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ABSTRACT

In this paper, we show that the recent integration of statistical models with re-
current neural networks provides a new way of formulating volatility models that
have been popular in time series analysis and prediction. The model comprises a
pair of complementary stochastic recurrent neural networks: the generative net-
work models the joint distribution of the stochastic volatility process; the inference
network approximates the conditional distribution of the latent variables given the
observable ones. Our focus in this paper is on the formulation of temporal dynam-
ics of volatility over time under a stochastic recurrent neural network framework.
Our derivations show that some popular volatility models are a special case of
our proposed neural stochastic volatility model. Experiments demonstrate that
the proposed model generates a smoother volatility estimation, and outperforms
standard econometric models GARCH, EGARCH, GJR-GARCH and some other
GARCH variants as well as MCMC-based model stochvol and a recent Gaussian
processes based volatility model GPVOL on several metrics about the fitness of
the volatility modelling and the accuracy of the prediction.

1 INTRODUCTION

The volatility of the price movements reflects the ubiquitous uncertainty within financial markets. It
is critical that the level of risk, indicated by volatility, is taken into consideration before investment
decisions are made and portfolio are optimised (Hull, 2006); volatility is substantially a key variable
in the pricing of derivative securities. Hence, estimating and forecasting volatility is of great im-
portance in branches of financial studies, including investment, risk management, security valuation
and monetary policy making (Poon & Granger, 2003).

Volatility is measured typically by using the standard deviation of price change in a fixed time in-
terval, such as a day, a month or a year. The higher the volatility, the riskier the asset. One of
the primary challenges in designing volatility models is to identify the existence of latent (stochas-
tic) variables or processes and to characterise the underlying dependences or interactions between
variables within a certain time span. A classic approach has been to handcraft the characteris-
tic features of volatility models by imposing assumptions and constraints, given prior knowledge
and observations. Notable examples include autoregressive conditional heteroskedasticity (ARCH)
model (Engle, 1982) and its generalisation GARCH (Bollerslev, 1986), which makes use of autore-
gression to capture the properties of time-variant volatility within many time series. Heston (1993)
assumed that the volatility follows a Cox-Ingersoll-Ross (CIR) process (Cox et al., 1985) and de-
rived a closed-form solution for options pricing. While theoretically sound, those approaches require
strong assumptions which might involve complex probability distributions and non-linear dynamics
that drive the process, and in practice, one may have to impose less prior knowledge and rectify a
solution under the worst-case volatility case (Avellaneda & Paras, 1996).

In this paper, we take a fully data driven approach and determine the configurations with as few
exogenous input as possible, or even purely from the historical data. We propose a neural network
re-formulation of stochastic volatility by leveraging stochastic models and recurrent neural networks
(RNNs). We are inspired by the recent development on variational approaches of stochastic (deep)
neural networks (Kingma & Welling, 2013; Rezende et al., 2014) to a recurrent case (Chung et al.,
2015; Fabius & van Amersfoort, 2014; Bayer & Osendorfer, 2014), and our formulation shows that
existing volatility models such as the GARCH (Bollerslev, 1986) and the Heston model (Heston,
1993) are the special cases of our neural stochastic volatility formulation. With the hidden latent
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variables in the neural networks we naturally uncover the underlying stochastic process formulated
from the models.

Experiments with synthetic data and real-world financial data are performed, showing that the pro-
posed model outperforms the widely-used GARCH model on several metrics of the fitness and the
accuracy of time series modelling and prediction: it verifies our model’s high flexibility and rich
expressive power.

2 RELATED WORK

A notable volatility method is autoregressive conditional heteroskedasticity (ARCH) model (En-
gle, 1982): it can accurately capture the properties of time-variant volatility within many types of
time series. Inspired by ARCH model, a large body of diverse work based on stochastic process
for volatility modelling has emerged. Bollerslev (1986) generalised ARCH model to the gener-
alised autoregressive conditional heteroskedasticity (GARCH) model in a manner analogous to the
extension from autoregressive (AR) model to autoregressive moving average (ARMA) model by
introducing the past conditional variances in the current conditional variance estimation. Engle
& Kroner (1995) presented theoretical results on the formulation and estimation of multivariate
GARCH model within simultaneous equations systems. The extension to multivariate model allows
the covariances to present and depend on the historical information, which are particularly useful in
multivariate financial models. Heston (1993) derived a closed-form solution for option pricing with
stochastic volatility where the volatility process is a CIR process driven by a latent Wiener process
such that the current volatility is no longer a deterministic function even if the historical information
is provided. Notably, empirical evidences have confirmed that volatility models provide accurate
forecasts (Andersen & Bollerslev, 1998) and models such as ARCH and its descendants/variants
have become indispensable tools in asset pricing and risk evaluation.

On the other hand, deep learning (LeCun et al., 2015; Schmidhuber, 2015) that utilises nonlinear
structures known as deep neural networks, powers various applications. It has triumph over pattern
recognition challenges, such as image recognition (Krizhevsky et al., 2012; He et al., 2015; van den
Oord et al., 2016), speech recognition (Hinton et al., 2012; Graves et al., 2013; Chorowski et al.,
2015), machine translation (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2014; Luong
et al., 2015) to name a few.

Time-dependent neural networks models include RNNs with advanced neuron structure such as long
short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997), gated recurrent unit (GRU) (Cho
et al., 2014), and bidirectional RNN (BRNN) (Schuster & Paliwal, 1997). Recent results show that
RNNs excel for sequence modelling and generation in various applications (Graves, 2013; Gregor
et al., 2015). However, despite its capability as non-linear universal approximator, one of the draw-
backs of neural networks is its deterministic nature. Adding latent variables and their processes into
neural networks would easily make the posterori computationally intractable. Recent work shows
that efficient inference can be found by variational inference when hidden continuous variables are
embedded into the neural networks structure (Kingma & Welling, 2013; Rezende et al., 2014). Some
early work has started to explore the use of variational inference to make RNNs stochastic (Chung
et al., 2015; Bayer & Osendorfer, 2014; Fabius & van Amersfoort, 2014). Bayer & Osendorfer
(2014) and Fabius & van Amersfoort (2014) considered the hidden variables are independent be-
tween times, whereas (Fraccaro et al., 2016) utilised a backward propagating inference network
according to its Markovian properties. Our work in this paper extends the work (Chung et al., 2015)
with a focus on volatility modelling for time series. We assume that the hidden stochastic variables
follow a Gaussian autoregression process, which is then used to model both the variance and the
mean. We show that the neural network formulation is a general one, which covers two major fi-
nancial stochastic volatility models as the special cases by defining the specific hidden variables and
non-linear transforms.

3 PRELIMINARY: VOLATILITY MODELS

Stochastic processes are often defined by stochastic differential equations (SDEs), e.g. a (univariate)
generalised Wiener process is dxt = µd t + σ dwt, where µ and σ denote the time-invariant rates
of drift and standard deviation (square root of variance) while dwt ∼ N (0,d t) is the increment of
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standard Wiener process at time t. In a small time interval between t and t+∆t, the change in the
variable is ∆xt = µ∆t+ σ∆wt. Let ∆t = 1, we obtain the discrete-time version of basic volatility
model:

xt = xt−1 + µ+ σεt, (1)

where εt ∼ N (0, 1) is a sample drawn from standard normal distribution. In the multivariate case,Σ
represents the covariance matrix in place of σ2. As presumed that the variables are multidimensional,
we will useΣ to represent variance in general case except explicitly noted.

3.1 DETERMINISTIC VOLATILITY

The time-invariant variance Σ can be extended to be a function Σt = Σ(x<t) relying on history
of the (observable) underlying stochastic process {x<t}. The current variance Σt is therefore de-
termined given the history {x<t} up to time t. An example of such extensions is the univariate
GARCH(1,1) model (Bollerslev, 1986):

σ2
t = α0 + α1(xt−1 − µt−1)

2 + β1σ
2
t−1, (2)

where xt−1 is the observation from N (µt−1, σ
2
t−1) at time t − 1. Note that the determinism is in

a conditional sense, which means that it only holds under the condition that the complete history
{x<t} is presented, such as the case of 1-step-ahead forecast. otherwise the current volatility would
still be stochastic as it is built on stochastic process {xt}. However, for multi-step-ahead forecast, we
usually exploit the relation Et−1[(xt−µt)

2] = σ2
t to substitute the corresponding terms and calculate

the forecasts with longer horizon in a recursive fashion, for example, σ2
t+1 = α0 + α1Et−1[(xt −

µt)
2] + β1σ

2
t = α0 + (α1 + β1)σ

2
t . For n-step-ahead forecast, there will be n iterations and the

procedure is hence also deterministic.

3.2 STOCHASTIC VOLATILITY

Another extension is applicable for Σt from being conditionally deterministic (i.e. deterministic
given the complete history {x<t}) to fully stochastic: Σt = Σ(z≤t) is driven by another latent
stochastic process {zt} instead of the observable process {xt}. Heston (1993) model instantiates a
continuous-time stochastic volatility model for univariate processes:

dxt = (µ− 0.5σ2
t ) d t+ σt dw

〈1〉
t , (3)

dσt = aσt d t+ bdw
〈2〉
t , (4)

where the correlation between dw
〈1〉
t and dw

〈2〉
t applies: E[dw〈1〉t ·dw

〈2〉
t ] = ρd t. We apply Euler’s

scheme of quantisation (Stoer & Bulirsch, 2013) to obtain the discrete analogue to the continuous-
time Heston model (Eqs. (3) and (4)):

xt = (xt−1 + µ− 0.5σ2
t ) + σεt

σt = (1 + a)σt−1 + bzt
where

[
εt
zt

]
= N (0,

[
1 ρ
ρ 1

]
). (5)

3.3 VOLATILITY MODEL IN GENERAL

As discussed above, the observable variable xt follows Gaussian distribution of which the mean and
variance depend on the history of observable process {xt} and latent {zt}. We presume in addition
that the latent process {zt} is an autoregressive model such that zt is (conditionally) Gaussian
distributed. Therefore, we formulate the volatility model in general as:

zt ∼ N (µz(z<t),Σ
z(z<t)), (6)

xt ∼ N (µx(x<t, z≤t),Σ
x(x<t, z≤t)), (7)

where µz(x<t, z≤t) and Σz(x<t, z≤t) denote the autoregressive time-varying mean and variance
of the latent variable zt while µx(x<t, z≤t) and Σx(x<t, z≤t) represent the mean and variance of
observable variable xt, which depend on not only history of the observable process {x<t} but that
of the latent process {z≤t}.
These two formulas (Eqs. (6) and (7)) abstract the generalised formulation of volatility models.
Together, they represents a broad family of volatility models with latent variables, where the Heston
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model for stochastic volatility is merely a special case of the family. Furthermore, it will degenerate
to deterministic volatility models such as the well-studied GARCH model if we disable the latent
process.

4 NEURAL STOCHASTIC VOLATILITY MODELS

In this section, we establish the neural stochastic volatility model (NSVM) for stochastic volatility
estimation and forecast.

4.1 GENERATING OBSERVABLE SEQUENCE

Recall that the latent variable zt (Eq. (6)) and the observable xt (Eq. (7)) are described by autore-
gressive models (xt has the exogenous input {z≤t}.) For the distributions of {zt} and {xt}, the
following factorisation applies:

pΦ(Z) =
∏
t

pΦ(zt|z<t) =
∏
t

N (zt;µ
z
Φ(z<t),Σ

z
Φ(z<t)), (8)

pΦ(X|Z) =
∏
t

pΦ(xt|x<t, z≤t) =
∏
t

N (xt;µ
x
Φ(x<t, z≤t),Σ

x
Φ(x<t, z≤t)), (9)

where X = {xt} and Z = {zt} are the sequences of observable and latent variables, respectively,
while Φ represents the parameter set of the model. The full generative model is defined as the joint
distribution:

pΦ(X,Z) =
∏
t

pΦ(xt|x<t, z≤t)pΦ(zt|z<t)

=
∏
t

N (zt;µ
z
Φ(z<t),Σ

z
Φ(z<t))N (xt;µ

x
Φ(x<t, z≤t),Σ

x
Φ(x<t, z≤t)). (10)

It is observed that the means and variances are conditionally deterministic: given the historical
information {z<t}, the current mean µz

t = µz
Φ(z<t) and varianceΣz

t = Σz
Φ(z<t) of zt is obtained

and hence the distribution N (zt;µ
z
t ,Σ

z
t ) of zt is specified; after sampling zt from the specified

distribution, we incorporate {x<t} and calculate the current meanµx
t = µx

Φ(x<t, z≤t) and variance
Σx

t = Σx
Φ(x<t, z≤t) of xt and determine its distribution N (xt;µ

x
t ,Σ

x
t ) of xt. It is natural and

convenient to present such a procedure in a recurrent fashion because of its autoregressive nature.
As is known that RNNs can essentially approximate arbitrary function of recurrent form (Hammer,
2000), the means and variances, which may be driven by complex non-linear dynamics, can be
efficiently computed using RNNs.

It is always a good practice to reparameterise the random variables before we go into RNN ar-
chitecture. As the covariance matrix Σ is symmetric and positive definite, it can be factorised
as Σ = UΛU>, where Λ is a full-rank diagonal matrix with positive diagonal elements. Let
A = UΛ

1
2 , we have Σ = AA>. Hence we can reparameterise the latent variable zt (Eq. (6)) and

observable xt (Eq. (7)):

zt = µ
z
t +A

z
t ε

z
t , (11)

xt = µ
x
t +Ax

t ε
x
t , (12)

where Az
t (A

z
t )
> = Σz

t ,A
x
t (A

x
t )
> = Σx

t and εxt ∼ N (0, Ix), ε
z
t ∼ N (0, Iz) are auxiliary vari-

ables. Note that the randomness within the variables of interest (e.g. zt) is extracted by the auxiliary
variables (e.g. εt) which follow the standard distributions. Hence, the reparameterisation guarantees
that gradient-based methods can be applied in learning phase (Kingma & Welling, 2013).

In this paper, the joint generative model is comprised of two sets of RNN and multilayer perceptron
(MLP): RNNz

g/MLPz
g for the latent variable, while RNNx

g /MLPz
g for the observables. We stack

these two RNN/MLP together according to the causal dependency between those variables. The
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joint generative model is implemented as the generative network:

{µz
t ,A

z
t } = MLPz

g(h
z
t ;Φ), (13)

hz
t = RNNz

g(h
z
t−1, zt−1;Φ), (14)

zt = µ
z
t +A

z
t ε

z
t , (15)

{µx
t ,A

x
t } = MLPx

g(h
x
t ;Φ), (16)

hx
t = RNNx

g(h
x
t−1,xt−1, zt;Φ), (17)

xt = µ
x
t +Ax

t ε
x
t , (18)

where hz
t and hx

t denote the hidden states of the corresponding RNNs. The MLPs map the hidden
states of RNNs into the means and deviations of variables of interest. The parameter set Φ is
comprised of the weights of RNNs and MLPs.

One should notice that when the latent variable z is obtained, e.g. by inference (details in the next
subsection), the conditional distribution pΦ(X|Z) (Eq. (9)) will involve in generating the observable
xt instead of the joint distribution pΦ(X,Z) (Eq. (10)). This is essentially the scenario of predicting
future values of the observable variable given its history. We will use the term “generative model”
and will not discriminate the joint generative model or the conditional one as it can be inferred in
context.

4.2 INFERENCING THE LATENT PROCESS

As the generative model involves latent variable zt, of which the true valus are unaccessible even we
have observed xt. Hence, the marginal likelihood pΦ(X) becomes the key that bridges the model
and the data. The calculation of marginal likelihood involves the posterior distribution pΦ(Z|X),
which is often intractable as complex integrals are involved. We are unable to learn the paramters
or to infer the latent variables. Therefore, we consider instead a restricted family of tractable dis-
tributions qΨ(Z|X), referred to as the approximate posterior family, as approximations to the true
posterior pΦ(Z|X) such that the family is sufficiently rich and flexible to provide good approxima-
tions (Bishop, 2006; Kingma & Welling, 2013; Rezende et al., 2014).

We define the inference model in accordance with the approximate posterior family we have pre-
sumed, in a similar fashion as (Chung et al., 2015), where the factorised distribution is formulated
as follows:

qΨ(Z|X) =
∏
t

qΨ(zt|z<t,x<t) =
∏
t

N (zt; µ̃
z
Ψ(z<t,x<t), Σ̃

z
Ψ(z<t,x<t)), (19)

where µ̃z
Ψ(z<t,x<t) and Σ̃z

Ψ(z<t,x<t) are functions of the historical information {z<t}, {x<t},
representing the approximated mean and variance of the latent variable zt, respectively. Note that
Ψ represents the parameter set of inference model.

The inference model essentially describes an autoregressive model on zt with exogenous input xt.
Hence, in a similar fashion as the generative model, we implement the inference model as the infer-
ence network using RNN/MLP:

{µ̃z
t , Ã

z
t } = MLPz

i (h̃
z
t ), (20)

h̃z
t = RNNz

i (h̃
z
t−1, zt−1,xt−1), (21)

zt = µ̃
z
t + Ã

z
t ε̃

z
t , (22)

where Ãz
t (Ã

z
t )
> = Σ̃z

t = Σ̃z
Ψ(z<t,x<t) while h̃z

t represents the hidden state of RNN and ε̃zt ∼
N (0, Iz) is an auxiliary variable to extract randomness. The inference mean µ̃z

t and deviation Ãz
t

is computed by an MLP from the hidden state h̃z
t . We use the subscript i instead of g to distinguish

the architecture used in inference model in contrast to generative model.

4.3 FORECASTING OBSERVATIONS IN FUTURE

In the realm of time series analysis, we usually pay more attention on forecasting over generating
(Box et al., 2015). It means that we are essentially more interested in the generation procedure
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Figure 1: Forecasting the future using Neural Stochastic Volatility Model.

conditioning on the historical information rather than generation purely based on a priori belief
since the observations in the past of x<t influences our belief of the latent variable zt. Therefore,
we apply the approximate posterior distribution of the latent variable zt (Eq. (19)) as discussed in
previous subsection, in place of the prior distribution (Eq. (8)) to build our predictive model.

Given the historical observations x<t, the predictive model infers the current value of latent variable
zt using inference network and then generates the prediction of the current observation xt using
generative network. The procedure of forecasting is shown in Fig. 1.

NSVM is learned using Stochastic Gradient Variational Bayes following (Kingma & Welling, 2013;
Rezende et al., 2014). For readability, we provide the detailed derivation in Appendix A.

4.4 LINKS TO GARCH(1,1) AND HESTON MODEL

Although we refer to GARCH and Heston as volatility models, the purposes of them are quite
different: GARCH is a predictive model used for volatility forecasting whereas Heston is more
of a generative model of the underlying dynamics which facilitate closed-form solutions to SDEs
in option pricing. The proposed NSVM has close relations to GARCH(1,1) and Heston model:
both of them can be regarded as a special case of the neural network formulation. Recall Eq. (2),
GARCH(1,1) is formulated as σ2

t = α0 + α1(xt−1 − µt−1)
2 + β1σ

2
t−1, where µt−1 is the trend

estimate of {xt} at time step t calculated by some mean models. A common practice is to assume
that µt follows the ARMA family (Box et al., 2015), or even simpler, as a constant that µt ≡ µ. We
adopt the constant trend for simplicity as our focus is on volatility estimation.

We define the hidden state as hx
t = [µ, σt]

>, and disable the latent variable zt ≡ 0 as the volatil-
ity modelled by GARCH(1,1) is conditionally deterministic. Hence, we instantiate the generative
network (Eqs. (16), (17) and (18)) as follows:

{µ, σt} = MLPx
g(h

x
t ;Φ) = {[1, 0]hx

t , [0, 1]h
x
t }, (23)

hx
t = RNNx

g(h
x
t−1, xt−1;Φ)

=

√[
0
α0

]
+

[
0
α1

]
(xt−1 − [1, 0]hx

t−1)
2 +

[
1 0
0 β1

]
(hx

t−1)
2, (24)

xt = µ+ σtεt where εt ∼ N (0, 1). (25)

The set of generative parameters is Φ = {µ, α0, α1, β1}.
Next, we show the link between NSVM and (discrete-time) Heston model (Eq. (5)). Let hx

t =
[xt−1, µ, σt]

> be the hidden state and zt be i.i.d. standard Gaussian instead of autoregressive vari-
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able, we represent the Heston model in the framework of NSVM as:[
εt
zt

]
= N (0,

[
1 ρ
ρ 1

]
), (26)

{µt, σt} = MLPx
g(h

x
t ;Φ) = {[1, 1, 0]hx

t − [0, 0, 0.5](hx
t )

2, [0, 0, 1]hx
t }, (27)

hx
t = RNNx

g(h
x
t−1, xt−1, zt;Φ)

=

[
0 0 0
0 1 0
0 0 1 + a

]
hx
t−1 +

[
1
0
0

]
xt−1 +

[
0
0
b

]
zt, (28)

xt = µt + σtεt. (29)

The set of generative parameters is Φ = {µ, a, b}.
One should notice that, in practice, the formulation may change in accordance with the specific ar-
chitecture of neural networks involved in building the model, and hence a closed-form representation
may be absent.

5 EXPERIMENTS

In this section, we present our experiments1 both on the synthetic and real-world datasets to validate
the effectiveness of NSVM.

5.1 BASELINES AND EVALUATION METRICS

To evaluate the performance of volatility modelling, we adopt the standard economet-
ric model GARCH(1,1) Bollerslev (1986) as well as its variants EGARCH(1,1) Nelson
(1991), GJR-GARCH(1,1,1) Glosten et al. (1993), ARCH(5), TARCH(1,1,1), APARCH(1,1,1),
AGARCH(1,1,1), NAGARCH(1,1,1), IGARCH(1,1), IAVGARCH(1,1), FIGARCH(1,d,1) as base-
lines, which incorporate with the corresponding mean model AR(20). We would also compare our
NSVM against a MCMC-based model “stochvol” and the recent Gaussian-processes-based model
“GPVOL” Wu et al. (2014), which is a non-parametric model jointly learning the dynamics and
hidden states via online inference algorithm. In addition, we setup a naive forecasting model as an
alternative baseline referred to as NAIVE, which maintains a sliding window of size 20 on the most
recent historical observations and forecasts the current values of mean and volatility by the average
mean and variance of the window.

For synthetic data experiments, we take four metrics into consideration for performance evaluation:
1) the negative log-likelihood (NLL) of observing the test sequence with respect to the generative
model parameters; 2) the mean-squared error (MSE) between the predicted mean and the ground
truth (µ-MSE), 3) MSE of the predicted variance against the true variance (σ-MSE); 4) smoothness
of fit, which is the standard deviation of the differences of succesive variance estimates. As for the
real-world scenarios, the trend and volatility are implicit such that no ground truth is accessible to
compare with, we consider only NLL and smoothness as the metrics for evaluation on real-world
data experiment.

5.2 MODEL IMPLEMENTATION

The implementation of NSVM in experiments is in accordance with the architecture illustrated in
Fig. 1: it consists of two neural networks, namely inference network and generative network. Each
network comprises a set of RNN/MLP as we have discussed above: the RNN is instantiated by
stacked LSTM layers whereas the MLP is essentially a 1-layer fully-connected feedforward network
which splits into two equal-sized sublayers with different activation functions – one sublayer applies
exponential function to impose the non-negativity and prevents overshooting of variance estimates
while the other uses linear function to calculate mean estimates. During experiment, the model is
structured by cascading the inference network and generative network as depicted in Fig. 1. The
input layer is of size 20, which is the same as the embedding dimension DE ; the layer on the

1Repeatable experiment code: https://github.com/xxj96/nsvm

7

https://github.com/xxj96/nsvm


Under review as a conference paper at ICLR 2017

interface of inference network and generative network – we call it latent variable layer – represents
the latent variable z, where its dimension is 2. The output layer has the same structure as the input
one, therefore the latent variable layer acts as a bottleneck of the entire architecture which helps to
extract the key factor. The stacked layers between input layer, latent variable layer and output layer
are the hidden layers of either inference network or generative network, it consists of 1 or 2 LSTM
layers with size 10, which contains recurrent connection for temporal dependencies modelling.

State-of-the-art learning techniques have been applied: we introduce Dropout (Zaremba et al., 2014)
into each LSTM recurrent layer and impose L2-norm on the weights of each fully-connected feed-
forward layer as regularistion; NADAM optimiser (Dozat, 2015) is exploited for fast convergence,
which is a variant of ADAM optimiser (Kingma & Ba, 2014) incorporated with Nesterov momen-
tum; stepwise exponential learning rate decay is adopted to anneal the variations of convergence as
time goes.

For econometric models, we utilise several widely-used packages for time series analysis: statsmod-
els (http://statsmodels.sourceforge.net/), arch (https://pypi.python.
org/pypi/arch/3.2), Oxford-MFE-toolbox (https://www.kevinsheppard.
com/MFE_Toolbox), stochvol (https://cran.r-project.org/web/packages/
stochvol) and fGarch (https://cran.r-project.org/web/packages/fGarch).
The implementation of GPVOL is retrived from http://jmhl.org and we adopt the same
hyperparameter setting as in Wu et al. (2014).

5.3 SYNTHETIC DATA EXPERIMENT

We build up the synthetic dataset by generating 256 heteroskedastic univariate time series, each with
2000 data points i.e. 2000 time steps. At each time step, the observation is drawn from a Gaussian
distribution with pre-determined mean and variance, where the tendency of mean and variance is
synthesised as linear combinations of sine functions. Specifically, for the trend and variance, we
synthesis each using 3 sine functions with randomly chosen amplitudes and frequencies; then the
value of the synthesised signal at each timestep is drawn from a Gaussian distribution with the
corresponding value of trend and variance at that timestep. A sampled sequence is shown in Fig. 2a.
We expect that this limited dataset could well simulate the real-world scenarios: one usually has very
limited chances to observe and collect a large amount of data from time-invariant distributions. In
addition, it seems that every observable or latent quantity within time series varies from time to time
and seldom repeats the old patterns. Hence, we presume that the tendency shows long-term patterns
and the period of tendency is longer than observation. In the experiment, we take the former 1500
time steps as the training set whereas the latter 500 as the test set.

For the synthetic data experiment, we simplify the recurrent layers in both inference net and
generative net as single LSTM layer of size 10. The actual input {~xt} fed to NSVM is DE-
dimensional time-delay embedding (Kennel et al., 1992) of raw univariate observation {xt} such
that ~xt = [xt+1−DE

, . . . , xt]. 2-dimensional latent variable zt is adopted to capture the latent pro-
cess, and enforces an orthogonal representation of the process by using diagonal covariance matrix.
At each time step, 30 samples of latent variable zt are generated via reparameterisation (Eq. (22)).

5.4 REAL-WORLD DATA EXPERIMENT

We select 162 out of more than 1500 stocks from Chinese stock market and collect the time series
of their daily closing prices from 3 institutions in China. We favour those with earlier listing date
of trading (from 2006 or earlier) and fewer suspension days (at most 50 suspension days in total
during the period of observation) so as to reduce the noise introduced by insufficient observation
or missing values, which has significant influences on the performance but is essentially irrelevant
to the purpose of volatility forecasting. More specifically, the dataset obtained contains 162 time
series, each with 2552 data points (7 years). A sampled sequence is shown in Fig. 2b. We divide the
whole dataset into two subsets: the training subset consists of the first 2000 data points while the
test subset contains the rest 552 data points.

Similar model configuration is applied to the real-world data experiment: time-delay embedding
of dimension DE on the raw univariate time series; 2-dimensional latent variable with diagonal
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(a) Synthetic time series prediction. (up) The data and the predicted µx and bounds µx ± σx. (down) The
groundtruth data variance and the corresponding prediction from GARCH(1,1) and NSVM.
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(b) Real-world stock price prediction. (up) The data and the predicted µx and bounds µx ± σx. (down) The
variance prediction from GARCH(1,1) and NSVM. The prediction of NSVM is more smooth and stable than
that of GARCH(1,1), also yielding smaller NLL.

Figure 2: A case study of time series prediction.

covariance matrix; 30 sampling for the latent variable at each time step. Instead of single LSTM
layers, here we adopt stacked LSTM layers composed of 2× 10 LSTM cells.

5.5 RESULT AND DISCUSSION

The overall performance of NSVM and baselines is listed in details in Table 1 and case studies on
synthetic data and real-world financial data are illustrated in Fig. 2. The results show that NSVM
has higher accuracies for modelling heteroskedastic time series on various metrics: NLL shows the
fitness of the model under likelihood measure; the smoothness indicates that NSVM obtains more
robust representation of the latent volatility; µ-MSE and σ-MSE in synthetic data experiment imply
the ability of recognising the underlying patterns of both trend and volatility, which in fact verifies
our claim of NSVM’s high flexibility and rich expressive power for volatility (as well as trend)
modelling and forecasting compared with the baselines. Although the improvement comes at the
cost of longer training time before convergence, it can be mitigated by applying parallel computing
techniques as well as more advanced network architecture or training procedure.
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SYNTHETIC DATA STOCK DATA

NLL µ-MSE σ-MSE smoothness NLL smoothness
NSVM 3.932e-2 2.393e-3 6.178e-4 4.322e-3 -2.184 3.505e-3
GARCH(1,1) 6.905e-2 7.594e-3* 8.408e-4 4.616e-3 -1.961 6.659e-3
GJRGARCH(1,1,1) 6.491e-2 7.594e-3* 7.172e-4 4.426e-3 -2.016 4.967e-3
EGARCH(1,1) 5.913e-2 7.594e-3* 8.332e-4 4.546e-3 -2.001 5.451e-3
ARCH(5) 7.577e-2 7.594e-3* 1.610e-3 5.880e-3 -1.955 7.917e-3
TARCH(1,1,1) 6.365e-2 7.594e-3* 7.284e-4 4.727e-3 -2.012 3.399e-3
APARCH(1,1,1) 6.187e-2 7.594e-3* 9.115e-4 4.531e-3 -2.014 4.214e-3
AGARCH(1,1) 6.311e-2 7.594e-3* 9.543e-4 4.999e-3 -2.008 5.847e-3
NAGARCH(1,1,1) 1.134e-1 7.594e-3* 9.516e-4 4.904e-3 -2.020 5.224e-3
IGARCH(1,1) 6.751e-2 7.594e-3* 9.322e-4 4.019e-3 -1.999 4.284e-3
IAVGARCH(1,1) 6.901e-2 7.594e-3* 7.174e-4 4.282e-3 -1.984 4.062e-3
FIGARCH(1,d,1) 6.666e-2 7.594e-3* 1.055e-3 5.045e-3 -2.002 5.604e-3
MCMC-stochvol 0.368 7.594e-3* 3.956e-2 6.421e-4 -0.909 1.511e-3
GPVOL 1.273 7.594e-3* 6.457e-1 4.142e-2 -2.052 5.739e-3
NAIVE 2.037e-1 8.423e-3 3.515e-3 2.708e-2 -0.918 7.459e-3

*the same results obtained from AR(20) mean models

Table 1: Results of the experiments.

The newly proposed NSVM outperforms standard econometric models GARCH(1,1),
EGARCH(1,1), GJR-GARCH(1,1,1) and some other variants as well as the MCMC-based
model “stochvol” and the recent GP-based model “GPVOL”. Apart from the higher accuracy
NSVM obtained, it provides us with the ability to simply generalise univariate time series analysis
to multivariate cases by extending network dimensions and manipulating the covariance matrices.
Furthermore, it allows us to implement and deploy a similar framework on other applications, for
example signal processing and denoising. The shortcoming of NSVM comparing to GPVOL is
that the training procedure is offline: for short-term prediction, the experiments have shown the
accuracy, but for long-term forecasting, the parameters need retraining, which will be rather time
consuming. The online algorithm for inference will be one of the work in the future.

Specifically, our NSVM outperforms GARCH(1,1) on 142 out of 162 stocks on the metric of NLL.
In particular, NSVM obtains −2.111, −2.044, −2.609 and −1.939 on the stocks corresponding to
Fig2(b), Fig 4(a), (b) and (c) respectively, each of which is better than the that of GARCH (0.3433,
0.589, 0.109 and 0.207 lower on NLL).

6 CONCLUSION

In this paper, a novel volatility model NSVM has been proposed for stochastic volatility estima-
tion and forecast. We integrated statistical models and RNNs, leveraged the characteristics of each
model, organised the dependences between random variables in the form of graphical models, im-
plemented the mappings among variables and parameters through RNNs, and finally established
a powerful stochastic recurrent model with universal approximation capability. The proposed ar-
chitecture comprises a pair of complementary stochastic neural networks: the generative network
and inference network. The former models the joint distribution of the stochastic volatility process
with both observable and latent variables of interest; the latter provides with the approximate pos-
terior i.e. an analytical approximation to the (intractable) conditional distribution of the latent vari-
ables given the observable ones. The parameters (and consequently the underlying distributions) are
learned (and inferred) via variational inference, which maximises the lower bound for the marginal
log-likelihood of the observable variables. Our NSVM has presented higher accuracy compared to
GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1,1) as well as GPVOL for volatility modelling
and forecasting on synthetic data and real-world financial data. Future work on NSVM would be
to incorporate well-established models such as ARMA/ARIMA and to investigate the modelling of
seasonal time series and correlated sequences.

As we have known, for models that evolve explicitly in terms of the squares of the residuals (e2t =
(xt − µt)

2), e.g. GARCH, the multi-step-ahead forecasts have closed-form solutions, which means
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that those forecasts can be efficiently computed in a recursive fashion due to the linear formulation
of the model and the exploitation of relation Et−1[e

2
t ] = σ2

t .

On the other hand, for models that are not linear or do not explicitly evolve in terms of e2, e.g.
EGARCH (linear but not evolve in terms of e2), our NSVM (nonlinear and not evolve in terms
of e2), the closed-form solutions are absent and thus the analytical forecast is not available. We
will instead use simulation-based forecast, which uses random number generator to simulate draws
from the predicted distribution and build up a pre-specified number of paths of the variances at 1
step ahead. The draws are then averaged to produce the forecast of the next step. For n-step-ahead
forecast, it requires n iterations of 1-step-ahead forecast to get there.

NSVM is designed as an end-to-end model for volatility estimation and forecast. It takes the price
of stocks as input and outputs the distribution of the price at next step. It learns the dynamics using
RNN, leading to an implicit, highly nonlinear formulation, where only simulation-based forecast is
available. In order to obtain reasonably accurate forecasts, the number of draws should be relatively
large, which will be very expensive for computation. Moreover, the number of draws will increase
exponentially as the forecast horizon grows, so it will be infeasible to forecast several time steps
ahead. We have planned to investigate the characteristics of NSVM’s long-horizontal forecasts and
try to design a model specific sampling method for efficient evaluation in the future.
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A COMPLEMENTARY DISCUSSIONS OF NSVM

In this appendix section we present detailed derivations of NSVM, specifically, the parameters learn-
ing and calibration, and covariance reparameterisation.

A.1 LEARNING PARAMETERS / CALIBRATION

Given the observationsX , the objective of learning is to maximise the marginal log-likelihood ofX
given Φ, where the posterior is involved. However, as we have discussed in the previous subsection,
the true posterior is usually intractable, which means exact inference is difficult. Hence, approximate
inference is applied instead of rather than exact inference by following (Kingma & Welling, 2013;
Rezende et al., 2014). We represent the marginal log-likelihood ofX in the following form:

ln pΦ(X) = EqΨ(Z|X)

[
ln
pΦ(X,Z)

pΦ(Z|X)

]
= EqΨ(Z|X)

[
ln
pΦ(X,Z)

qΨ(Z|X)

qΨ(Z|X)

pΦ(Z|X)

]
= EqΨ(Z|X)[ln pΦ(X,Z)− ln qΨ(Z|X)] +KL[qΨ(Z|X)‖pΦ(Z|X)]

≥ EqΨ(Z|X)[ln pΦ(X,Z)− ln qΨ(Z|X)] (as KL ≥ 0), (30)

where the expectation term EqΨ(Z|X)[ln pΦ(X,Z) − ln qΨ(Z|X)] is referred to as the variational
lower bound L[q;X,Φ,Ψ] of the approximate posterior qΨ(Z|X,Ψ). The lower bound is essen-
tially a functional with respect to distribution q and parameterised by observationsX and parameter
sets Φ,Ψ of both generative and inference model. In theory, the marginal log-likelihood is max-
imised by optimisation on the lower bound L[q;X,Φ,Ψ] with respect to Φ and Ψ.

We apply the factorisations in Eqs. (10) and (19) to the integrand within expectation of Eq. (30):

ln pΦ(X,Z)− ln qΨ(Z|X) =
∑
t

[
lnN (xt;µ

x
Φ(x<t, z≤t),Σ

x
Φ(x<t, z≤t))

+ lnN (zt;µ
z
Φ(z<t),Σ

z
Φ(z<t))− lnN (zt; µ̃

z
Ψ(z<t,x<t), Σ̃

z
Ψ(z<t,x<t))

]
. (31)

As there is usually no closed-form solution for the expecation (Eq. (30)), we have to estimate the
expectation by applying sampling methods to latent variable zt through time in accordance with
the causal dependences. We utilise the reparameterisation of zt as shown in Eq. (22) such that
we sample the corresponding auxiliary standard variable ε̃t rather than zt itself and compute the
value of zt on the fly. This ensures that the gradient-based optimisation techniques are applicable
as the reparameterisation isolates the model parameters of interest from the sampling procedure. By
sampling N sample paths, the estimator of the lower bound is defined as the average of paths:

L̂ =− 1

2N

∑
t

[
ln detΣz

t + (µ̃z
t + Ã

z
t ε̃

z
t − µz

t )
>(Σz

t )
−1(µ̃z

t + Ã
z
t ε̃

z
t − µz

t )

+ ln detΣx
t + (xt − µx

t )
>(Σx

t )
−1(xt − µx

t )− ln det Σ̃t

]
+ const, (32)

where Ãz
t (Ã

z
t )
> = Σ̃z

t and ε̃zt ∼ N (0, Iz) is parameter-independent and considered as constant
when calculating derivatives.

A.2 COVARIANCE PARAMETERISATION

As is known, it entails a computational complexity of O(M3) to maintain and update the full-size
covariance Σ with M dimensions (Rezende et al., 2014). In the case of very high dimensions, the
full-size covariance matrix would be too computationally expensive to afford. Hence, we use instead
the covariance matrices with much fewer parameters for efficiency. The simplest setting is to use
diagonal precision matrix (i.e. the inverse of covariance matrix) Σ−1 = D. However, it draws
very strong restrictions on representation of the random variable of interest as the diagonal precision
matrix (and thus diagonal covariance matrix) indicates independence among the dimensions. There-
fore, the tradeoff becomes low-rank perturbation on diagonal matrix: Σ−1 = D + V V >, where
V = {v1, . . . ,vK} denotes the perturbation while each vk is a M -dimensional column vector.
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The corresponding covariance matrix and its determinant is obtained using Woodbury identity and
matrix determinant lemma:

Σ =D−1 −D−1V (I + V >D−1V )−1V >D−1 (33)

ln detΣ = − ln det (D + V V >) = − ln detD − ln det (I + V >D−1V ) (34)

To calculate the deviation A for the factorisation of covariance matrix Σ = AA>, we first con-
sider the rank-1 perturbation where K = 1. It follows that V = v is a column vector, and
I + V >D−1V = 1 + v>D−1v is a real number. A particular solution ofA is obtain:

A =D−
1
2 − [γ−1(1−√η)]D−1vv>D− 1

2 (35)

where γ = v>D−1v, η = (1 + γ)−1. The computational complexity involved here is merely
O(M).

Observe that V V > =
∑K

k=1 vkv
>
k , the perturbation of rank K is essentially the superposition of

K perturbations of rank 1. Therefore, we can calculate the deviation A iteratively, an algorithm is
provided to demonstrate the procedure of calculation. The computational complexity for rank-K
perturbation remains to be O(M) given K �M .

Algorithm 1 gives the detailed calculation scheme.

Algorithm 1 Calculation of rank-K perturbation of precision matrices
Input: The original diagonal matrixD; The rank-K perturbation V = {v1, . . . ,vK}
Output: A such that the factorisationAA> = Σ = (D + V V >)−1 holds

1: A(0) =D
− 1

2

2: i = 0
3: while i < K do
4: γ(i) = v

>
(i)A(i)A

>
(i)v(i)

5: η(i) = (1 + γ(i))
−1

6: A(i+1) = A(i) − [γ−1(i) (1−
√
η(i))]A(i)A

>
(i)v(i)v

>
(i)A(i)

7: A = A(K)
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B MORE CASE STUDIES

In this appendix section we add more case studies of NVSM performance on both synthetic data and
real-world stock data.

NSVM obtains −2.044, −2.609 and −1.939 on the stocks corresponding to Fig 4(a), (b) and (c)
respectively, each of which is better than the that of GARCH (0.589, 0.109 and 0.207 lower on
NLL).

The reason of the drops in Fig 4(b) and (c) seems to be that NSVM has captured the jumps and
drops of the stock price using its nonlinear dynamics and modelled the sudden changes as part of
the trend: the estimated trend “mu” goes very close to the real observed price even around the jumps
and drops (see the upper figure of Fig 4(b) and (c) around step 1300 and 1600). The residual (i.e.
difference between the real value of observation and the trend of prediction) therefore becomes quite
small, which lead to a lower volatility estimation.

On the other hand, for the baselines, we adopt AR as the trend model, which is a relatively simple
linear model compared with the nonlinear NSVM. AR would not capture the sudden changes and
leave those spikes in the residual; GARCH then took the residuals as input for volatility modelling,
resulting in the spikes in volatility estimation.
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(a) Synthetic time series prediction II. (up) The data and the predicted µx and bounds µx ± σx. (down) The
groundtruth data variance and the corresponding prediction from GARCH(1,1) and NSVM.
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(b) Synthetic time series prediction IV. (up) The data and the predicted µx and bounds µx ± σx. (down) The
groundtruth data variance and the corresponding prediction from GARCH(1,1) and NSVM.

Figure 3: A case study of synthetic time series prediction.
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(a) Real-world stock price prediction II. (up) The data and the predicted µx and bounds µx ± σx. (down) The
variance prediction from GARCH(1,1) and NSVM. The prediction of NSVM is more smooth and stable than
that of GARCH(1,1), also yielding smaller NLL.
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(b) Real-world stock price prediction III. (up) The data and the predicted µx and bounds µx ± σx. (down) The
variance prediction from GARCH(1,1) and NSVM. The prediction of NSVM is more smooth and stable than
that of GARCH(1,1), also yielding smaller NLL.
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(c) Real-world stock price prediction IV. (up) The data and the predicted µx and bounds µx ± σx. (down) The
variance prediction from GARCH(1,1) and NSVM. The prediction of NSVM is more smooth and stable than
that of GARCH(1,1), also yielding smaller NLL.

Figure 4: A case study of real-world stock time series prediction.
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