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ABSTRACT

Recent research has shown that one can train a neural network with binary weights
and activations at train time by augmenting the weights with a high-precision
continuous latent variable that accumulates small changes from stochastic gradient
descent. However, there is a dearth of work to explain why one can effectively cap-
ture the features in data with binary weights and activations. Our main result is that
the neural networks with binary weights and activations trained using the method
of Courbariaux, Hubara et al. (2016) work because of the high-dimensional geom-
etry of binary vectors. In particular, the ideal continuous vectors that extract out
features in the intermediate representations of these BNNs are well-approximated
by binary vectors in the sense that dot products are approximately preserved. Fur-
thermore, the results and analysis used on BNNs are shown to generalize to neural
networks with ternary weights and activations. Compared to previous research that
demonstrated good classification performance with BNNs, our work explains why
these BNNs work in terms of HD geometry. Our theory serves as a foundation
for understanding not only BNNs but a variety of methods that seek to compress
traditional neural networks. Furthermore, a better understanding of multilayer
binary neural networks serves as a starting point for generalizing BNNs to other
neural network architectures such as recurrent neural networks.

1 INTRODUCTION

The rapidly decreasing cost of computation has driven many successes in the field of deep learning in
recent years. Consequently, researchers are now considering applications of deep learning in resource
limited hardware such as neuromorphic chips, embedded devices and smart phones (Esser et al.
(2016), Neftci et al. (2016), Andri et al. (2017)). A recent realization for both theoretical researchers
and industry practitioners is that traditional neural networks can be compressed because they are
highly over-parameterized. While there has been a large amount of experimental work dedicated to
compressing neural networks (Sec. 2), we focus on the particular approach that replaces costly 32-bit
floating point multiplications with cheap binary operations. Our analysis reveals a simple geometric
picture based on the geometry of high dimensional binary vectors that allows us to understand the
successes of the recent efforts to compress neural networks.

Courbariaux et al. (2016) and Hubara et al. (2016) showed that one can efficiently train neural
networks with binary weights and activations that have similar performance to their continuous
counterparts. Such BNNs execute 7 times faster using a dedicated GPU kernel at test time. Fur-
thermore, they argue that such BNNs require at least a factor of 32 fewer memory accesses at test
time that should result in an even larger energy savings. There are two key ideas in their papers
(Fig. 1). First, a continuous weight, wc, is associated with each binary weight, wb, that accumulates
small changes from stochastic gradient descent. Second, the non-differentiable binarize function
(θ(x) = 1 if x > 0 and −1 otherwise) is replaced with a continuous one during backpropagation.
These modifications allow one to train neural networks that have binary weights and activations with
stochastic gradient descent. While the work showed how to train such networks, the existence of
neural networks with binary weights and activations needs to be reconciled with previous work that
has sought to understand weight matrices as extracting out continuous features in data (e.g. Zeiler &
Fergus (2014)). Summary of contributions:

1



Published as a conference paper at ICLR 2018

Binarize

F-prop:  
y  =  f f(x)  
=  𝜽(x)

Backprop:  
δx =  δy ·  
d/dx[fb(x)]

x

y

Binarize

BinarizeWck Wbk

Ak
MatMul or  
Conv+MP

Batch  
Norm

Ak+1

a b

Figure 1: Review of the Courbariaux et al. (2016) BNN Training Algorithm: (a) A binary neural
network is composed of binary convolution transformers (dashed green box). Each oval corresponds
to a tensor and the derivative of the cost with respect to that tensor. Rectangles correspond to
transformers that specify forward and backward propagation functions. Associated with each binary
weight, wb, is a continuous weight, wc, that is used to accumulate gradients. k denotes the kth
layer of the network. (b) Each binarize transformer has a forward function and a backward function.
The forward function simply binarizes the inputs. In the backward propagation step, one normally
computes the derivative of the cost with respect to the input of a transformer via the Jacobian of
the forward function and the derivative of the cost with respect to the output of that transformer
(δu ≡ dC/du where C is the cost function used to train the network). Since the binarize function is
non-differentiable, the straight-through estimator (Bengio et al. (2013)), which is a smoothed version
of the forward function, is used for the backward function .

1. Angle Preservation Property: We demonstrate that binarization approximately preserves
the direction of high-dimensional vectors. In particular, we show that the angle between a
random vector (from a standard normal distribution) and its binarized version converges
to arccos

√
2/π ≈ 37◦ as the dimension of the vector goes to infinity. This angle is an

exceedingly small angle in high dimensions. Furthermore, we show that this property is
present in the weight vectors of a network trained using the method of Courbariaux et al.
(2016).

2. Dot Product Proportionality Property: First, we empirically show that the weight-activation
dot products, an important intermediate quantity a neural network, are approximately
proportional under the binarization of the weight vectors. Next, we argue that if these weight
activation dot products are proportional, then the continuous weights in the Courbariaux
et al. (2016) method aren’t just a learning artifact. The continuous weights obtained from
the BNN training algorithm (which decouples the forward and backward propagation steps)
are an approximation of the weights one would learn if the network were trained with
continuous weights and regular backpropagation.

3. Generalized Binarization Transformation (GBT): We show that the computations done by
the first layer of the network are fundamentally different than the computations being done
in the rest of the network because correlations in the data result in high variance principal
components that are not randomly oriented relative to the binarization. Thus we recommend
an architecture that uses a continuous convolution for the first layer to embed the image
in a high-dimensional binary space, after which it can be manipulated with cheap binary
operations. Furthermore, we illustrate how a GBT (rotate, binarize, rotate back) is useful for
embedding low dimensional data in a high-dimensional binary space.

4. Generalization to Ternary Neural Networks: We show that the same analysis applies to
ternary neural networks. In particular, the angle between a random vector from a standard
normal distribution and the ternarized version of that vector predicts the empirical distri-
bution of such angles in a network trained on CIFAR10. Furthermore, the dot product
proportionality property is shown to hold for ternary neural networks.
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2 RELATED WORK

Neural networks that achieve good performance on tasks such as IMAGENET object recognition are
highly computationally intensive. For instance, AlexNet has 61 million parameters and executes 1.5
billion operations to classify one 224 by 224 image (30 thousand operations/pixel) (Rastegari et al.
(2016)). Researchers have sought to reduce this computational cost for embedded applications using
a number of different approaches.

The first approach is to try and compress a pre-trained network. Kim et al. (2015) uses a Tucker
decomposition of the kernel tensor and fine tunes the network afterwards. Han et al. (2015b) train a
network, prune low magnitude connections, and retrain. Han et al. (2015a) extend their previous work
to additionally include a weight sharing quantization step and Huffman coding of the weights. More
recently, Han et al. (2017) train a dense network, sparsify it, and then retrain a dense network with
the pruned weights initialized to zero. Second, researchers have sought to train networks using either
low precision floating point numbers or fixed point numbers, which allow for cheaper multiplications
(Courbariaux et al. (2014), Gupta et al. (2015), Judd et al. (2015), Gysel et al. (2016), Lin et al.
(2016), Lai et al. (2017)).

Third, one can train networks that have quantized weights and or activations. Bengio et al. (2013)
looked at estimators for the gradient through a stochastic binary unit. Courbariaux et al. (2015) train
networks with binary weights, and then later with binary weights and activations (Courbariaux et al.
(2016)). Rastegari et al. (2016) replace a continuous weight matrix with a scalar times a binary matrix
(and have a similar approximation for weight activation dot products). Kim & Smaragdis (2016) train
a network with weights restricted in the range −1 to 1 and then use a noisy backpropagation scheme
train a network with binary weights and activations. Alemdar et al. (2016), Li et al. (2016) and Zhu
et al. (2016) focus on networks with ternary weights. Further work seeks to quantize the weights and
activations in neural networks to an arbitrary number of bits (Zhou et al. (2016), Hubara et al. (2016)).
Zhou et al. (2017) use weights and activations that are zero or powers of two. Lin et al. (2015) and
Zhou et al. (2016) quantize backpropagation in addition to the forward propagation.

Beyond merely seeking to compress neural networks, the analysis of the internal representations of
neural networks is useful for understanding how to to compress them. Agrawal et al. (2014) found that
feature magnitudes in higher layers do not matter (e.g. binarizing features barely changes classification
performance). Merolla et al. (2016) analyze the robustness of neural network representations to a
collection of different distortions. Dosovitskiy & Brox (2016) observe that binarizing features in
intermediate layers of a CNN and then using backpropagation to find an image with those features
leads to relatively little distortion of the image compared to dropping out features. These papers
naturally lead into our work where we are seeking to better understand the representations in neural
networks based on the geometry of high-dimensional binary vectors.

3 THEORY AND EXPERIMENTS

We investigate the internal representations of neural networks with binary weights and activations.
A binary neural network is trained on CIFAR-10 (same learning algorithm and architecture as in
Courbariaux et al. (2016)). Experiments on MNIST were carried out using both fully connected and
convolutional networks and produced similar results. The CIFAR-10 convolutional neural network
has six layers of convolutions, all of which have a 3 by 3 spatial kernel. The number of feature maps
in each layer are 128, 128, 256, 256, 512, 512. After the second, fourth, and sixth convolutions,
there is a 2 by 2 max pooling operation. Then there are two fully connected layers with 1024 units
each. Each layer has a batch norm layer in between. The experiments using ternary neural networks
use the same network architecture. The dimensionality of the weight vectors in these networks (i.e.
convolution converted to a matrix multiply) is the patch size (= 3 ∗ 3 = 9) times the number of
channels.

3.1 PRESERVATION OF DIRECTION DURING BINARIZATION

In this section, we analyze the angle distributions (i.e. geometry) of high-dimensional binary vectors.
This is crucial for understanding binary neural networks because we can imagine that at each layer of
a neural network, there are some ideal continuous weight vectors that extract out features. A binary
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neural network approximates these ideal continuous vectors with a binary vectors. In low dimensions,
binarization strongly impacts the direction of a vector. However, we argue that binarization does not
substantially change the direction of a high-dimensional continuous vector. It is often the case that
the geometric properties of high-dimensional vectors are counter-intuitive. For instance, one key idea
in the hyperdimensional computing theory of Kanerva (2009) is that two random, high-dimensional
vectors of dimension d whose entries are chosen uniformly from the set {−1, 1} are approximately
orthogonal. The result follows from the central limit theorem because the cosine angle between two
such random vectors is normally distributed with µ = 0 and σ ∼ 1/

√
d. Then cos θ ≈ 0 implies

that θ ≈ π
2 . Building upon this work, we study the way in which binary vectors are distributed

relative to continuous vectors. As binarizing a continuous vector gives the binary vector closest in
angle to that continuous vector, we can get a sense of how binary vectors are distributed relative
to continuous vectors in high dimensions by binarizing continuous vectors. The standard normal
distribution, which serves as an informative null distribution because it is rotationally invariant,
is used to generate random continuous vectors which are then binarized. This analysis gives a
fundamental insight into understanding the recent success of binary neural networks. Binarizing
a random continuous vector changes its direction by a small amount relative to the angle between
two random vectors in moderately high dimensions (Fig. 2a). Binarization changes the direction
of a vector by approximately 37◦ in high dimensions. This seems like a large change based on
our low-dimensional intuition. Indeed, the angle between two randomly chosen vectors from a
rotationally invariant distribution is uniform in two dimensions. However, two randomly chosen
vectors are approximately orthogonal in high dimensions. Thus while it is common for two random
vectors to have an angle less than 37◦ in low dimensions, it is exceedingly rare in high dimensions.
Therefore 37◦ is a small angle in high dimensions.

In order to test our theory of the binarization of random vectors chosen from a rotationally invariant
distribution, we train a multilayer binary CNN on CIFAR10 (using the Courbariaux et al. (2016)
method) and study the weight vectors1 of that network. Remarkably, there is a close correspondence
between the experimental results and the theory for the angles between the binary and continuous
weights (Fig. 2b). For each layer, the distribution of the angles between the binary and continuous
weights is sharply peaked near the d→∞ expectation of arccos

√
2/π. We note that there is a small

but systematic deviation from the theory towards larger angles for the higher layers of the network
(Fig. 6). Ternary neural networks are considered in (SI Sec. 5.5) and yield a similar result.

3.2 DOT PRODUCT PROPORTIONALITY AS A SUFFICIENT CONDITION FOR APPROXIMATING A
NETWORK WITH CONTINUOUS WEIGHTS

Given the previous discussion, an important question to ask is: are the so-called continuous weights
a learning artifact without a clear correspondence to the binary weights? While we know that
wb = θ(wc), there are many continuous weights that map onto a particular binary weight vector.
Which one is found when using the straight-through estimator to backpropagate through the binarize
function? Remarkably, there is a clear answer to this question. In numerical experiments, we see
that one gets the continuous weight vector such that the dot products of the activations with the pre-
binarization and post-binarization weights are highly correlated (Fig. 3). In equations, a ·wb ∼ a ·wc.
We call this relation the Dot Product Proportionality (DPP) property. The proportionality constant,
which is subsequently normalized away by a batch norm layer, depends on the magnitudes of the
continuous and binary weight vectors and the cosine angle between the binary and continuous weight
vectors. The theoretical consequences of the DPP property are explored in the rest of this section.

We show that the modified gradient of the BNN training algorithm can be viewed as an estimator of
the gradient that would be used to train the continuous weights in traditional backpropagation. This
establishes the fundamental point that while the weights and activations are technically binary, they
are operating as if the weights are continuous. For instance, one could imagine using an exhaustive
search over all binary weights in the network. However, the additional structure in the problem
associated with taking dot products makes the optimization simpler than that. Furthermore, we
show that if the dot products of the activations with the pre-binarized and post-binarized weights are
proportional then straight-through estimator gradient is proportional to the continuous weight network
gradient. The key to the analysis is to focus on the transformers in the network whose forward and

1If each convolution is written as the matrix multiplication Wx where x is a column vector, then the weight
vectors are the rows of W .
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Figure 2: Binarization of High-Dimensional Vectors Approximately Preserves their Direction in
Theory and Practice: (a) Distribution of angles between two random vectors (blue), and between a
vector and its binarized version (red), for a rotationally invariant distribution of dimension d. The
red distribution is peaked near the d → ∞ limit of arccos

√
2/π ≈ 37◦ (SI, Sec. 1). While 37◦

may seem like a large angle, that angle is small as compared to the angle between two random
vectors in moderately high dimensions (i.e. the blue and red curves are well-separated). (b) Angle
distribution between continuous and binary weight vectors by layer for a binary CNN trained on
CIFAR-10. For the higher layers, there is a close correspondence to the theory. There is a small, but
systematic deviation towards large angles (SI, Fig. 6). d is the dimension of the filters at each layer.
(c) Standard deviations of the angle distributions from (b) by layer. We see a correspondence to the
theoretical expectation that standard deviations of each of the angle distributions scales as d−0.5 (SI,
Sec. 1). (d) Histogram of the components of the continuous weights at each layer. The distribution is
approximately Gaussian for all but the first layer. Furthermore, there is a high density of weights near
zero, which is the threshold for the binarization function.

backward propagation functions are not related in the way that they would normally be related in
typical gradient descent.

Suppose that there is a neural network where two tensors, u, and v and the associated derivatives of
the cost with respect to those tensors, δu, and δv, are allocated. Suppose that the loss as a function of
v is L(x)|x=v . Further, suppose that there are two potential forward propagation functions, f , and g.
If the network is trained under normal conditions using g as the forward propagation function, then
the following computations are done:

v ← g(u) δv ← L′(x = v = g(u)) δu← δv · g′(u)

where L′(x) denotes the derivative of L with respect to the vector x. In a modified backpropagation
scheme, the following computations are done

v ← f(u) δv = L′(x = v = f(u)) δu← δv · g′(u)

A sufficient condition for δu to be the same in both cases is L′(x = f(u)) ∼ L′(x = g(u)) where
a ∼ b means that the vector a is a scalar times the vector b.

Now this general observation is applied to the binarize transformer of Fig. 1. Here, u is the continuous
weight, wc, f(u) is the pointwise binarize function, g(u) is the identity function2, and L is the loss
of the network as a function of the weights in a particular layer. Given the network architecture,
L(x) = M(a · x) where a are the activations corresponding to that layer and M is the loss as a

2For the weights, g as in Fig. 1 is the identity function because the wc’s are clipped to be in the range [−1, 1].
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function of the weight-activation dot products. Then L′(x) = M ′(a · x) � a where � denotes a
pointwise multiply. Thus the sufficient condition is M ′(a ·wb) ∼M ′(a ·wc). Since the dot products
are followed by a batch normalization, M(k~x) = M(~x) → M ′(~x) = kM ′(k~x). Therefore, it is
sufficient that a · wb ∼ a · wc, which is the DPP property. When the DPP only approximately holds,
the second derivative can be used to bound the error between the two gradients of the two learning
procedures. In summary, the learning dynamics where g is used for the forward and backward passes
(i.e. training the network with continuous weights) is approximately equivalent to the modified
learning dynamics (f on the forward pass, and g on the backward pass) when we have the DPP
property.

While we demonstrated that the BNN learning dynamics approximate the dynamics that one would
have by training a network with continuous weights using a mixture of empirical and theoretical
arguments, the ideal result would be that the learning algorithm implies the DPP property. It should
be noted that in the case of stochastic binarization where E(wb) = wc is chosen by definition, the
DPP property is true by design. However, it is remarkable that the property still holds in the case of
deterministic binarization, which is revealing of the fundamental nature of the representations used in
neural networks.

While the main focus of this section is the binarization of the weights, the arguments presented
can also be applied to the binarize block that corresponds to the non-linearity of the network. The
analogue of the DPP property for this binarize block is: wb · ac ∼ wb · ab where ac denotes the
pre-binarized (post-batch norm) activations and ab = a denotes the binarized activations. This
property is empirically verified to hold. For the sake of completeness, the dot product histogram
corresponding to wc · ac ∼ wb · ab is also computed, although it doesn’t directly correspond to
removing one instance of a binarize transformer. This property is also empirically verified to hold
(SI, Fig. 5).

Impact on Classification: It is natural to ask to what extent the classification performance depends on
the binarization of the weights. In experiments on CIFAR10, if the binarization of the weights on
all of the convolutional layers is removed, the classification performance drops by only 3 percent
relative to the original network. Looking at each layer individually, removing the weight binarization
for the first layer accounts for this entire percentage, and removing the binarization of the weights
for each other layer causes no degradation in performance. This result is evident by looking at the
2D dot product histograms in Fig 3. The off-diagonal quadrants show where switching the weights
from binary to continuous changes the sign of the binarized weight-activation dot product. In all of
the layers except the first layer, there are very few dot products in the off-diagonal quadrants. Thus
we recommend the use of the dot product histograms for studying the performance of binary neural
networks. Removing the binarization of the activations has a substantial impact on the classification
performance because that removes the main non-linearity of the network.

3.3 INPUT CORRELATIONS AND THE GENERALIZED BINARIZATION TRANSFORMATION

Not surprisingly, some distributions are impacted more strongly by binarization than others. A binary
neural network must adapt its internal representations in such a way to not be degraded too much by
binarization at each layer. In this section we explore the idea that the principal components of the
input to the binarization function should be randomly oriented relative to the binarization. While the
network can adapt the higher level representations to satisfy this property, the part of the network
that interfaces with the input doesn’t have that flexibility. We make the novel observation that the
difficulties in training the first layer of the network are tied to the intrinsic correlations in the input
data. In order to be more precise, we define the Generalized Binarization Transformation (GBT)

θR(x) = RT θ(Rx)

where x is a column vector, R is a fixed rotation matrix, and θ is the pointwise binarization function
from before. The rows of R are called the axes of binarization. If R is the identity matrix, then
θR = θ and the axes of binarization are the canonical basis vectors (..., 0, 1, 0, ...). R can either be
chosen strategically or randomly.

The GBT changes the distribution being binarized through a rotation. For appropriate choices of the
rotation, R, the directions of the input vectors, x, are changed insignificantly by binarization. The
angle between a vector and its binarized version is dependent on the dot product: x · θR(x), which is
equal to xT θR(x) = (Rx)T θ(Rx) = y · θ(y) where y = Rx. As a concrete example of the benefits
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Figure 3: Binarization Preserves Dot Products: Each subplot shows a 2D histogram of the dot
products between the binarized weights and the activations (horizontal axis) and the dot products
between the continuous weights and the activations (vertical axis) for different layers of a network
trained on CIFAR10. Surprisingly, the dot products are highly correlated (r is the Pearson correlation
coefficient). Thus replacing wb with wc changes the overall constant in front of the dot products,
while still preserving whether the dot product is zero or not zero. This overall constant is divided out
by the subsequent batch norm layer. The shaded quadrants correspond to dot products where the sign
changes when replacing the binary weights with the continuous weights. Notice that for all but the
first layer, a very small fraction of the dot products lie in these off diagonal quadrants. The top left
figure (labeled as Layer 1) corresponds to the input and the first convolution. Note that the correlation
is weaker in the first layer.

of the GBT, consider the case where x ∼ N(0,Σ) and Σi,j = δi,j exp(2ki) for k = 0.1 (therefore
y ∼ N(0, RΣRT )). As the dimension goes to infinity, the angle between a vector drawn from this
distribution and its binarized version approaches π/2. Thus binarization is destructive to vectors from
this distribution. However, if the GBT is applied with a fixed random matrix3, the angle between the
vector and its binarized version converges to 37◦ (Fig. 4). Thus a random rotation can compensate
for the errors incurred from directly binarizing a non-isotropic Gaussian.

Moving into how this analysis applies to a binary neural network, the network weights must approxi-
mate the important directions in the activations using binary vectors. For instance, Gabor filters are
intrinsic features in natural images and are often found in the first layer weights of neural networks
trained on natural images (e.g. Olshausen et al. (1996); Krizhevsky et al. (2012)). While the network
has flexibility in the higher layers, the first layer must interface directly with the input where the
features are not necessarily randomly oriented. For instance, consider the 27 dimensional input to
the first set of convolutions in our network: 3 color channels of a 3 by 3 patch of an image from
CIFAR10 with the mean removed. 3 PCs capture 90 percent of the variance of this data and 4 PCs
capture 94.5 percent of the variance. The first two PCs are spatially uniform colors. More generally,
large images such as those in IMAGENET have the same issue. Translation invariance of the image
covariance matrix implies that the principal components are the filters of the 2D Fourier transform.
Scale invariance implies a 1/f2 power spectrum, which results in the largest PCs corresponding to
low frequencies (Field (1987)).

Another manifestation of this issue can be seen in our trained networks. The first layer has a much
smaller dot product correlation than the other layers (Fig. 3). To study this, we randomly permute the
activations in order to generate a distribution with the same marginal statistics as the original data
but independent joint statistics (a different permutation for each input image). Such a transformation
gives a distribution with a correlation equal to the normalized dot product of the weight vectors

3Random rotation matrices are chosen from the Haar distribution on SO(3) using the method of Stewart
(1980).
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Figure 4: Left: Random Rotation Improves Angle Preservation for a Non-Isotropic Gaussian.
Random vectors are drawn from a Gaussian of dimension d with a diagonal covariance matrix whose
entries vary exponentially. As in Fig. 2, the red curve shows the angle between a random vector and
its binarized version. Since the Gaussian is no longer isotropic, the red curve no longer peaks at
θ = arccos

√
2/π. However, if the binarization is replaced with a GBT with a fixed random matrix,

the direction of the vector is again approximately preserved. Right: Permuting the activations shows
that the correlations observed in Fig. 3 are not merely due to correlations between the binary and
continuous weight vectors. The correlations are due to these weight vectors corresponding to high
variance directions in the data.

(SI Sec. 3). The correlations for the higher layers decrease substantially but the correlation in the
first layer increases (Fig. 4, right). For the first layer, the shuffling operation randomly permutes
the pixels in the image. Thus we demonstrate that the binary weight vectors in the first layer are
not well-aligned with the continuous weight vectors relative to the input data. Our theoretically
grounded analysis is consistent with previous work. Han et al. (2015b) find that compressing the
first set of convolutional weights of a particular layer by the same fraction has the highest impact on
performance if done on the first layer. Zhou et al. (2016) find that accuracy degrades by about 0.5 to
1 percent on SHVN when quantizing the first layer weights. Thus it is recommended to rotate the
input data before normalization or to use continuous weights for the first layer.

4 CONCLUSION

Neural networks with binary weights and activations have similar performance to their continuous
counterparts with substantially reduced execution time and power usage. We provide an experi-
mentally verified theory for understanding how one can get away with such a massive reduction in
precision based on the geometry of HD vectors. First, we show that binarization of high-dimensional
vectors preserves their direction in the sense that the angle between a random vector and its bi-
narized version is much smaller than the angle between two random vectors (Angle Preservation
Property). Second, we take the perspective of the network and show that binarization approximately
preserves weight-activation dot products (Dot Product Proportionality Property). More generally,
when using a network compression technique, we recommend looking at the weight activation dot
product histograms as a heuristic to help localize the layers that are most responsible for performance
degradation. Third, we discuss the impacts of the low effective dimensionality of the data on the
first layer of the network. We recommend either using continuous weights for the first layer or a
Generalized Binarization Transformation. Such a transformation may be useful for architectures
like LSTMs where the update for the hidden state declares a particular set of axes to be important
(e.g. by taking the pointwise multiply of the forget gates with the cell state). Finally, we show that
neural networks with ternary weights and activations can also be understood with our approach. More
broadly speaking, our theory is useful for analyzing a variety of neural network compression tech-
niques that transform the weights, activations or both to reduce the execution cost without degrading
performance.
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5 SUPPLEMENTARY INFORMATION

5.1 EXPECTED ANGLES

Random n dimensional vectors are drawn from a rotationally invariant distribution. The angle
between two random vectors and the angle between a vector and its binarized version are compared.
A rotationally invariant distribution can be factorized into a pdf for the magnitude of the vector
times a distribution on angles. In the expectations that we are calculating, the magnitude cancels out
and there is only one rotationally invariant distribution on angles. Thus it suffices to compute these
expectations using a Gaussian.

Lemmas:

1. Consider a vector, v, chosen from a standard normal distribution of dimension n. Let
ρ = v1√

v21+...+v2n
. Then ρ is distributed according to: g(ρ) = 1√

π
Γ(n/2)

Γ((n−1)/2) (1 − ρ2)
n−3
2

where Γ is the Gamma function.
Proof: Begin by considering the integral G(ρ0) = p(ρ < ρ0) =

∫ ∏
i dvip(v)I(ρ(v) < ρ0)

where I is an indicator function. The desired distribution comes from taking the derivative
of this cumulative distribution g(ρ0) = d

dρ0
G(ρ0). Consider the generalized spherical coor-

dinate transformation: v1 = r cosφ1, v2 = r sinφ1 cosφ2, v3 = r sinφ1 sinφ2 cosφ3,
... vn−1 = r sinφ1 · · · sinφn−2 cosφn−1, vn = r sinφ1 · · · sinφn−2 sinφn−1 where
φ1, . . . , φn−2 ∈ [0, π] and φn−1 ∈ [0, 2π]. The generalized spherical volume element
is dv = rn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)drdφ1 · · · dφn−1. 4 Thus we can write
out the integral

G(ρ0) =
∫
I(cosφ1 < ρ0) e

−r2/2√
(2π)n

rn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)drdφ1 · · · dφn−1

The integral factorizes and all of the terms are independent of ρ0 except the integral
over φ1 ≡ φ. Thus G(ρ0) ∼

∫ π
0
I(cosφ < ρ0) sinn−2(φ)dφ. Using the substitution

ρ = cosφ (which is also consistent with the definition of ρ above), dρ = − sin(φ)dφ,
sin ρ = (1 − ρ2)0.5, so G(ρ0) ∼

∫ 1

−1
I(ρ < ρ0)(1 − ρ2)(n−3)/2dρ. Taking the

derivative with respect to ρ0 and using the fundamental theorem of calculus gives
g(ρ) ∼ (1 − ρ2)(n−3)/2. The normalization constant is equal to a beta function that
evaluates to the desired result (substitute t = ρ2).

2. Γ(z+α)
Γ(z+β) = zα−β

(
1 + (α−β)(α+β+1)

2z

)
+O(|z|−2) as z →∞

Cases:

• Distribution of angles between two random vectors.
Since a Gaussian is a rotationally invariant distribution, we can say without loss of generality
that one of the vectors is (1, 0, 0, . . . 0). Then the cosine angle between those two vectors is
ρ as defined above. While the exact distribution of ρ is given by Lemma 1, we note that

– E(ρ) = 0 due to the symmetry of the distribution.

– V ar(ρ) = E(ρ2) = 1
n because 1 = E

(∑
i x

2
i∑

j x
2
j

)
=
∑
iE
(

x2
i∑

j x
2
j

)
= n ∗ E(ρ2)

• Angles between a vector and the binarized version of that vector, η = v·θ(v)
||v||·||θ(v)|| =∑

i |vi|√∑
v2i ∗
√
n

–

E(η) =

√
n√
π
∗ Γ(n/2)

Γ((n+ 1)/2)
lim
n→∞

E(η) =

√
2

π

First, we noteE(η) =
√
nE(|ρ|). ThenE(|ρ|) =

∫ 1

0
dρ ρ 2√

π
Γ(n/2)

Γ((n−1)/2) (1−ρ2)
n−3
2 =

2√
π
∗ 1
n−1

Γ(n/2)
Γ((n−1)/2) (substitute u = ρ2 and use Γ(x + 1) = xΓ(x) ). Lemma

4https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates
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two gives the n → ∞ limit. 2√
π

√
n

n−1
Γ(n/2)

Γ((n−1)/2) ≈
2√
π

√
n

n−1

√
n
2

[
1 + 0.5∗0.5

2(n/2)

]
=√

2
π

(
1 + 5

4 ∗
1
n

)
+O(1/n2)

–
V ar(η) =

1

n

(
1− 1

π

)
+O(1/n2)

Thus we have the normal scaling as in the central limit theorem of the large n variance.
We can calculate this explicitly following the approach of 5.
AsE(η) has been calculated, it suffices to calculateE(η2). Expanding out η2,E(η2) =
1
n + (n− 1) ∗E( |v1v2|

v21+...v2n
). Below we show that E( |v1v2|

v21+...v2n
) = 2

πn . Thus the variance
is:

1

n
∗
(

1− 2

π

)
+

2

π
−
(√

n√
π

Γ(n/2)

Γ((n+ 1)/2)

)2

Using Lemma 2 to expand out the last term, we get [
√
n√
π

(n/2)−1/2(1 − 1/(4n) +

O(n−2))]2 = 2
π (1− 1/(2n) +O(n−2)). Plugging this in gives the desired result.

Going back to the calculation of that expectation, change variables to v1 = r cos θ,
v2 = r sin θ, z2 = v2

3 + ...+ v2
n. The integration over the volume element dv3 . . . dvn

is rewritten as dzdAn−3 where dAn denotes the surface element of a n sphere. Since
the integrand only depends on the magnitude, z,

∫
dAn−3 = zn−3 ∗ Sn−3 where

Sn = 2π(n+1)/2

Γ( n+1
2 )

denotes the surface area of a unit n-sphere. Then

E

(
|v1v2|

v2
1 + . . . v2

n

)
= (2π)−n/2Sn−3

∫ 2π

0

dθ| cos θ sin θ|∗
∫
rdrzn−3dz∗ r2

r2 + z2
∗e−(z2+r2)/2

Then substitute r = p cosφ, z = p sinφ where φ ∈ [0, π/2]

= (2π)−n/2 ∗ 2Sn−3

∫ π/2

0

dφ cosφ3 ∗ sinφn−3

∫ ∞
0

dp ∗ pn−1e−p
2/2

The first integral is 2
n(n−2) using u = sin2 φ. The second integral is 2(n−2)/2Γ(n/2)

using u = p2/2 and the definition of the gamma function. Simplifying, the result is
2
π∗n .

Thus the angle between a vector and a binarized version of that vector converges to arccos
√

2
π ≈ 37◦,

which is a very small angle in high dimensions.

5.2 AN EXPLICIT EXAMPLE OF LEARNING DYNAMICS

In this subsection, we look at the learning dynamics for the BNN training algorithm in a simple case
and gain some insight about the learning algorithm. Consider the case of regression where the target
output, y, is predicted with a binary linear predictor with x as the input. Using a squared error loss,
L = (y − ŷ)2 = (y − wbx)2 = (y − θ(wc)x)2. (In this notation, x is a column vector.) Taking the
derivative of this loss with respect to the continuous weights and using the rule for back propagating
through the binarize function gives ∆wc ∼ −dL/dwc = −dL/dwb · dwb/dwc = (y − wbx)xT .
Finally, averaging over the training data gives

∆wc ∼ Cyx − θ(wc) · Cxx Cyx = E[yxT ] Cxx = E(xxT ) (1)

It is worthwhile to compare this equation the corresponding equation from typical linear regression:
∆wc ∼ Cyx − wc · Cxx. For simplicity, consider the case where Cxx is the identity matrix. In this
case, all of the components of w become independent: δw = ε ∗ (α− θ(w)) where ε is the learning
rate and α is the entry of Cyx corresponding to a particular element, w. Compared to regular linear
regression, it is clear that the stable point of these equations is when w = α. Since the weight is

5https://en.wikipedia.org/wiki/Volume_of_an_n-ball#Gaussian_integrals
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Figure 5: Activation Binarization Preserves Dot Products: Left: Each panel shows a 2D histogram of
the dot products between the binarized weights and binarized activations (vertical axis) and post-batch
norm (but pre-activation binarization) activations (horizontal axis). The binarization transformer does
little to corrupt the dot products between weights and activations. Right: Dot products between the
binary weights and binary activations (horizontal axis) compared against the dot products between the
continuous weights and continuous activations (vertical axis). The dot products are not significantly
impacted by removing binarization.

binarized, that equation cannot be satisfied. However, it can be shown (?) that in this special case of
binary weight linear regression, E(θ(wc)) = α. Intuitively, if we consider a high dimensional vector
and the fluctuations of each component are likely to be out of phase, then wb · x ≈ wc · x is going
to be correct in expectation with a variance that scales as 1

n . During the actual learning process, we
anneal the learning rate to a very small number, so the particular state of a fluctuating component of
the vector is frozen in. Relatedly, the equation Cyx ≈ wCxx is easier to satisfy in high dimensions,
whereas in low dimensions, it is only satisfied in expectation.

Proof for (?): Suppose that |α| ≤ 1. The basic idea of these dynamics is that steps of size proportional
to ε are taken whose direction depends on whether w > 0 or w < 0. In particular, if w > 0, then the
step is −ε · |1− α| and if w < 0, the step is ε · (α + 1). It is evident that after a sufficient burn-in
period, |w| ≤ ε∗max(|1−α|, 1 +α) ≤ 2ε. Suppose w > 0 occurs with fraction p and w < 0 occurs
with fraction 1− p. In order for w to be in equilibrium, oscillating about zero, these steps balance
out on average: p(1− α) = (1− p)(1 + α)→ p = (1 + α)/2. Then the expected value of θ(w) is
1 ∗ p+ (−1) ∗ (1− p) = α. When |α| > 1, the dynamics diverge because α− θ(w) will always have
the same sign. This divergence demonstrates the importance of some normalization technique such
as batch normalization or attempting to represent w with a constant times a binary matrix.

5.3 DOT PRODUCT CORRELATIONS AFTER ACTIVATION PERMUTATION

Suppose that A = w ·a and B = v ·a where w, v are weight vectors and a is the vector of activations.
What is the correlation, r, between A and B? Assuming that E(a) = 0, E(A) = E(B) = 0. Then

E(AB) =
∑
i,j wivjE(aiaj) = wTCv where Ci,j = E(aiaj). Setting v = w and w = v gives

E(A2) = wTCw and vTCv. Thus r = wTCv√
(wTCw)(vTCv)

.

In the case where the activations are randomly permuted, C is proportional to the identity matrix, and
thus the correlation between A and B is the cosine angle between u and v.

5.4 ANGLE PLOT
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Figure 6: Angle distribution between continuous and binary weight vectors by layer for a binary
CNN trained on CIFAR-10 (same plot as in Fig. 2b except zoomed in). Notice that there is a small
but systematic deviation towards larger angles relative to the theoretical expectation (vertical dotted
line). As the dimension of the vectors in the layer goes up, the distribution gets sharper. The theory
predicts that the standard deviation of these distributions scales as 1/

√
d. This relationship is shown

to approximately hold in Fig. 2c.

5.5 TERNARY NEURAL NETWORKS

Moving beyond binarization, recent work has shown how to train neural networks where the activa-
tions are quantized to three (or more) values (e.g. Hubara et al. (2016)). Indeed, ternarization may
be a more natural quantization method than binarization for neural network weights because one
can express a positive association (+1), a negative association (−1), or no association (0) between
two features in a neural network. We show that the analysis used on BNNs holds for ternary neural
networks.

The quantization function: tera(x) = 1 if x > a, 0 if |x| < a, and −1 if x < −a is used in place of
the binarize function with the same straight-through estimator for the gradient. Call a the ternarization
threshold. The exact value of a is only important at initialization because the scaling constant of the
batch normalization layer allows the network to adapt the standard deviation of the pre-nonlinearity
activations to the value of a. The network architecture from the previous experiments was used to
classify images in CIFAR-10 and a was chosen to be equal to 0.02. In practice, roughly 10 percent
of the ternarized weights were zero (Fig. 7a) and 2 percent of the activations were zero. Thus the
network learning process did not ignore the possibility of using zero weights. However, more work is
needed to effectively use the zero value for the activations.

The empirical distribution of angles between the continuous vectors and their ternarized counterparts
is highly peaked at the value predicted by the theory (Fig. 7b). Random vectors are chosen from a
standard normal distribution of dimension d. As in the case of binarization, the ternarized version
of a vector is close in angle to the original vector in high dimensions (Fig. 7c). These vectors are
quantized using tera for different values of a. The peak angle varies substantially as a function of a
(Fig. 7d). Note that for a = 0, the ternarization function collapses into the binarization function. The
empirical value of a is the ratio of the empirical threshold to the empirical standard deviation of the
continuous weights. Thus a ≈ 0.02/0.18 ≈ 0.11 for the higher layers. Remarkably, the theoretical
prediction for the peak angle as a function of a matches closely with the empirical result (Fig. 7b).

Finally, the dot product proportionality property is also shown to hold for ternary neural networks
(Fig. 7e). Thus the continuous weights found using the TNN training algorithm approximate the
continuous weights that one would get if the network were trained with continuous weights and
regular backpropagation.
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a b

c d e

Figure 7: Ternarization of High-Dimensional Vectors Preserves their Direction in Theory and
Practice: (a) Histogram of the components of the continuous weights at each layer for a ternary
CNN trained on CIFAR-10. The distribution is approximately Gaussian for all but the first layer.
The vertical lines show the ternarization thresholds and approximately 10 percent of the weights are
sent to zero. (b) Angle distribution between continuous and ternary weight vectors by layer. The
vertical dotted line (at θ ≈ 34◦) indicates the theoretical prediction given the empirical ternarization
threshold (≈ 0.11). d is the dimension of the filters at each layer. (c) Distribution of angles between
two random vectors (blue), and between a vector and its quantized version (red), for a rotationally
invariant distribution of dimension d. The ternarization threshold is chosen to match the trained
network. As the red and blue curves have little overlap, ternarization causes a small change in angle
in high dimensions. (d) Angle between a random vector and its ternarized version as a function of
ternarization threshold for d = 1000. There is a large variation in the angle over different thresholds.
(e) Ternarization preserves dot products. The 2D histogram shows the dot products between the
ternarized weights and the activations (horizontal axis) and the dot products between the continuous
weights and the activations (vertical axis) for layer 3 of the network. The dot products are highly
correlated.
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