Under review as a conference paper at ICLR 2017

HERE’S MY POINT: ARGUMENTATION MINING WITH
POINTER NETWORKS

Peter Potash, Alexey Romanov & Anna Rumshisky
Department of Computer Science

University of Massachusetts Lowell

Lowell, MA 01854, USA

{ppotash, aromanov, arum}@cs.uml.edu

ABSTRACT

One of the major goals in automated argumentation mining is to uncover the argu-
ment structure present in argumentative text. In order to determine this structure,
one must understand how different individual components of the overall argument
are linked. General consensus in this field dictates that the argument components
form a hierarchy of persuasion, which manifests itself in a tree structure. This
work provides the first neural network-based approach to argumentation mining,
focusing on extracting links between argument components, with a secondary fo-
cus on classifying types of argument components. In order to solve this problem,
we propose to use a modification of a Pointer Network architecture. A Pointer
Network is appealing for this task for the following reasons: 1) It takes into ac-
count the sequential nature of argument components; 2) By construction, it en-
forces certain properties of the tree structure present in argument relations; 3) The
hidden representations can be applied to auxiliary tasks. In order to extend the
contribution of the original Pointer Network model, we construct a joint model
that simultaneously attempts to learn the fype of argument component, as well as
continuing to predict links between argument components. The proposed model
achieves state-of-the-art results on two separate evaluation corpora. Furthermore,
our results show that optimizing for both tasks, as well as adding a fully-connected
layer prior to recurrent neural network input, is crucial for high performance.

1 INTRODUCTION

Computational approaches to argument mining/understanding have become very popular (Persing
& Ng, [2016; |Cano-Basave & Hel 2016; Wei et al., [2016} |Ghosh et al., [2016} |[Palau & Moens, [2009;
Habernal & Gurevych, 2016). One important avenue in this work is to understand the structure in
argumentative text (Persing & Ng| [2016; [Peldszus & Stede}, 2015} |Stab & Gurevychl [2016; Nguyen
& Litman, [2016)). One fundamental assumption when working with argumentative text is the pres-
ence of Arguments Components (ACs). The types of ACs are generally characterized as a claim or
a premise (Govier, 2013)), with premises acting as support (or possibly attack) units for claims. To
model more complex structures of arguments, some annotation schemes also include a major claim
AC type (Stab & Gurevych, 20165 2014b).

Generally, the task of processing argument structure encapsulates four distinct subtasks: 1) Given a
sequence of tokens that represents an entire argumentative text, determine the token subsequences
that constitute non-intersecting ACs; 2) Given an AC, determine the type of AC (claim, premise,
etc.); 3) Given a set/list of ACs, determine which ACs have a link that determine overall argument
structure; 4) Given two linked ACs, determine whether the link is of a supporting or attacking
relation. In this work, we focus on subtasks 2 and 3.

There are two key assumptions our work makes going forward. First, we assume subtask 1 has
been completed, i.e. ACs have already been identified. Second, we follow previous work that
assumes a tree structure for the linking of ACs (Palau & Moens| [2009; (Cohen| |1987; [Peldszus &
Stede, 2015} |Stab & Gurevych, [2016) Specifically, a given AC can only have a single outgoing
link, but can have numerous incoming links. Furthermore, there is a ‘head’ component that has

Under review as a conference paper at ICLR 2017

First, [cloning will be beneficial for $
many people who are in need of organ
transplants]aci. In addition, [it shortens
the healing process]aca. Usually, [it

is very rare to find an appropriate

organ donor]acs and [by using cloning

in order to raise required organs

the waiting time can be shortened

tremendously]acs.
AC3 AC4
Premise Premise

Figure 1: An example of argument structure with four ACs. The left side shows raw text that has
been annotated for the presence of ACs. Squiggly and straight underlining means an AC is a claim
or premise, respectively. The ACs in the text have also been annotated for links to other ACs, which
is show in the right figure. ACs 3 and 4 are premises that link to another premise, AC2. Finally, AC2
links to a claim, AC1. AC1 therefore acts as the central argumentative component.

no outgoing link (the top of the tree). Figure [I] shows an example that we will use throughout the
paper to concretely explain how our approach works. First, the left side of the figure presents the
raw text of a paragraph in a persuasive essay (Stab & Gurevych| 2016), with the ACs contained
in square brackets. Squiggly verse straight underlining differentiates between claims and premises,
respectively. The ACs have been annotated as to how the ACs are linked, and the right side of the
figure reflects this structure. The argument structure with four ACs forms a tree, where AC2 has
two incoming links, and AC1 acts as the head, with no outgoing links. We also specify the fype of
AC, with the head AC marked as claim and the remaining ACs marked as premise. Lastly, we note
that the order of arguments components can be a strong indicator of how components should related.
Linking to the first argument component can provide a competitive baseline heuristic

Stede} 2015;[Stab & Gurevych, 2016).

Given the task at hand, we propose a modification of a Pointer Network (PN) (Vinyals et al., 2015b).
A PN is a sequence-to-sequence model that outputs a distribution over the encoding indices at each
decoding timestep. The PN is a promising model for link extraction in argumentative text because
it inherently possesses three important characteristics: 1) it is able to model the sequential nature of
ACs; 2) it constrains ACs to have a single outgoing link, thus partly enforcing the tree structure; 3)
the hidden representations learned by the model can be used for jointly predicting multiple subtasks.
We also note that since a PN is a type of sequence-to-sequence model (Sutskever et all, [2014), it
allows the entire sequence to be seen before making prediction. This is important because if the
problem were to be approached as standard sequence modeling (Graves & Schmidhuber, 2009}
[1994), making predictions at each forward timestep, it would only allow links to ACs
that have already been seen. This is equivalent to only allowing backward links. We note that we do
test a simplified model that only uses hidden states from an encoding network to make predictions,
as opposed to the sequence-to-sequence architecture present in the PN (see Section [3)).

PN were originally proposed to allow a variable length decoding sequence (Vinyals et al, 2015b).
Alternatively, the PN we implement differs from the original model in that we decode for the same
number of timesteps as there are input components. We also propose a joint PN for both extracting
links between ACs and predicting the rype of AC. The model uses the hidden representation of
ACs produced during the encoding step (see Section [3.4). Aside from the partial assumption of
tree structure in the argumentative text, our models do not make any additional assumptions about
the AC types or connectivity, unlike the work of (2014). We evaluate our models on the
corpora of |Stab & Gurevych| (2016)) and |Peldszus| (2014)), and compare our results with the results
of the aformentioned authors.

2 RELATED WORK

Recent work in argumentation mining offers data-driven approaches for the task of predicting links
between ACs. Stab & Gurevych| (2014b) approach the task as a binary classification problem. The

Under review as a conference paper at ICLR 2017

authors train an SVM with various semantic and structural features. [Peldszus & Stede| (2015)
have also used classification models for predicting the presence of links. Various authors have
also proposed to jointly model link extraction with other subtasks from the argumentation mining
pipeline, using either an Integer Linear Programming (ILP) framework (Persing & Ng| 2016} Stab
& Gurevych, 2016) or directly feeding previous subtask predictions into another model. The former
joint approaches are evaluated on annotated corpora of persuasive essays (Stab & Gurevych, 2014aj
2016), and the latter on a corpus of microtexts (Peldszus, 2014). The ILP framework is effective
in enforcing a tree structure between ACs when predictions are made from otherwise naive base
classifiers.

Unrelated to argumentation mining specifically, recurrent neural networks have previously been
proposed to model tree/graph structures in a linear manner. [Vinyals et al.| (2015c) use a sequence-
to-sequence model for the task of syntactic parsing. The authors linearize input parse graphs using
a depth-first search, allowing it to be consumed as a sequence, achieving state-of-the-art results
on several syntactic parsing datasets. [Bowman et al.| (2015) experiment on an artificial entailment
dataset that is specifically engineered to capture recursive logic (Bowman et al.| 2014)). The text is
annotated with brackets, in an original attempt to provide easy input into a recursive neural network.
However, standard recurrent neural networks can take in complete sentence sequences, brackets
included, and perform competitively with a recursive neural network.

3 POINTER NETWORK FOR LINK EXTRACTION

In this section we will describe how we use a PN for the problem of extracting links between ACs.
We begin by giving a general description of the PN model.

3.1 POINTER NETWORK

A PN is a sequence-to-sequence model (Sutskever et al., [2014) with attention (Bahdanau et al.,
2014) that was proposed to handle decoding sequences over the encoding inputs, and can be ex-
tended to arbitrary sets (Vinyals et al.,2015a)). The original motivation for a pointer network was
to allow networks to learn solutions to algorithmic problems, such as the traveling salesperson and
convex hull, where the solution is a sequence over candidate points. The PN model is trained on
input/output sequence pairs (E, D), where F is the source and D is the target (our choice of E,D is
meant to represent the encoding, decoding steps of the sequence-to-sequence model). Given model
parameters ©, we apply the chain rule to determine the probability of a single training example:

m(E)
p(D|E;©) H p(Dy| Dy, ..., D; 1, E; ©) (1)

where the function m signifies that the number of decoding timesteps is a function of each individual
training example. We will discuss shortly why we need to modify the original definition of m for
our application. By taking the log-likelihood of Equation[I} we arrive at the optimization objective:

©* = argmax Z log p(D|E; ©) 2
© ED

which is the sum over all training example pairs.

The PN uses Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, |1997) for sequential
modeling, which produces a hidden layer h at each encoding/decoding timestep. In practice, the PN
has two separate LSTMs, one for encoding and one for decoding. Thus, we refer to encoding hidden
layers as e, and decoding hidden layers as d.

The PN uses a form of content-based attention (Bahdanau et al.|, 2014)) to allow the model to produce
a distribution over input elements. This can also be thought of as a distribution over input indices,
wherein a decoding step ‘points’ to the input. Formally, given encoding hidden states (eq, ..., e,),
The model calculates p(D;| Dy, ..., D;_1, F) as follows:

ul = v” tanh(Wie; + Wad;) (3)

Under review as a conference paper at ICLR 2017

ﬁ%wm%&#$$

Component 1 Component 2 Component 3 Component 4

Figure 2: Applying a Pointer Network to the example paragraph in Figure With LSTMs unrolled
over time.

p(Di| Dy, ..., Dj_1, E) = softmaz(u’) “)

where matrices W7, Wy and vector v are parameters of the model (along with the LSTM parameters
used for encoding and decoding). In Equation 3] prior to taking the dot product with v, the resulting
transformation can be thought of as creating a joint, hidden representation of inputs ¢ and j. Vector
u? in equation@is of length n, and index j corresponds to input element j. Therefore, by taking the
softmax of u’, we are able to create a distribution over the input.

3.2 LINK EXTRACTION AS SEQUENCE MODELING

A given piece of text has a set of ACs, which occur in a specific order in the text, (Cy,...,Cy).
Therefore, at encoding timestep 4, the model is fed a representation of C;. Since the representation
is large and sparse (see Section [3.3]for details on how we represent ACs), we add a fully-connected
layer before the LSTM input. Given a representation R; for AC C; the LSTM input A; becomes:

Ai = U(WrepRi + brep) @)

where W.¢p, brep in turn become model parameters, and o is the sigmoid functiorﬂ (similarly, the
decoding network applies a fully-connected layer with sigmoid activation to its inputs, see Figure
[B). Atencoding step i, the encoding LSTM produces hidden layer e;, which can be thought of as a
hidden representation of AC C;.

In order to make the PN applicable to the problem of link extraction, we explicitly set the number of
decoding timesteps to be equal to the number of input components. Using notation from Equation|[T]
the decoding sequence length for an encoding sequence E is simply m(E) = [{C1, ..., Cy, }|, which
is trivially equal to n. By constructing the decoding sequence in this manner, we can associate
decoding timestep ¢ with AC C;.

From Equation] decoding timestep D; will output a distribution over input indices. The result of
this distribution will indicate to which AC component C; links. Recall there is a possibility that an
AC has no outgoing link, such as if it’s the root of the tree. In this case, we state that if AC C; does
not have an outgoing link, decoding step D; will output index ¢. Conversely, if D; outputs index
J, such that j is not equal to 4, this implies that C; has an outgoing link to C;. For the argument
structure in Figure |1} the corresponding decoding sequence is (1,1,2,2). The topology of this
decoding sequence is illustrated in Figure 2] Note how C points to itself since it has no outgoing
link.

Finally, we note that we modify the PN structure to have a Bidirectional LSTM as the encoder. Thus,
e; is the concatenation of forward and backward hidden states ?Z- and ?n,iﬂ, produced by two
separate LSTMs. The decoder remains a standard forward LSTM.

3.3 REPRESENTING ARGUMENT COMPONENTS

At each timestep of the decoder, the network takes in the representation of an AC. Each AC is itself
a sequence of tokens, similar to the recently proposed Question-Answering dataset
2015). We follow the work of |Stab & Gurevych!(2016) and focus on three different types of features

"We also experimented with relu and elu activations, but found sigmoid to yeild the best performance.

Under review as a conference paper at ICLR 2017

Claim Premise Premise Premise
A A A

Component 1 Component 2 Component 3 Component 4

Figure 3: Architecture of the joint model applied to the example in Figure

to represent our ACs: 1) Bag-of-Words of the AC; 2) Embedding representation based on GloVe
embeddings (Pennington et al.} [2014); 3) Structural features: Whether or not the AC is the first AC
in a paragraph, and Whether the AC is in an opening, body, or closing paragraph. See Section [6] for
an ablation study of the proposed features.

3.4 JOINT NEURAL MODEL

Up to this point, we focused on the task of extracting links between ACs. However, recent work
has shown that joint models that simultaneously try to complete multiple aspects of the subtask
pipeline outperform models that focus on a single subtask (Persing & Ng| 2016} [Stab & Gurevych|

Peldszus & Stede,[2015). Therefore, we will modify the architecture we proposed in Section
g]' so that it would allow us to perform AC classification (Kwon et al., [2007; [Rooney et all, [2012)
together with link prediction. Knowledge of an individual subtask’s predictions can aid in other
subtasks. For example, claims do not have an outgoing link, so knowing the type of AC can aid in
the link prediction task. This can be seen as a way of regularizing the hidden representations from

the encoding component 2015).

Predicting AC type is a straightforward classification task: given AC C;, we need to predict whether
it is a claim or premise. Some annotation schemes also include the class major claim
2014a)), which means this can be a multi-class classification task. For encoding timestep
1, the model creates hidden representation e;. This can be thought of as a representation of AC C;.
Therefore, our joint model will simply pass this representation through a fully connected layer as
follows:

Zi = Wclsei + bcls (6)

where W5, b.s become elements of the model parameters, ©. The dimensionality of W, b5 is
determined by the number of classes. Lastly, we use softmax to form a distribution over the possible
classes.

Consequently, the probability of predicting component type at timestep ¢ is defined as:

P(Ci) = p(E[E;, Bis0))

p(EﬂEi, %i; 0) = softmax(z;) 8)

Finally, combining this new prediction task with Equation[2] we arrive at the new training objective:
©" =argmaxa y logp(D|E;0)+ (1 —«)) logp(E|O))

which simply sums the costs of the individual prediction tasks, and the second summation is the
cost for the new task of predicting argument component type. « € [0, 1] is a hyperparameter that

Under review as a conference paper at ICLR 2017

specifies how we weight the two prediction tasks in our cost function. The architecture of the joint
model, applied to our ongoing example, is illustrated in Figure 3]

4 EXPERIMENTAL DESIGN

As we have previously mentioned, our work assumes that ACs have already been identified. That
is, the token sequence that comprises a given AC is already known. The order of ACs corresponds
directly to the order in which the ACs appear in the text. Since ACs are non-overlapping, there
is no ambiguity in this ordering. We test the effectiveness of our proposed model on a dataset of
persuasive essays (Stab & Gurevychl 2016), as well as a dataset of microtexts (Peldszus, 2014).
The feature space for the persuasive essay corpus has roughly 3,000 dimensions, and the microtext
corpus feature space has between 2,500 and 3,000 dimensions, depending on the data split (see
below).

The persuasive essay corpus contains a total of 402 essays, with a frozen set of 80 essays held out
for testing. There are three AC types in this corpus: major claim, claim, and premise. We follow the
creators of the corpus and only evaluate ACs within a given paragraph. That is, each training/test
example is a sequence of ACs from a paragraph. This results in a 1,405/144 training/test split. The
microtext corpus contains 112 short texts. Unlike, the persuasive essay corpus, each text in this
corpus is itself a complete example. Since the dataset is small, the authors have created 10 sets of
5-fold cross-validation, reporting the the average across all splits for final model evaluation. This
corpus contains only two types of ACs (claim and premise) The annotation of argument structure of
the microtext corpus varies from the persuasive essay corpus; ACs can be linked to other links, as
opposed to ACs. Therefore, if AC C} is annotated to be linked to link [, we create a link to the source
AC of [. On average, this corpus has 5.14 ACs per text. Lastly, we note that predicting the presence
of links is directional (ordered): predicting a link between the pair C;, C; (¢ # j) is different than
Gy, C;.

We implement our models in TensorFlow (Abadi et al.,[2015). Our model has the following param-
eters: hidden input dimension size 512, hidden layer size 256 for the bidirectional LSTMs, hidden
layer size 512 for the LSTM decoder, « equal to 0.5, and dropout (Srivastava et al.| [2014) of 0.9.
We believe the need for such high dropout is due to the small amounts of training data (Zarrella &
Marsh, [2016), particularly in the Microtext corpus. All models are trained with Adam optimizer
(Kingma & Ba, |2014) with a batch size of 16. For a given training set, we randomly select 10% to
become the validation set. Training occurs for 4,000 epochs. Once training is completed, we select
the model with the highest validation accuracy (on the link prediction task) and evaluate it on the
held-out test set. At test time, we take a greedy approach and select the index of the probability
distribution (whether link or type prediction) with the highest value.

5 RESULTS

The results of our experiments are presented in Tables |1| and [2| For each corpus, we present fl
scores for the AC type classification experiment, with a macro-averaged score of the individual
class f1 scores. We also present the f1 scores for predicting the presence/absence of links between
ACs, as well as the associated macro-average between these two values.

We implement and compare four types of neural models: 1) The previously described PN-based
model depicted in Figure [3] (called PN in the tables); 2) The same as 1), but without the fully-
connected input layers; 3) The same as 1), but the model only predicts the link task, and is therefore
not optimized for type prediction; 4) A non-sequence-to-sequence model that uses the hidden layers
produced by the BLSTM encoder with the same type of attention as the PN (called BLSTM in the
table). That is, d; in Equation [3]is replaced by e;.

In both corpora we compare against the following previously proposed models: Base Classifier
(Stab & Gurevych, [2016)) is feature-rich, task-specific (AC type or link extraction) SVM classifier.
Neither of these classifiers enforce structural or global constraints. Conversely, the ILP Joint Model
(Stab & Gurevych, 2016)) provides constrains by sharing prediction information between the base
classifier. For example, the model attempts to enforce a tree structure among ACs within a given
paragraph, as well as using incoming link predictions to better predict the type class claim. For the

Under review as a conference paper at ICLR 2017

Table 1: Results on persuasive essay corpus.

Type prediction Link prediction
Model Macro fl | MC f1 | Cl1f1 | Prfl || Macro fl | Link fI | No Link f1
Base Classifier 794 .891 .611 | .879 17 508 917
ILP Joint Model .826 .891 .682 | .903 51 .585 918
BLSTM .810 .830 .688 | 912 154 .589 919
PN No FC Input 791 .826 .642 | .906 708 S514 901
PN No Type - - - - 709 Sl 906
PN 849 .894 732 | .921 767 .608 925

Table 2: Results on microtext corpus.

Type prediction Link prediction
Model Macro f1 | C1f1 | Prfl || Macro f1 | Link f1 | No Link f1
Simple 817 - - .663 478 848
Best EG .869 - - .693 502 .884
MP+p 831 - - 720 .546 .894
Base Classifier .830 712 | 937 .650 446 841
ILP Joint Model 857 770 | 943 .683 486 .881
| PN H 813 [.692 [934 “ 740 [577 [903 |

microtext corpus only, we have the following comparative models: Simple (Peldszus & Stedel [2015))
is a feature-rich logistic regression classifier. Best EG (Peldszus & Stedel [2015) creates an Evidence
Graph (EG) from the predictions of a set of base classifier. The EG models the potential argument
structure, and offers a global optimization objective that the base classifiers attempt to optimize by
adjusting their individual weights. Lastly, MP+p (Peldszus & Stedel 2015) combines predictions
from base classifiers with a MSTParser, which applies 1-best MIRA structured learning.

6 DISCUSSION

First, we point out that the PN model achieves state-of-the-art on 10 of the 13 metrics in Tables E]
and |2} including the highest results in all metrics on the Persuasive Essay corpus, as well as link
prediction on the Microtext corpus. The performance on the Microtext corpus is very encouraging
for several reasons. First, the fact that the model can perform so well with only a hundred training
examples is rather remarkable. Second, although we motivate the use of a PN due to the fact that
it partially enforces the tree structure in argumentation, other models explicitly contain further con-
straints. For example, only premises can have outgoing links, and there can be only one claim in an
AC. As for the other neural models, the BLSTM model performs competitively with the ILP Joint
Model on the persuasive essay corpus, but trails the performance of the PN model. We believe this
is because the PN model is able to create two different representations for each AC, one each in the
encoding/decoding state, which benefits performance in the dual tasks, whereas the BLSTM model
must encode information relating to type as well as link prediction in a single hidden representation.
On one hand, the BLSTM model outperforms the ILP model on link prediction, yet it is not able to
match the ILP Joint Model’s performance on type prediction, primarily due to the BLSTM’s poor
performance on predicting the major claim class. Another interesting outcome is the importance of
the fully-connected layer before the LSTM input. The results show that this extra layer of depth is
crucial for good performance on this task. Without it, the PN model is only able to perform com-
petitively with the Base Classifier. The results dictate that even a simple fully-connected layer with
sigmoid activation can provide a useful dimensionality reduction for feature representation. Finally,
the PN model that only extracts links suffers a large drop in performance, conveying that the joint
aspect of the PN model is crucial for high performance in the link prediction task.

Table [3] shows the results of an ablation study for AC feature representation. Regarding link pre-
diction, BOW features are clearly the most important, as their absence results in the highest drop in
performance. Conversely, the presence of structural features provides the smallest boost in perfor-
mance, as the model is still able to record state-of-the-art results compared to the ILP Joint Model.
This shows that, one one hand, the PN model is able to capture structural ques through sequence

Under review as a conference paper at ICLR 2017

Table 3: Feature ablation study. * indicates that both BOW and Structural are present, as well as the
stated embedding type.

Type prediction Link prediction
Model Macro fl | MC f1 | C1fl | Prfl || Macro fl | Link f1 | No Link f1
No structural .808 .824 .694 | 907 760 .598 922
No BOW 796 .833 .652 | .902 728 543 912
No Embeddings .827 874 695 | 911 750 581 918
Only Avg Emb* .832 .873 J17 | 917 151 .583 918
Only Max Emb* .843 874 | 732 | 923 766 .608 924
Only Min Emb* .838 .878 719 | 918 763 .602 924
All features 849 894 | 732 | 921 767 608 925

Table 4: Results of binning test data by length of AC sequence. * indicates that this bin does not
contain any major claim labels, and this average only applies to claim and premise classes. However,
we do not disable the model from predicting this class: the model was able to avoid predicting this
class on its own.

Type prediction Link prediction
Bin Macro f1 | MCf1 | CIfl1 | Prfl || Macro fl1 | Link f1 | No Link f1
1<len< 4 .863 902 798 | .889 918 .866 .969
4<len <8 .680 444 675 | .920 749 .586 912
8 <len < 12 .862%* .000* | .762 | .961 742 542 941

modeling and semantics (the ILP Joint Model directly integrates these structural features), however
the PN model still does benefit from their explicit presence in the feature representation. When con-
sidering type prediction, both BOW and structural features are important, and it is the embedding
features that provide the least benefit. The Ablation results also provide an interesting insight into
the effectiveness of different ‘pooling’ strategies for using individual token embeddings to create a
multi-word embedding. The popular method of averaging embeddings (which is used by [Stab &
Gurevych| (2016) in their system) is in fact the worst method, although its performance is still com-
petitive with the previous state-of-the-art. Conversely, max pooling produces results that are on par
with the PN results from Table Il

Table [4| shows the results on the Persuasive Essay test set with the examples binned by sequence
length. First, it is not a surprise to see that the model performs best when the sequences are the
shortest. As the sequence length increases, the accuracy on link prediction drops. This is possibly
due to the fact that as the length increases, a given AC has more possibilities as to which other AC it
can link to, making the task more difficult. Conversely, there is actually a rise in no link prediction
accuracy from the second to third row. This is likely due to the fact that since the model predicts at
most one outgoing link, it indirectly predicts no link for the remaining ACs in the sequence. Since
the chance probability is low for having a link between a given AC in a long sequence, the no link
performance is actually better in longer sequences.

7 CONCLUSION

In this paper we have proposed how to use a modified PN (Vinyals et al.l 2015b)) to extract links
between ACs in argumentative text. We evaluate our models on two corpora: a corpus of persuasive
essays (Stab & Gurevychl|2016)), and a corpus of microtexts (Peldszus}[2014). The PN model records
state-of-the-art results on the persuasive essay corpus, as well as achieving state-of-the-art results
for link prediction on the microtext corpus, despite only having 90 training examples. The results
show that jointly modeling the two prediction tasks is crucial for high performance, as well as the
presence of a fully-connected layer prior to the LSTM input. Future work can attempt to learn the
AC representations themselves, such as in |[Kumar et al.| (2015). Lastly, future work can integrate
subtasks 1 and 4 into the model. The representations produced by Equation [3| could potentially
be used to predict the fype of link connecting ACs, i.e. supporting or attacking; this is the fourth
subtask in the pipeline. In addition, a segmenting technique, such as the one proposed by Weston
et al.|(2014)), can accomplish subtask 1.

Under review as a conference paper at ICLR 2017

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Samuel R Bowman, Christopher Potts, and Christopher D Manning. Recursive neural networks can
learn logical semantics. arXiv preprint arXiv:1406.1827, 2014.

Samuel R Bowman, Christopher D Manning, and Christopher Potts. Tree-structured composition in
neural networks without tree-structured architectures. arXiv preprint arXiv:1506.04834, 2015.

Amparo Elizabeth Cano-Basave and Yulan He. A study of the impact of persuasive argumentation
in political debates. In Proceedings of NAACL-HLT, pp. 1405-1413, 2016.

Zhengping Che, David Kale, Wenzhe Li, Mohammad Taha Bahadori, and Yan Liu. Deep compu-
tational phenotyping. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 507-516. ACM, 2015.

Robin Cohen. Analyzing the structure of argumentative discourse. Computational linguistics, 13
(1-2):11-24, 1987.

Debanjan Ghosh, Aquila Khanam, Yubo Han, and Smaranda Muresan. Coarse-grained argumenta-
tion features for scoring persuasive essays. In The 54th Annual Meeting of the Association for
Computational Linguistics, pp. 549, 2016.

Trudy Govier. A practical study of argument. Cengage Learning, 2013.

Alex Graves and Jiirgen Schmidhuber. Offline handwriting recognition with multidimensional re-
current neural networks. In Advances in neural information processing systems, pp. 545-552,
2009.

Ivan Habernal and Iryna Gurevych. Which argument is more convincing? analyzing and predicting
convincingness of web arguments using bidirectional Istm. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (ACL), 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter On-
druska, Ishaan Gulrajani, and Richard Socher. Ask me anything: Dynamic memory networks for
natural language processing. arXiv preprint arXiv:1506.07285, 2015.

Namhee Kwon, Liang Zhou, Eduard Hovy, and Stuart W Shulman. Identifying and classifying sub-
jective claims. In Proceedings of the 8th annual international conference on Digital government
research: bridging disciplines & domains, pp. 76-81. Digital Government Society of North Amer-
ica, 2007.

Huy V Nguyen and Diane J Litman. Context-aware argumentative relation mining. 2016.

Raquel Mochales Palau and Marie-Francine Moens. Argumentation mining: the detection, classifi-
cation and structure of arguments in text. In Proceedings of the 12th international conference on
artificial intelligence and law, pp. 98—107. ACM, 2009.

http://tensorflow.org/

Under review as a conference paper at ICLR 2017

Andreas Peldszus. Towards segment-based recognition of argumentation structure in short texts.
ACL 2014, pp. 88, 2014.

Andreas Peldszus and Manfred Stede. Joint prediction in mst-style discourse parsing for argumen-
tation mining. In Proc. of the Conference on Empirical Methods in Natural Language Processing,
pp. 938-948, 2015.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pp. 1532-43, 2014.

Isaac Persing and Vincent Ng. End-to-end argumentation mining in student essays. In Proceedings
of NAACL-HLT, pp. 1384-1394, 2016.

Anthony J Robinson. An application of recurrent nets to phone probability estimation. IEEE
transactions on Neural Networks, 5(2):298-305, 1994.

Niall Rooney, Hui Wang, and Fiona Browne. Applying kernel methods to argumentation mining. In
FLAIRS Conference, 2012.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

Christian Stab and Iryna Gurevych. Annotating argument components and relations in persuasive
essays. In COLING, pp. 1501-1510, 2014a.

Christian Stab and Iryna Gurevych. Identifying argumentative discourse structures in persuasive
essays. In EMNLP, pp. 46-56, 2014b.

Christian Stab and Iryna Gurevych. Parsing argumentation structures in persuasive essays. arXiv
preprint arXiv:1604.07370, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104-3112, 2014.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015a.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2692-2700, 2015b.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Gram-
mar as a foreign language. In Advances in Neural Information Processing Systems, pp. 2773—
2781, 2015c.

Zhongyu Wei, Yang Liu, and Yi Li. Is this post persuasive? ranking argumentative comments in the
online forum. In The 54th Annual Meeting of the Association for Computational Linguistics, pp.
195, 2016.

Jason Weston, Sumit Chopra, and Antoine Bordes. @ Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriénboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Guido Zarrella and Amy Marsh. Mitre at semeval-2016 task 6: Transfer learning for stance detec-
tion. arXiv preprint arXiv:1606.03784, 2016.

10

	Introduction
	Related Work
	Pointer Network for Link Extraction
	Pointer Network
	Link Extraction as Sequence Modeling
	Representing Argument Components
	Joint Neural Model

	Experimental Design
	Results
	Discussion
	Conclusion

