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Abstract

We consider a new family of stochastic operators for reinforcement learning that
seeks to alleviate negative effects and become more robust to approximation or
estimation errors. Theoretical results are established, showing that our family of
operators preserve optimality and increase the action gap in a stochastic sense.
Empirical results illustrate the strong benefits of our robust stochastic operators,
significantly outperforming the classical Bellman and recently proposed operators.

1 Introduction

Reinforcement learning has a rich history within the machine learning community to solve a wide
variety of decision making problems in environments with unknown and possibly unstructured
dynamics. Through iterative application of a convergent operator, value-based reinforcement learning
(RL) generates successive refinements of an initial value function [14} 21, 20]]. @Q-learning [23]] is
a particular RL technique in which the computations of value iteration consist of evaluating the
corresponding Bellman equation without a model of the environment.

While Q-learning continues to be broadly and successfully used in RL to determine the optimal actions
of an agent, the development of new ()-learning approaches that improve convergence speed, accuracy
and robustness remains of great interest. One area of particular interest concerns environments in
which there exist approximation or estimation errors. Of course, when no approximation/estimation
errors are present, then the corresponding Markov Decision Process (MDP) can be solved exactly
with the Bellman operator. However, in the presence of nonstationary errors — a typically encountered
example being when a discrete-state, discrete-time MDP is used to approximate a continuous-state,
continuous-time system — then the optimal state-action value function obtained through the Bellman
operator does not always describe the value of stationary policies. Hence, when the optimal state-
action value function and the suboptimal state-action value functions are reasonably close to each
other, approximation/estimation errors can cause suboptimal actions to be chosen instead of an
optimal action and thus in turn potentially causing errors in identifying truly optimal actions.

To help explain and formalize this phenomena, Farahmand [[13] introduced the notion of action-gap
regularity and showed that a larger action-gap regularity implies a smaller loss in performance.
Building on action-gap regularity and its benefits with respect to (w.r.t.) performance loss, Bellemare
et al. [6] considered a particular approach to having the value iteration converge to an alternative
action-value function () associated with the same optimal action policy — i.e., maintain properties of
optimality-preserving — while at the same time achieving a larger separation between the ()-values of
optimal actions and those of suboptimal actions — i.e., maintain properties of action-gap increasing.
The former properties ensure optimality whereas the latter properties may assist the value-iteration
algorithm to determine the optimal actions of an agent faster, more easily, and with less errors of
mislabeling suboptimal actions. Therefore, by exploiting weaker optimality conditions than the
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Bellman equation and due to the known benefits of larger action-gap regularity, this approach can
potentially lead to alternatives to the classical Bellman operator that improve the convergence speed,
accuracy and robustness of RL in environments with approximation/estimation errors.

Following this approach, Bellemare et al. [6]] propose deterministic operator alternatives to the
classical Bellman operator and show that the proposed operators satisfy the properties of optimality-
preserving and gap-increasing. Then, after empirically demonstrating the benefits of their proposed
deterministic operator alternatives, the authors raise a number of open fundamental questions w.r.t. the
possibility of weaker conditions for optimality, the statistical efficiency of their proposed operators,
and the possibility of finding a maximally efficient operator.

At the heart of the problem is a fundamental tradeoff between the degree to which the preservation of
optimality is violated and the degree to which the action gap is increased. Although the benefits of
increasing action-gap regularity are known [13]], increasing the action gap beyond a certain region in
a deterministic sense can lead to violations of optimality preservation (as a result of deviating too far
from Bellman optimality), thus rendering value iterations that may not ensure convergence to optimal
solutions. Hence, any deterministic operator alternative is unfortunately quite limited in the degree to
which it can be both gap-increasing and optimality-preserving, and thus in turn quite limited in the
degree to which it can address the problems of approximation/estimation errors in RL.

We therefore consider an approach based on a novel stochastic framework that can increase the
action gap well beyond such a deterministic region for individual value iterations, via a random
variable (r.v.), while controlling in a probabilistic manner the overall value iterations, via a sequence
of r.v.s, to ensure optimality preservation in a stochastic sense. Our general approach is applicable
to arbitrary ()-value approximation schemes in which the sequence of r.v.s provides support to
devalue suboptimal actions while preserving the set of optimal policies almost surely (a.s.), thus
making it possible to increase the action gap between the ()-values of optimal and suboptimal actions
beyond the deterministic region; this can be critically important in practice because of the potential
advantages of increasing the action gap when there are approximation/estimation errors. In devising
a family of operators within our framework endowed with these properties, we provide a general
stochastic approach that addresses the inherent deficiencies of deterministic operator alternatives to
the classical Bellman operator and that yields greater robustness w.r.t. mislabeling suboptimal actions
in the presence of approximation/estimation errors. To the best of our knowledge, this paper presents
the first proposal and theoretical analysis of such types of robust stochastic operators (RSOs), which
is an approach not often seen in the RL literature and should be exploited to a much greater extent.

The research literature contains a wide variety of studies of operator alternatives to the Bellman oper-
ator, including the e-greedy method [23], speedy @-learning [3]], policy iteration-like Q)-learning [8]],
and the Boltzmann softmax operator and its variants [2]]. Each of these operator alternatives seeks to
address certain issues in RL. In this paper we complement these previous studies of operator alterna-
tives and focus on operators that seek to achieve greater robustness w.r.t. approximation/estimation
errors; in fact, our empirical studies are based on ()-learning with the e-greedy method.

Our theoretical results include proving that our stochastic operators are optimality-preserving and
gap-increasing in a stochastic sense. Since the value-iteration sequence generated under our stochastic
operators is based on realizations of independent nonnegative r.v.s, our family of RSOs subsumes
the family of deterministic operators in [6] as a strict subset (because the realizations of r.v.s can be
fixed to match that of any deterministic operators as a special case). We further prove that stochastic
and variability orderings among the sequence of random operators lead to corresponding orderings
among the action gaps. Our stochastic framework and theoretical results shed new light on the
open fundamental questions raised in [6]], which includes our family of RSOs rendering significantly
weaker conditions for optimality. Another important implication of our results is that the search space
for the maximally efficient operator should be an infinite dimensional space of sequences of r.v.s,
instead of the finite dimensional space alluded to in [6]. Yet another important implication is that the
order relationships among the sequences of random operators w.r.t. action gaps, corresponding to
our stochastic and variability ordering results, may potentially lead to determining the best sequence
of r.v.s and possibly even lead to maximally efficient operators. These results further extend our
understanding of the relationship between action-gap regularity and the effectiveness of (-learning
in environments with approximation/estimation errors beyond the initial studies in [136].

We subsequently apply our RSOs to obtain empirical results for various problems in the OpenAl Gym
framework [10]. Using these existing codes with minor modifications, we compare the empirical



results under our family of stochastic operators against those under both the classical Bellman
operator and the consistent Bellman operator [6]. These experiments consistently show that our
RSOs outperform both of these deterministic operators. Appendix [C|of the supplement provides the
corresponding python code modifications used in our experiments.

2 Preliminaries

We consider a standard RL framework (see, e.g., [7]) in which a learning agent interacts with a
stochastic environment. This interaction is modeled as a discrete-space, discrete-time discounted
MDP denoted by (X, A, P, R, v), where X represents the set of states, A the set of actions, P the
transition probability kernel, R the reward function mapping state-action pairs into a bounded subset
of R, and 7y € [0,1) the discount factor. Let Q denote the set of bounded real-valued functions over
X x A. For Q € Q, define V (z) := max, Q(x, a) and use the same definition for variants such as

Q € Qand V(x) Let 2’ always denote the next state r.v. For the current state = in which action a
is taken, i.e., (z,a) € X x A, denote by P(|z, a) the conditional transition probability for the next
state " and define Ep := E,/ p(.|2,q) to be the expectation w.r.t. P(-|z, a).

A stationary policy 7 (-|x) : X — A defines the distribution of control actions given the current state
x, which reduces to a deterministic policy when the conditional distribution renders a constant action
for each state x; with slight abuse of notation, we always write the policy 7 (z). The stationary policy
m induces a value function V™ : X — R and an action-value function Q™ : X x A — R where
V7 (z) := Q™ (x, m(z)) defines the expected discounted cumulative reward under policy 7 starting in
state « and where Q™ satisfies the Bellman equation

Q™ (z,a) = R(z,a) + yEpQ™ (2, m(x)). (1)

Our goal is to determine a policy 7* that achieves the optimal value function V*(z) :=
sup, V™ (z),Yx € X, which also produces the optimal action-value function Q*(z,a) :=
sup, Q™ (z,a),V(z,a) € X x A. The Bellman operator Tg : Q — Q is defined pointwise as

TQ(x,a) := R(x,a) + vEp max Q(',b), )

or equivalently TQ(z,a) = R(x,a) + vEpV (2'). The Bellman operator 7p is known (see, e.g.,
[7]) to be a contraction mapping in supremum norm, and its unique fixed point coincides with the
optimal action-value function, namely Q*(x, a) = R(x, a) + YEp maxyep Q* (2, b), or equivalently
Q*(z,a) = R(x,a) + yEpV*(2'). This in turn indicates that the optimal policy 7* can be obtained
by 7*(z) = argmax,c, Q*(z,a), Vr € X.

While the Bellman operator can exactly solve the MDP when there are no approximation/estimation
errors, the previously noted differences between optimal and suboptimal state-action value functions
in the presence of such errors can result in incorrectly identifying the optimal actions. To address these
and related nonstationary effects of approximation/estimation errors arising in practice, Bellemare et
al. [6] propose the so-called consistent Bellman operator defined as

TCQ('Z'7 a) = R(LL’, Cl) + VE]P’[]I{:E;&I’} rl?eag Q<x17 b) + ]l{x:x’}Q(x7 a)]a (3)

where 1., denotes the indicator function. The consistent Bellman operator 7¢ preserves a local
form of stationarity by redefining the action-value function () such that, if an action a € A is taken
from the state x € X and the next state ' = z, then action a is taken again. Bellemare et al. [6]
proceed to show that the consistent Bellman operator yields the optimal policy 7*, and in particular
that 7¢ is both optimality-preserving and gap-increasing, according to (deterministic) definitions that
they provide which are compatible with those from Farahmand [13]].

The proofs of our theoretical results involve mathematical arguments and technical details that are
unique to stochastic operators and stochastic orderings, and distinct from any previous deterministic
operators. In particular, a r.v. X is stochastically greater than or equal to (>4) ar.v. Y if P[X >
z] > P[Y > z],Vz, and ar.v. X is greater than or equal to (>.,) ar.v. Y under a convex ordering
if and only if E[f(X)] > E[f(Y)], V convex functions f. Additional technical details on these and
other probabilistic terms and results underlying our theoretical results can be found in [9} [11} [17].



3 Robust Stochastic Operators

In this section we present our stochastic framework which includes proposing a general family of
RSOs, providing precise definitions of the concepts of optimality-preserving and gap-increasing in a
stochastic sense for a sequence of random operators, and establishing that any sequence of this general
family of operators is optimality-preserving and gap-increasing. Our introduction of a new family
of operators and our shifting the focus from one deterministic operator to a sequence of stochastic
operators has significant implications w.r.t. the open questions raised in [6]. Specifically, our results
show that the conditions for optimality are much weaker and the statistical efficiency of our operators
can be made much stronger, both allowing significant degrees of freedom in finding alternatives to the
Bellman operator for different purposes and applications. Meanwhile, these important improvements
completely alter and clarify the question of finding the maximally efficient operators from a finite
dimensional parameter optimization problem suggested in [6] to an optimization problem in an
infinite dimensional space (of the infinite sequences of r.v.s), for which we establish that stochastic
and variability orderings among the sequence of random operators lead to corresponding orderings
among the action gaps. It is important to note that our approach can be extended to variants of the
Bellman operator such as SARSA [16]], policy evaluation [18] and fitted Q-iteration [12]].

Forall Qy € Q, z € X, a € A and sequences {3y, : k € Z } of independent nonnegative r.v.s with
expectation j3;, := Eg[f] between 0 and 1 inclusively for each k € Z+, we define

,Tﬂk Qk(x7 a) = R(‘T7 a) + 7Ep Il?eag( Qk(x/7 b) - Bk(Vk(fﬂ) - Qk(xa a))’ 4)

or equivalently 73, Qr(x,a) = R(z,a) + vEpV (2') — Br(Vi(z) — Qx(z,a)). (Note that the
operator in (@) is equivalent to the Bellman operator whenever the action « is optimal or 35, = 0, thus
making the difference term zero in these cases.) Then members of the general family of RSOs include
the sequence {7, } defined over all probability distributions for each r.v. in the sequence {3} } with
B € ]0,1]. (Note, in particular, that the r.v.s 3}, can follow a different probability distribution for
each k.) We further define ’Tﬁf to be the general family of RSOs comprising all sequences of operators
{T}, each as defined in (@), such that there exists a sequence of {f)} and, forall z € X and a € A,
the following inequalities hold

TBQ(Z‘,G) - ﬁk(Vk(x) - Qk(maa)) < TQ(.I,CL) < TBQ(xaa)'

Observe that, for any (z,a) in @) where a is not the optimal action, we have Vi (z) > Qx(z,a)
occurring very often (i.e., for many k), causing Q(z, a) to (eventually) deviate more from V'(z);
otherwise, for a such that Q(x, a) = V(z), then Vi (z) > Qx(x, a) will only happen relatively rarely,
thus not affecting the end value of V' (z). Since the value function V() does not change but the action-
value function Q(x, a) does indeed change, this can lead to a larger action gap and can potentially
render more efficient ways of ultimately finding V' (x) through the iterative updating of Q(z, a), as
indicated in [[13} [6]. Moreover, we observe that the multiplier 5, in front of Vi (x) — Qi (z,a) is
desired to be relatively large individually, but its overall efforts should not be so large as to affect
the end value of V(x). We therefore introduce a family of RSOs where (), is allowed to take on
any value as long as its average 3, remains less than or equal to 1. Obviously, these conditions are
strictly weaker than those identified in [6] — theirs being deterministic and constrained to [0, 1), and
ours based on r.v.s S, that can take on values well outside of [0, 1). Since the r.v.s 5 need not be
identically distributed (with the sole requirement that (3, is between 0 and 1 inclusively) and since
realizations of fj, can take on values far beyond or equal to 1, the family of operators 7;3f clearly
subsumes the family of previously identified deterministic operators.

For the analysis of our family of stochastic operators, we consider the following key definitions.

Definition 3.1. A sequence of random operators {Ty} for M = (X, A,P, R, ) is optimality-
preserving in a stochastic sense if for any Qg € Q and x € X, and for the sequence of r.v.s
Qi1 = TpQr. the following properties hold: Vi(x) := max,ca Qk(z,a) converges a.s. to a
constant V (x) as k — oo, and for all a € A, we have a.s.

Q*(x,a) < V*(x) = limsup Qx(z,a) < V(z). Q)

k—o0

Definition 3.2. A sequence of random operators {Ty} for M = (X, A, P, R, ~) is gap-increasing in
a stochastic sense if for all Qo € Q, x € X and a € A, the following inequality holds a.s.:

A(.%‘, a) = hkrglcgf[vk(x) - Qk(xv a)] > V*(x) - Q*(.%', a)' (6)



The property of the optimality-preserving definition essentially ensures a.s. that at least one optimal
action remains optimal and all suboptimal actions remain suboptimal, while the property of the
gap-increasing definition implies robustness when the inequality (6) is strict a.s. for at least one
(z,a) € X x A. In particular, as the action gap of an operator increases while remaining optimality-
preserving, the end result can be greater robustness to approximation/estimation errors [13]].

We next present one of our main theoretical results establishing that our general family of RSOs is
both optimality-preserving and gap-increasing in a stochastic sense.

Theorem 3.1. Let Tp be the Bellman operator defined in @) and {73, } a sequence of RSOs as
defined in @). Considering the sequence of r.v.s Qp+1 = T, Qr on a sample path basis with
Qo € Q, the sequence of operators {Ta, } is both optimality-preserving and gap-increasing in a
stochastic sense, a.s. Furthermore, all operators in the family 7%; are optimality-preserving and
gap-increasing in a stochastic sense, a.s.

Even though the stochastic operators in 7%? are not contraction mappings and therefore do not have a
fixed pomt (as is also true for T¢ [6]), Theorem [3.1] -establlshes that each of these stochastic operators
in T is still optimality-preserving. Moreover, the definition of T}- and Theorem |3.1|significantly
enlarge the set of optimality-preserving and gap-increasing operators beyond the deterministic
operators identified in [6]]. In particular, our new sufficient conditions for optimality-preserving
operators in a stochastic sense implies that significant deviation from the Bellman operator is possible
without loss of optimality; in comparison, the deterministic operator in [6] never allows a value of 3y,
equal to or greater than 1. More importantly, the definition of 7? and Theoremmimply that the
search space for maximally efficient operators is an infinite dimensional space of sequences of r.v.s,
instead of the finite dimensional space for maximally efficient operators alluded to in [6]. To this
end and due to our stochastic framework, we now establish results on stochastic ordering properties
among the sequences of r.v.s {3 } that lead to corresponding ordering properties among the action
gaps of the random operators. These results offer key relational insights into important orderings of
different operators in 77, which further demonstrates the benefit of our RSOs and can potentially be
exploited in searching for and attempting to find maximally efficient operators in practice.

Theorem 3.2. For all Qo = Qo = Qo € Q and for each integer k > 0, suppose Qk+1 and thl
are respectively updated with two different RSOs 71 and T~ that are distinguished by 3y, and Sy,

satisfying the stochastic ordering ﬂk >t ﬁk, namely Qk+1 = TB Qk and Qk+1 = 7;3 Qk Then we
have that the action gaps of the two systems are stochastically ordered in the same direction, namely
A(z,a) >4 Az, a).

Theorem 3.3. For all Qo = Qo = Qo € Q and for each integer k > 0, suppose Qk+1 and Q~k+1
are respectively updated with two different RSOs 723 and 7;;. that are distinguished by By, and Sy,

satisfying the convex ordering B >ecw Brs namely Qk;+1 = 7;3 Q. and Qk+1 = T Qk Then
we have that the action gaps of the two systems are convex ordered in the same dlrecnon namely

Az, a) >cp Az, a).

Theorem 3.4. For all Qo = Qo = Qo € Q and for each integer k > 0, suppose Qk+1 and Qk+1
are respectively updated with two different RSOs 'Tﬁ and 7;; that are distinguished by B and By,

satisfying E[Bi] = E[By] and Var|Bi] < Var|B); namely Qpi1 = Ts Qk and Qp1 = 723ka.
Then we have Var|Qpy1] < Var|Qyi1]. Furthermore, the action gaps of the two systems have the
Sollowing properties: E[A(x,a)] = E[A(x, a)] and Var[A(z,a)] < Var[A(z, a)).

The first two theorems conclude that, among the sequences of Jj that preserve optimality, those
stochastically larger and more variable sequences can produce larger action gaps w.r.t. two standard
and important stochastic orderings. Theorem [3.4] points out that a larger variance for (3, with the
same fixed mean value, leads to a larger variance for Qx(x, a) while rendering the same expectation
for the action gap and a larger variance in the action gap. We know that, in the limit, the optimal
action will maintain its state-action value function. Then, when k is sufficiently large, we can expect
that the state-value function Qg (x, b*) for the optimal action b* in state = will be very close to the
optimal value Q*(x, b*). A larger variance therefore suggests the potential for a greater separation
between Q(x,b*) and the state-value function Q(x, a) for sub-optimal actions a, and thus the



latter can be understood to have a larger action gap in the limit. Hence, sequences of /3, with large
variances can be seen as a very simple instance of the stochastic ordering results.

4 Experimental Results

Within the general RL framework of interest, we consider a standard, yet generic, form for QQ-learning
S0 as to cover the various problems empirically examined in this section. Specifically, for all Qy € Q,
x € X, a € A and an operator of interest 7, we consider the sequence of action-value (-functions
based on the following generic update rule:

Qr+1(z,a) = (1 — ax)Qr(w,a) + T Qx(w, a), (7

where oy, is the learning rate for iteration k. (-learning provides convergence for the values
of all Q(z,a), for all z and a, asymptotically over time for any optimality-preserving operator.
Our theoretical results study the behavior of Q(z, a) under a general class of different operators,
establishing the benefits of our RSOs over other (deterministic) operators. We now turn to our
empirical comparisons that consist of the Bellman operator 7z, the consistent Bellman operator T¢,
and instances of our family of RSOs 7, under different distributions for the sequence of 3.

We conduct various experiments across several well-known problems using the OpenAl Gym frame-
work [[10], namely Acrobot, Mountain Car, Cart Pole and Lunar Lander. This collection of problems
spans a variety of RL examples with different characteristics, dimensions, parameters, and so on. In
each case, the state space is continuous and discretized to a finite set of states; i.e., each dimension is
discretized into equally spaced bins where the number of bins depends on the problem to be solved
and the reference codebase used. For every problem, the specific ()-learning algorithms considered
are defined as in (7)) where the appropriate operator of interest 7g, T¢ or T, is substituted for 7
at each timestep, is iteratively applied to the ()-function at the current state and action. The
experiments for each problem from the OpenAl Gym were run using the existing code found at
[22, 1] exactly as is with the sole change consisting of the replacement of the Bellman operator in
the code with corresponding implementations of either the consistent Bellman operator or RSO; see
Appendix [C]of the supplement for the corresponding python code. It is apparent from these codes
that RSO can be directly and easily implemented as a replacement for the classical Bellman operator.

We note that each of the algorithms from the OpenAI Gym implements a form of the e-greedy method
(e.g., occasionally picking a random action or using a randomly perturbed Q)-function for determining
the action) to enable some form of exploration in addition to the exploitation-based search of the
optimal policy using the Q-function. Our experiments were therefore repeated over a wide range of
values for €, where we found that the relative performance trends of the various operators did not
depend significantly on the amount of exploration under the e-greedy algorithm. In particular, the
same performance trends were observed over a wide range of e values and hence we present results
based on the default value of € used in the reference codebase.

Multiple experimental trials are run for each problem, where we ensured the setting of the random
starting state to be the same in each experimental trial for all of the operators considered by
initializing them with the same random seed. We observe in general across all experimental results
that for different problems and different variants of the -learning algorithm, simply replacing the
Bellman operator or the consistent Bellman operator with an RSO results in significant performance
improvements. The RSOs considered in every set of experimental trials for each problem consist
of different distributions for the sequence of ;. Specifically, we empirically study the following
instances of our family of RSOs:

1. B, sampled from a uniform distribution over [0, 1), thus E[3;] = 1 and Var[8;] =

[

1
2. B sampled from a uniform distribution over [0, 2), thus E[8;] = 1 and Var[3;] = £;
. B sampled from a uniform distribution over [0.5, 1.5), thus E[8;] = 1 and Var|[§y]

1.
27
b

w

B set to 0.5 and 1.5 in an alternating manner, thus having E[Bk] =1 and Var[8;] = 15;
Br set to 1, thus having E[S;] = 1 and Var[3;] = 0.

4. B, set to 5 2 plus a r.v. sampled from a Beta(2, 3) distribution, thus E[3;,] = 1 and Var [ﬁk] =;
5. By set to & plus ar.v. sampled from a Beta(2, 7) distribution, thus E[8;] = 1 and Var[8;] = ;=:
6. B, set to arv. sampled from a Pareto(1, 2) distribution minus 1, thus E[S;] = 1, Var[S;] = oo;
7. B, set to ar.v. sampled from a Pareto(1, 3) distribution minus l ,thus E[B;,] = 1, Var[B;] = 3;
8.

9.



Observe that the first and second RSO instances include values of Jj, that are equal or relatively close
to 0; since x,,, = 1 in the sixth instance together with the subtraction of 1, this also includes values of
By that are equal or relatively close to 0; all other RSO instances exclude values of 5y that are equal
or relatively close to 0. We note that the last RSO instance is consistent with the advantage learning
operator in [4] [6], though it is important to note that 5 = 1 was disallowed in [6], unnecessarily so as
our results have established. To gain insight on the different RSO instances, the results presented in
this section focus on the simple case of operators 7, associated with sequences of r.v.s {5x} drawn
from different probability distributions in an independent and identically distributed manner. We
note, however, that various experiments were performed with different combinations of distributions
for Bj over the iterations k € Z . As a specific simple example, we considered 3y ~ U[0, 1) for
Bo, - - -, B and then By, ~ U|0, 2) for Bgr41, - . ., but these results were not considerably better, and
often worse, than those presented below for 85, ~ U0, 2).

//// \\ . \
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(a) Acrobot problem (training). (b) Mountain Car problem (training).

Figure 1: Average number of steps needed to solve minimization problems during training phase.

4.1 Acrobot

This problem is first discussed in [19]]. The state vector is 6-dimensional with three actions possible
in each state, and the score represents the number of timesteps needed to solve the problem. The
position and velocity are discretized into 8 bins whereas the other state components are discretized
into 10 bins. We ran 50 experimental trials over many episodes, with a goal of minimizing the score.

Figure [[a] plots the score, averaged over moving windows of 1000 episodes across the 50 trials, as a
function of the number of episodes for a subset of operators during the training phase; the full set of
results are provided in Figure[3] We observe that the average score under the RSOs generally exhibit
much better performance than under the Bellman operator or the consistent Bellman operator, with
the 5x sequences of all ones and from Beta(2, 7) rendering the best performance. Tablepresents
the average score over the last 1000 episodes across the 50 trials together with the corresponding
95% confidence intervals. We observe that the confidence intervals for all operators are quite small
and that the best average scores are consistent with those plotted in Figure 3]

Figure[2b|presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are obtained under many of the RSOs and that the confidence intervals for all
operators are quite small. We further observe the differences in the performance orderings among the
operators in comparison with the results in Table where the 3 sequences from Pareto(1, 2) and
alternating 0.5 and 1.5 render the best performance followed by 3}, sequences from U[0, 1).

4.2 Mountain Car

This problem is first discussed in [[15]. The state vector is 2-dimensional with a total of three possible
actions, and the score represents the number of timesteps needed to solve the problem. The state
space is discretized into a 40 x 40 grid. We ran 50 experimental trials over many episodes for training,
each of which consists of up to 200 steps and with a goal of minimizing the score.

Figure [Tb] plots the score, averaged over moving windows of 1000 episodes across the 50 trials, as a
function of the number of episodes for a subset of operators during the training phase; the full set



of results are provided in Figure d] We observe that the average score under the RSOs generally
exhibit considerably better performance than under the Bellman operator or the consistent Bellman
operator, with the ), sequences from Pareto(1,2) and alternating 0.5 and 1.5 rendering the best
performance followed by S sequences from UJ0, 2). Table [I|presents the average score over the
last 1000 episodes across the 50 trials together with the corresponding 95% confidence intervals. We
observe that the confidence intervals for all operators are quite small and that the best average scores
are consistent with those plotted in Figure [4}

Figure [2b] presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are generally obtained under the RSOs and that the confidence intervals for
all operators are quite small. We further observe the differences in the average score performance
orderings among the operators in comparison with the results in Table [I} where the ), sequences
from Pareto(1, 3) and U[0, 2) render the best average score performance.

4.3 Cart Pole

This problem is first discussed in [5]. The state vector is 4-dimensional with two actions possible in
each state, and the score represents the number of steps where the cart pole stays upright before either
falling over or going out of bounds. The position and velocity are discretized into 8 bins whereas
the angle and angular velocity are discretized into 10 bins. We ran 50 experimental trials over many
episodes, each of which consists of up to 200 steps with a goal of maximizing the score. The problem
is considered solved when the score exceeds 195.

Table [T] presents the average score over the last 1000 episodes across the 50 trials for all operators
during the training phase, together with the corresponding 95% confidence intervals. We observe
that the best average scores are obtained under many of the RSOs, with the /3, sequences of all ones
and from Beta(2, 7) rendering the best performance followed by S); sequences from U[0.5,1.5). We
further observe that the confidence intervals for all operators are quite small.

Table [2] presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are obtained under many of the RSOs and that the confidence intervals for
all operators are quite small. We further observe the differences in the average score performance
orderings among the operators in comparison with the results in Table [I} where the ), sequences
from U[0.5,1.5) and U0, 2) render the best average score performance.

Testing Score Acrobot Mountain Car Lunar Lander
Bellman 1891 £ 0.17% | 1312 £0.23% | —231.0 £ 0.92%
Consistent Bellman || 185.3 +£0.20% | 127.2 4+ 0.22% —185.1 +0.98%
Br ~U0,2) 1895 +0.16% | 121.2+021% | —164.4+ 1.05%
B, ~ U0, 1) 1319+ 0.18% | 126.9 £0.23% | —207.0 £ 0.91%
Br=1.0 189.2 £0.18% 121.9+0.21% | —157.8 £ 1.10%
B € {0.5,1.5} 181.3+0.23% 122.3 +0.20% —174.0 £ 1.01%
Br ~ U[0.5,1.5) 192.4 £0.13% 122.8 +£0.21% —168.1 £ 1.08%
B ~ Beta(2,3) 185.0 £ 0.20% 122.6 £ 0.21% -163.5 + 1.13%
By ~ Beta(2,7) 186.2+0.19% | 122.3£0.21% | —164.8 + 1.06%
By ~ Pareto(2) || 180.7 £ 0.37% | 125.0 £ 0.20% | —216.9 % 0.94%
By ~ Parcto(3) || 186.6 £ 0.21% | 121.1 £021% | —166.2 & L.04%
(a) Average Lunar Lander score (training). (b) Table of average scores (testing).

Figure 2: Average number of steps needed to solve Lunar Lander maximization problem during
training phase; Average scores for all RSO instances and three problems during testing phase.

4.4 Lunar Lander

This problem is discussed in [10]. The state vector is 8-dimensional with a total of four possible
actions, and the physics of the problem is known to be notoriously more difficult than the foregoing
problems. The 6 continuous state variables are each discretized into 4 bins. The score represents
the cumulative reward comprising positive points for successful degrees of landing and negative
points for fuel usage and crashing. We ran 50 experimental trials over many episodes, each of which
consists of up to 200 steps with a goal of maximizing the score.



Figure [2a] plots the score, averaged over moving windows of 1000 episodes across the 50 trials, as a
function of the number of episodes for a subset of operators during the training phase; the full set of
results are provided in Figure[5] We observe that the average score under the RSOs generally exhibit
better performance than under the Bellman operator or the consistent Bellman operator, with the
B sequences from Beta(2, 3) and of all ones rendering the best performance. Tablepresents the
average score over the last 1000 episodes across the 50 trials together with the corresponding 95%
confidence intervals. We observe that the confidence intervals for all operators are quite small and
that the best average scores are consistent with those plotted in Figure[3]

Figure 2b|presents the average score over 1000 episodes across the 50 trials for all operators during
the testing phase, together with the corresponding 95% confidence intervals. We again observe that
the best average scores are generally obtained under the RSOs and that the confidence intervals for
all operators are quite small. We further observe some consistencies in the performance orderings
among the operators in comparison with the results in Table[I] where the 55 sequences of all ones
and from Beta(2, 3) render the best performance followed by /3, sequences from U0, 2).

5 Conclusions and Discussion

Building on the work of Farahmand [[13] and Bellemare et al. [[6], who argue that increasing the
action gap while preserving optimality can improve the performance of value-iteration algorithms in
environments with approximation/estimation errors, we propose and analyze a new general family of
RSOs for RL that subsumes as a strict subset the classical Bellman operator and other deterministic
operators proposed in the literature. Our theoretical results include proving that our stochastic
operators are optimality-preserving and gap-increasing in a stochastic sense and that stochastic
and variability orderings among the sequence of random operators lead to corresponding orderings
among the action gaps. In addition, our stochastic framework and theoretical results shed new light
on and help to address the open fundamental questions raised in [6] related to the possibility of
weaker optimality conditions, the statistical efficiency of proposed deterministic operators, and the
possibility of finding maximally efficient operators. Specifically, our results show that the conditions
for optimality are much weaker and the statistical efficiency of our stochastic operators can be
made much stronger, both allowing significant degrees of freedom in finding alternatives to the
Bellman operator for different purposes and applications. Meanwhile, these important improvements
completely alter and clarify the question of finding the maximally efficient operators from a finite
dimensional parameter optimization problem suggested in [6] to an optimization problem in an
infinite dimensional space (of the infinite sequences of r.v.s), for which our established stochastic and
variability orderings among sequences of random operators can potentially assist in searching for
maximally efficient operators in practice.

A collection of empirical results — based on well-known problems within the OpenAl Gym frame-
work spanning various RL examples with diverse characteristics — support our theoretical results,
consistently demonstrating and quantifying the significant performance improvements obtained with
our RSOs over existing operators. Our family of RSOs represents a stochastic approach not often
seen in the RL literature that should be exploited to a much greater extent.

It is important to highlight a few fundamental tradeoffs in identifying maximally efficient operators
for different RL problems. On the one hand, when sampled values of j, are relatively small, then it is
possible for the small offset by Sy (Vi (z) — Qx(x, a)) on truly suboptimal actions « to have limited or
no effect on the separation between optimal and suboptimal actions. On the other hand, when sampled
values of jj, are relatively large, then it is possible for the large offset of 8y (Vi (z) — Qk(z,a)) to
be applied against the truly optimal action a* due to approximation/estimation errors. In addition,
the level of impact of these and related factors associated with the sequence of r.v.s {3} can vary
over the value iterations moving from k = 0 to the limit as K — co. We view the problem of finding
maximally efficient operators for RL problems as identifying sequences of random operators that
address these fundamental tradeoffs in order to maximize action-gap regularity for the suboptimal
actions of each state. Our theoretical and empirical results further raise a related fundamental
issue that concerns whether maximizing the action gap is sufficient to improve the performance of
value-iteration algorithms in environments with approximation/estimation errors.
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