transducers [15] or Encoder-Decoder
models, e.g., [6, 10].

Contributions. We show that, contrary to earlier negative results [3, 28], it is in fact possible to
train a word-level model from scratch on a relatively small dataset and that its performance can be
further improved by adding character-level supervision. Through an empirical analysis we show that
the resulting MTL model combines the preference biases of word- and character-level models. We
hypothesize that this can partially explain why word-character MTL improves on only using a single
decomposition, such as phonemes, characters or words.
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2 Related work

Several works have explored using words instead of characters or phonemes as outputs of the end-to-
end ASR model [3, 28]. Soltau et al. [28] found that in order to solve the problem of observing only
few labels per word, they needed to use a large dataset of 120, 000 hours to train a word-level model
directly. Accordingly, Audhkhasi et al. [3] reported difficulty to train a model on words from scratch
and instead fine-tuned a pre-trained character-level model after replacing the last dense layer with a
word embedding.

MTL enables a straightforward joint training procedure to integrate transcript information on multiple
levels of granularity. Treating word- and character-level transcription as two distinct tasks allows for
combining their losses in a parallel [22, 23, 29, 30] or hierarchical structure [14, 21, 25]. Augmenting
the commonly-used CTC loss with an attention mechanism can help with aligning the predictions on
both character- and word-level [4, 13, 23]. All these MTL methods improve a standard CTC baseline.

Finding the right granularity of the word decomposition is in itself a difficult problem. While Li
et al. [23] used different fixed decompositions of words, sub-words and characters, it is also possible
to optimize over alignments and decompositions jointly [24]. Orthogonal to these works different
authors have explored how to minimize WER directly by computing approximate gradients [26, 33].

When and why does MTL work? Earlier theoretical work argued that the auxiliary task provides
a favorable inductive bias to the main task [7]. Within natural language processing on text several
works verified empirically that this inductive bias is favorable if there is a certain notion of relatedness
between the tasks [5, 8, 27]. Here, we investigate how to characterize the inductive bias learned via
MTL for speech recognition.

3 Combining word- and character-level ASR

The CTC loss is defined as follows [16]:

L(x, z) := − log
∑

π∈B−1(z)

p(π|x) = − log
∑

π∈B−1(z)

∏
t

p(πt|x) , (1)

where x is the audio input, commonly a spectrogram, and π is a path that corresponds to the ground-
truth transcript z. The squashing function B maps a path π to the output z by first merging repetitions
and then deleting so-called blank tokens. The gradient of the CTC loss can be computed efficiently
using a modified forward-backward algorithm.

Typically, πt is a categorical random variable over the corresponding output alphabet A =
{a, b, c, ..., ε}. Here, ε is the blank token which encodes the empty string. This output repre-
sentation enables the model to be able to transcribe any word possible without a specified alignment.
Character-level CTC models are often supplemented by an external language model that can signifi-
cantly improve the accuracy of the ASR. This is because these models still make spelling mistakes
despite being trained on large amounts of data [1].

By using an alphabet of words one can ensure that there are no misspellings. The alphabet could
contain, for example, the most common words found in the training set. This has the advantage
that any word is guaranteed to be spelled correctly and that costly re-scoring on a character-level is
avoided. However, by using a word-level decoding, we can no longer predict rare or new words. In
this case the model has to be content with outputting an unknown token. Another challenge when
using a word-level model is label sparsity. While we will observe many examples of a single character,
there will be fewer for a single word, making overfitting more likely. We aim at counter-acting these
shortcomings by making use of character-level information during training, similar to Audhkhasi
et al. [3].

In this work we combine word- and character-level models via an MTL loss and denote this a
word-character-level model. We treat each output-level prediction as a separate task and form a linear
combination of the losses. The MTL loss is then defined as

LMTL(x, z) := Lword(x, z) + λLchar(x, z) , (2)

where λ ≥ 0 defines a hyperparameter to weight the influence of the character-level CTC loss Lchar
against the word-level CTC loss Lword. In our experiments we set it to 1, giving equal contribution

2



0 20 40 60 80
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

W
ER

 (v
al

id
at

io
n)

word-level (MTL)
char-level (MTL)
combined (MTL)
char-level baseline

0.23
0.25
0.28
0.30

Figure 1: Multi-task learning with equal weighting on word- and character-level.

to both loss terms, but other choices may improve the performance. Alternatively, one could try
to estimate this weight based on the uncertainty [18] or gradient norm [11] of each loss term. We
experimented with these approaches, but did not observe any significant improvement in performance
over the equally-weighted loss.

4 Experiments

We trained our models using a convolutional architecture which is based on Wav2Letter [12]. Details
can be found in the appendix. Compared to recurrent neural networks, convolutional neural networks
avoid iterative computation over time and suffer less from the vanishing/exploding gradient problem.
They achieve comparable performance in terms of WER [12, 32]. We performed all experiments
on read news articles from the Wall Street Journal (WSJ) [31]. This dataset has relatively little
background noise and allows us to focus on the influence of word frequency and word length. We
used the si284 subset for training, and dev92 for validation. For the character-level model we used
32 different characters which include the space-character and a blank token. To define the output
alphabet for the word-level model, we included all words that appeared at least 5 times in the training
set in addition to a blank and an unknown token. This corresponds to an alphabet of 9411 units
with an OOV rate of 9% on the training set, and 10% on the validation set, which represents a
lower bound for the achievable WER of a word-level model. For the MTL model we let word- and
character-level model share every layer but the last.

To decode the output on the character- and word-level, we used greedy decoding. In order to get rid
of unknown tokens in our prediction, we employed the following heuristic [22]: For each unknown
token predicted on the word-level, we substituted the corresponding word on the character-level that
was defined at the same time step. To compare our results we also trained word- and character-only
models. For optimization we used the Adam-optimizer [20] with a learning rate of 5e−4 and a batch
size of 16 to fit the whole model into the memory of one GPU. We applied batch normalization and
dropout. For the input data, we transformed each utterance into spectrograms over 20ms with a shift
of 10ms using 40 log-mel coefficients, standardized per spectrogram. We ran each experiment for
100 epochs, corresponding to 233, 838 updates.

MTL performance. The results of our experiments can be found in Figure 1. It shows the learning
curve for the word- and character-level components by measuring the WER on the validation set. The
dashed line shows the achieved WER using a character-level model without joint word-level training.
We observe that MTL converges faster and to a lower WER of 23%, which is 5 percentage points
lower than the character-level component of the MTL network, or the single-task character-level
baseline. Using a beam search decoder with a lexicon constraint on the character-level model reduces
the WER from 28% to a WER of 24%, which is still higher than our MTL error. This shows that
MTL performs favorably even without a language model. A word-level-only model achieved the same
performance as the character-level baseline on this dataset. Contrary to the findings of Audhkhasi
et al. [3], this shows that it is indeed possible to train a word-level model from scratch, even without
a large amount of training data. While the combined decoding only gives an improvement of 0.7
percentage points in terms of WER, it eliminates unknown-token predictions which might make
transcripts more readable.
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Figure 2: Comparing the CDFs of recognized words between character-, word- and MTL-model.
(left) The distribution of recognized words during the first epochs as a function of word frequency
rank. The most frequent words in the training set are on the left. (right) The distribution of recognized
words during the first epochs as a function of word length rank. Longer words are on the right.

Characterizing the inductive bias. Arpit et al. [2] have shown that a neural network trained with
stochastic gradient descent learns easier examples first. We argue that we can characterize the
preference bias of our model and learning algorithm by showing which examples are easy to classify
in the particular representation that each of the models is learning. Since ASR models are usually
evaluated in terms of WER, we consider which words each model is learning. To this end we chose a
relatively clean dataset and considered the attributes frequency and length to describe a word.

We trained each model for 4 epochs and recorded the distribution of the recognized words during
training. Since we are not given a perfect alignment between speech and ground-truth transcript, we
define a word as being recognized if it is both present in the greedy prediction on the validation set
and the corresponding ground-truth transcript. Figure 2 shows how the distribution of recognized
words changes during training. We see that the word-level model is biased towards recognizing the
most common words and slowly learns less frequent words over time. This makes sense since more
weight is given to the corresponding examples. While the same effect is present in the character-level
model, it covers the complete support of the word frequency distribution in the same number of steps.

On the other hand for the length distribution, we see that the word-level model covers all words
independent of its length within the beginning of training. The character-level model focuses strongly
on shorter words before it covers the whole range of the word length distribution. If we compare the
learning dynamics of both models, we find that each model learns words with different characteristics
more easily. If we take a look at the MTL model, we see that it combines both biases and arrives
at learning a distribution that is much more uniform across both word frequency and word length.
We hypothesize that putting more emphasis on the tail of each of these distributions combines the
strengths of the two models and makes them perform better, especially in distributions that follow a
power law such as word frequency rank.

5 Conclusion

In contrast to earlier studies in the literature, we found that, even on a relatively small dataset, training
on a word-level can be feasible. Furthermore, we found that combining a word-level model with
character-level supervision in MTL can improve results noticeably. To gain a better understanding
of this, we characterized the inductive bias of word-character MTL in ASR by comparing the
distributions of recognized words at the beginning of training. We found that adding character-level
supervision to a word-level interpolates between recognizing more frequent words (preferred by the
word-level model) and shorter words (preferred by the character-level model). This effect could be
even more pronounced on harder datasets than WSJ, such as medical communication data where
many long words are infrequent, but very important. Further analysis of word distributions in terms
of pitch, noise and acoustic variability could provide additional insight.

4



References
[1] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen,

M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, A. Y. Hannun,
B. Jun, T. Han, P. LeGresley, X. Li, L. Lin, S. Narang, A. Y. Ng, S. Ozair, R. Prenger, S. Qian,
J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, C. Wang, Y. Wang, Z. Wang, B. Xiao, Y. Xie,
D. Yogatama, J. Zhan, and Z. Zhu. Deep Speech 2 : End-to-End Speech Recognition in English
and Mandarin. In ICML, 2016.
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A Architecture

The architecture we used throughout the paper is based on Wav2Letter [12]. It is shown in Table 1.
Different from the original setup we use 2D convolutions in the first layers following the input and a
slightly larger network. We apply dropout, batch normalization and ReLU activations to every layer
but the input and last layer. We use a dropout rate of 0.2 for the convolutional layers and 0.4 for the
dense layers. We clip the ReLU activations at a value of 20. Here, we show the architecture of the
character-level model. The word-level model only differs in a larger output dimension (9411 instead
of 32). For training we add a CTC loss on top of the dense layer, and for inference a softmax output.

Table 1: Neural network architecture of the character-level model.

Layer Dimensions Kernel Strides Filters
[time, freq., channel] [time, freq.] [time, freq.]

input [2500, 40, 1]
conv2d [1250, 20, 64] [11, 15] [2, 2] 64

conv2d-1 [1250, 10, 64] [11, 7] [1, 2] 64
conv2d-2 [1250, 5, 192] [11, 7] [1, 2] 192

reshape-conv2d-to-conv1d [1250, 960]
conv1d [1250, 256] 7 1 256

conv1d-1 [1250, 256] 7 1 256
conv1d-2 [1250, 256] 7 1 256
conv1d-3 [1250, 256] 7 1 256
conv1d-4 [1250, 256] 7 1 256
conv1d-5 [1250, 256] 7 1 256
conv1d-6 [1250, 256] 7 1 256
conv1d-7 [1250, 2048] 32 1 2048

dense [1250, 2048]
dense-1 [1250, 32]

7


	Introduction
	Related work
	Combining word- and character-level ASR
	Experiments
	Conclusion
	Architecture

