
Workshop track - ICLR 2018

EXPLOITING MODEL CAPACITY BY CONSTRAINING
WITHIN-BATCH FEATURES TO BE ORTHOGONAL

Hyo-Eun Kim
Lunit Inc.
Seoul, South Korea
hekim@lunit.io

ABSTRACT

Deep networks have been shown to greatly benefit from large model capacity
when trained using various recent deep learning techniques. But at the same
time, features in such large capacity networks have a potential to be redundant.
In this work, we propose a new regularization method to exploit the given net-
work capacity effectively. By minimizing the redundancy among in-layer filters
and the correlation between in-batch features at the same time, we are able to
achieve better performance with the same network architecture. Experiments with
CIFAR-10/100 show that simultaneously constraining both the in-layer filters to
be orthonormal and the in-batch features to be orthogonal is beneficial in effi-
ciently utilizing the model capacity.

1 INTRODUCTION

Recent trends in deep learning show that deeper model performs better in general (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015; He et al., 2016). This owes to the efforts to resolve vanish-
ing/exploding gradients problem in deep models, such as normalizing outputs of layers to be iden-
tical distributions (Ioffe & Szegedy, 2015), connecting layers with shortcuts to make direct paths
for gradient flow (He et al., 2016), and initializing weights appropriately to prevent vanishing (or
exploding) of gradients (Saxe et al., 2014; Mishkin & Matas, 2016). Although these works enabled
learning of deep models, learned filters of deeper networks with large capacity are more likely to be
redundant compared to shallow ones. Removing such redundancies would allow us to use the given
model capacity effectively, and achieve better generalization with the same models.

(Xie et al., 2017) proposed a method to regularize in-layer filters to be orthonormal during training
to solve the gradient vanishing/exploding problem in plain (i.e. without shortcuts) deep networks.
The orthonormality among filters in layer-k makes the output features from the layer-k have small
correlation with each other and enhances diversity among the filters. However, regularizing the
in-layer filters to be orthonormal does not guarantee the minimum correlation between the features.

In this work, we present a method to exploit the given model capacity effectively by constraining
in-batch features to be orthogonal and in-layer filters to be orthonormal. Since the output features of
the layer-k are generated from the input data via all of the preceding layers, this effectively helps to
regularize all the relevant filters globally. The proposed method keeps the in-batch features from the
layers in a set Sfeature to be orthogonal and the filters of the layers in a set Sfilter to be orthonormal
at the same time. Experimental results show that the proposed method gives further performance
benefit beyond the original orthonormal filter regularizer.

2 METHODOLOGY

Objective function to guarantee the orthonormality between filters in each layer can be described as,

Lfilter =
1

Nl

∑
l∈Sfilter

1

n2out
||WlW

T
l − I||22, Wl ∈ IRnout×nin , (1)

1

Workshop track - ICLR 2018

nout

3
2
1

1 2 B

w
h

nout

3
2
1

w`

h`

fin = B × h` × w`

w`

h`

w`

h`
h` × w` h` × w` h` × w`

layer-1

layer-2

layer-l

X = B (batch-size) # inputs

Hl ∈ RB × n_out × h × w Fl ∈ Rn_out × f_in

Figure 1: Transformation from the 4-dimensional feature map Hl of layer-l (left) to the 2-
dimensional feature matrix Fl (right). Concatenation of center-cropped features across batch-axis
defines per-filter representative features.

where Sfilter is a set of target layers to be optimized via orthonormal filter regularizer, and Nl is the
number of layers in the set. Wl, nin, and nout are a learnable filter bank of l− th layer, the number
of parameters in each filter, and the number of filters in Wl. For example, 3×3 convolutional kernel
with 64 filters for the 32-channel input feature map; nin and nout are 288 (= 3 × 3 × 32) and 64
respectively. I ∈ IRnout×nout in Eq. (1) is an identity matrix. During training, correlation between
nout number of nin dimensional filters is minimized by the loss function Lfilter.

In order to define the features to be orthogonalized during training, 4-dimensional output feature map
Hl ∈ IRB×nout×h×w of the target layer-l is transformed to the 2-dimensional feature matrix Fl ∈
IRnout×fin as shown in Figure 1. B is the batch-size and fin is the dimension of each transformed
feature vector (i.e. each row of Fl). Since each transformed feature vector should be representative
of each corresponding filter, we define the per-filter feature as a concatenation of the features of all
the input examples in a batch. Each per-example feature is center-cropped as shown in Figure 1.
Target loss for the orthogonality among features is as follows,

Lfeature =
1

Nl

∑
l∈Sfeature

1

n2out
||F̂lF̂

T
l − I||22, F̂l ∈ IRnout×fin , (2)

where Sfeature and Nl are a set of target layers for the in-batch feature orthogonalization and the
number of layers in the set, respectively. Fl is the target in-batch feature transformed from the output
feature Hl, and F̂l is the unit-vectorized version of Fl (i.e. each row of F̂l is a unit vector converted
from corresponding row of Fl). F̂lF̂

T
l is a matrix with ones on a diagonal, thus the orthogonality

between features of Fl is guaranteed by this loss.

Incorporating both Lfilter and Lfeature with a task solving loss Ltask (e.g., negative-log-likelihood
for classification), total loss is described as,

L = (1− λ1 − λ2)Ltask + λ1Lfilter + λ2Lfeature, (3)

where the loss weighting constants λ1, λ2, and their sum λ1 + λ2 should be in the range of [0,1).

3 EXPERIMENTS

We conducted experiments on the CIFAR-10/100 datasets, which have 10/100 classes with 50k/10k
training/test images, respectively (Krizhevsky & Hinton, 2009). First, we experimentally confirmed
that the orthonormal filter regularization is effective not only in the plain deep models but also
in deep models with residual connections.1 Based on our experiments, ResNet with both L2 and
orthonormal filter regularizers is better than the model with only the orthonormal filter regularizer.
For example, error rate with mean (std) of 4 trials in cifar-10; ResNet-32 with orthonormal filter

1(Xie et al., 2017) also showed the effectiveness of the orthonormal filter regularization in deep networks
with shorcuts; e.g., ResNet-110 with the orthonormal filter regularizer (error rate: 10.0%) is better than original
ResNet-110 with L2 regularizer (13.5%), but the error rate reported in the original paper (He et al., 2016) was
much smaller (6.61%).

2

Workshop track - ICLR 2018

Table 1: Classification error rates (%) of 4 trials with mean (std) on CIFAR-10/100; Baseline refers
to the original ResNet (He et al., 2016), Filter refers to the orthonormal filter regularizer (only) (Xie
et al., 2017), Feature refers to the orthogonal feature regularizer (only), and Both refers to both of
the regularizers.

cifar-10 cifar-100

ResNet-32 ResNet-56 ResNet-110 ResNet-152 ResNet-32 ResNet-56 ResNet-110 ResNet-152

Baseline 7.57 (0.207) 6.98 (0.306) 6.60 (0.340) 6.44 (0.349) 31.43 (0.211) 28.15 (0.412) 26.82 (0.531) 26.71 (0.683)

Filter 7.64 (0.128) 6.64 (0.158) 6.00 (0.097) 5.85 (0.220) 31.12 (0.519) 27.46 (0.272) 26.08 (0.433) 25.50 (0.166)

Feature 7.85 (0.128) 6.69 (0.129) 6.20 (0.135) 6.41 (0.265) 31.46 (0.224) 27.85 (0.127) 26.16 (0.161) 25.76 (0.157)

Both 7.44 (0.131) 6.34 (0.132) 5.78 (0.173) 5.84 (0.048) 31.00 (0.365) 27.61 (0.240) 25.63 (0.181) 25.13 (0.270)

regularizer only: 8.20% (0.246), ResNet-32 with both orthonormal filter and L2 regularizers: 7.64%
(0.103), so we use both regularizers for reproducing (Xie et al., 2017) in our experiments.

(He et al., 2016) introduced two types of residual blocks; basic block (consists of 2 consecutive
convolutions), bottleneck block (consists of 3 consecutive convolutions with bottleneck structure).
Bottleneck-type ResNet performs similar to the basic-type with much smaller parameters in ResNet-
56, 110, 152, and the basic-type performs better in ResNet-32; e.g., bottleneck-type ResNet-56 (#
params: 0.59M, error rate: 6.98%), basic-type ResNet-56 (# params: 0.86M, error rate: 6.99%). For
our baseline architecture, bottleneck-type is used for ResNet-56, 110, 152 and basic-type is used for
ResNet-32. Details of the architecture comparison are summarized in Appendix (Table 2 and 3).

Augmentation follows the original paper (He et al., 2016); images are zero-padded with 4 pixels on
each side, randomly cropped to produce 32×32 images, flipped horizontally with probability 0.5,
and normalized by subtracting channel means and dividing by channel standard deviations.

Sfilter includes all the convolution layers and Sfeature includes all the convolution layers except
for the first convolution layer, and w′ and h′ in Figure 1 are 2. Learning rate 0.1 is decayed by
1
10 at 80−th and 120−th epoch during training until 160−th epoch. The weight decay constant is
0.0001 and stochastic gradient descent with momentum 0.9 is used. Based on 50k training images,
performance on the 10k test images at the last (160−th) epoch was reported. All experiments are
conducted with PyTorch.2

Error rates of 4 trials with mean (std) are summarized in Table 1 (details of each model are described
in the caption). λ1,2 in Eq. (3) of Baseline, Filter, Feature, and Both are (0.0, 0.0), (0.25, 0.0), (0.0,
0.25), and (0.25, 0.25), respectively. Feature is beneficial, but worse than Filter in general. And Both
performs the best. The result of Both implicitly shows that the source of the performance benefit
in Feature is different from that of Filter. We investigated the average correlation between features
with respect to each model (details are in Appendix; Table 4). In summary, orthonormality among
filters helps to reduce the correlation between features but the gap between Baseline and Filter is
small. The average correlation of Both is the lowest among the models, which is slightly lower than
Feature; i.e. both Filter and Feature contribute complementarilly to achieve the best performance.

4 CONCLUSION AND FUTURE WORKS

We showed that constraining the in-batch features to be orthogonal and the in-layer filters to be
orthonormal can help to exploit given model capacity effectively. Directly handling the output fea-
tures to be orthogonal is beneficial, and the best performance is achieved when the orthonormal filter
regualizer is added. Although the proposed method is shown to be effective with the small datasets,
further experimental validation with large-scale datasets is needed. Our future work includes more
experimental analysis with different configurations (e.g., using convolution layers in the last resid-
ual block for Sfeature shows better performance in ResNet-152; 5.72 (0.178)) and datasets (e.g.,
ImageNet).

2https://github.com/pytorch/vision/tree/master/torchvision/models

3

Workshop track - ICLR 2018

REFERENCES

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer vision and pattern recognition (CVPR), 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning (ICML), 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. In
Technical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems (NIPS), 2012.

Dmytro Mishkin and Jiri Matas. All you need is a good init. In International conference on learning
representations (ICLR), 2016.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. In International conference on learning represen-
tations (ICLR), 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International conference on learning representations (ICLR), 2015.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation.
In Computer vision and pattern recognition (CVPR), 2017.

4

Workshop track - ICLR 2018

5 APPENDIX

Table 2 compares two residual blocks in ResNet (He et al., 2016), and the performance with the
model capacity of the two types are in Table 3. Table 4 shows average correlation between features.

Table 2: ResNet architecture for CIFAR-10/100; basic block vs bottleneck block. Downsampling
with stride 2 is performed by res-block2 and res-block3.

layer name output size basic block bottleneck block # blocks

init conv 32× 32 3× 3, 16 (stride=2)

res-block 1 32× 32

 3× 3, 16

3× 3, 16




1× 1, 16

3× 3, 16

1× 1, 64

 ×n1

res-block 2 16× 16

 3× 3, 32

3× 3, 32




1× 1, 32

3× 3, 32

1× 1, 128

 ×n2

res-block 3 8× 8

 3× 3, 64

3× 3, 64




1× 1, 64

3× 3, 64

1× 1, 256

 ×n3

final block 1× 1 avgpool, cls#-dim fc, softmax

Table 3: Comparison of the two types; # of blocks, # of paramerters, and error rate (%) with mean
(std) of 4 trials. Bottleneck-type ResNet performs similar to the basic-type ResNet with much
smaller parameters.

ResNet-32 ResNet-56 ResNet-110 ResNet-152

basic block

(n1, n2, n3) (5, 5, 5) (9, 9, 9) (18, 18, 18) (25, 25, 25)

params 0.47M 0.86M 1.73M 2.41M

error rate (%) 7.57 (0.207) 6.99 (0.100) 6.54 (0.203) 6.40 (0.113)

bottleneck block

(n1, n2, n3) (3, 3, 4) (6, 6, 6) (12, 12, 12) (16, 16, 18)

params 0.38M 0.59M 1.15M 1.66M

error rate (%) 7.80 (0.287) 6.98 (0.306) 6.60 (0.340) 6.44 (0.349)

Table 4: Average correlation between features; mean of Lfeature at the last epoch (4 trials). Or-
thonormality between filters in Filter helps to reduce the average correlation of features from Base-
line, but the gap is small. Both shows the lowest correlation which is slightly lower than Feature.

cifar-10 cifar-100

ResNet-32 ResNet-56 ResNet-110 ResNet-152 ResNet-32 ResNet-56 ResNet-110 ResNet-152

Baseline 0.121 0.103 0.143 0.147 0.101 0.089 0.113 0.136

Filter 0.114 0.096 0.110 0.118 0.091 0.084 0.099 0.111

Feature 0.034 0.039 0.040 0.041 0.026 0.040 0.042 0.045

Both 0.021 0.032 0.033 0.034 0.021 0.034 0.035 0.037

5

	Introduction
	Methodology
	Experiments
	Conclusion and Future Works
	Appendix

