Under review as a conference paper at ICLR 2019

GRADIENT ACCELERATION IN ACTIVATION FUNC-
TIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Dropout has been one of standard approaches to train deep neural networks, and
it is known to regularize large models to avoid overfitting. The effect of dropout
has been explained by avoiding co-adaptation. In this paper, however, we propose
a new explanation of why dropout works and propose a new technique to design
better activation functions. First, we show that dropout can be explained as an
optimization technique to push the input towards the saturation area of nonlinear
activation function by accelerating gradient information flowing even in the sat-
uration area in backpropagation. Based on this explanation, we propose a new
technique for activation functions, gradient acceleration in activation function
(GAAF), that accelerates gradients to flow even in the saturation area. Then, input
to the activation function can climb onto the saturation area which makes the
network more robust because the model converges on a flat region. Experiment
results support our explanation of dropout and confirm that the proposed GAAF
technique improves performances with expected properties.

1 INTRODUCTION

Deep learning has achieved state-of-the-art performance or sometimes surpassed human-level per-
formance on many machine learning tasks, such as image classification, object recognition, and
machine translation (He et al.|[2015; Redmon & Farhadi, [2016;|Vaswani et al.,[2017). To achieve such
impressive performance, many techniques have been proposed in different areas: optimization (e.g.,
Adam (Kingma & Ba, 2014)) or Adadelta (Zeiler, 2012)), regularization (e.g., dropout (Hinton et al.,
2012)), activation function (e.g., ReLU (Nair & Hinton, [2010))), or layer (e.g., batch-normalization
(Toffe & Szegedyl [2015)), Resnet (He et al.,[2015)).

To train deep neural networks, regularization is crucial to prevent the models from overfitting and to
improve generalization performance. As a regularization method, dropout was proposed to prevent co-
adaptation among the hidden nodes of deep feed-forward neural networks by dropping out randomly
selected hidden nodes (Hinton et al., | 2012; Srivastava et al., 2014)). Co-adaptation is a process by
which two or more nodes behave as if they are a single node, once the nodes have the same input
and output weights. When some nodes are updated and behave together, the model loses some part
of its computational power. Dropout is known to break the ties by dropping one of them randomly.
Even when dropout is analyzed with probabilistic models, dropout is still assumed to avoid the
co-adaptation problem (Baldi & Sadowskil [2013; Kingma et al., [2015}; |Gal & Ghahramani, 2016)). To
our best knowledge, the co-adaptation avoidance by dropout has not been thoroughly confirmed yet,
even with lots of evidence that dropout improves performance.

On the other hand, it is known that when the outputs of the nonlinear activation function are saturated,
the loss function can converge onto a flat region rather than a sharp one with a higher probability
(Hochreiter & Schmidhuber |1997;|Chaudhari et al.||2016). Flat regions provide better generalization
for test data, because some variation in the input data cannot create a significant difference in the
output of layers. However, it is usually hard to train neural networks that have input in the saturation
areas of the nonlinear activation functions because there is no gradient information flowing in the
areas.

In this paper, we start by questioning the conventional explanation of dropout. Does the effect of
dropout come from avoiding co-adaptation only? If not, what are alternative explanations about the
effect of dropout? If there are other explanations, can we create another learning techniques based on

Under review as a conference paper at ICLR 2019

such explanations? Basically, our hypothesis is that dropout is an efficient optimization technique
rather than a regularizer. We show that dropout makes more gradient information flow even in the
saturation areas and it pushes the input towards the saturation area of the activation functions by
which models can become more robust after converging on a flat region.

Based on the new explanation, we propose a new technique for the activation function, gradient
acceleration in activation function (GAAF) that directly adds gradients even in the saturation areas,
while it does not change the output values of a given activation function. Thus, GAAF makes
models to obtain a better generalization effect. In GAAF, gradients are explicitly added to the areas
where dropout generates gradients. In other words, GAAF makes gradients flow through layers in a
deterministic way, contrary to dropout which makes gradients stochastically. Thus, GAAF can train
the model with less iterations than dropout can.

The paper is organized as follows. Background knowledge including dropout is described in Section
2. In Section 3, we provide a new explanation about how dropout works in terms of optimization. We
propose a new technique, GAAF, for activation functions in Section 4. The experiment results are
presented and analyzed in Section 5, followed by Section 6 where we conclude.

2 BACKGROUND

In this section, we briefly review nonlinear activation functions, dropout, and noise injection in neural
networks.

2.1 NONLINEAR ACTIVATION FUNCTIONS IN NEURAL NETWORKS

In fully connected neural networks, one layer can be defined as follows:
hj = é(z)), (D
zj = Z Wijilii + bj, 2)

where ¢(-) is a nonlinear activation function such as sigmoid, tanh, and ReLU. z; and h; are input
and output for the layer, W;; and b; are weight and bias, respectively. The sum z; is referred to as a
net for the output node j. That is, z; is an input to ¢(-).

In backpropagation, to obtain error information for the node j in the current hidden layer H;, the
derivative of ¢(z;) is multiplied to the weighted sum of the errors J;, from the upper layer H; as
defined in Equation (3).

(5j = ¢/(Zj) Z ijék. (3)

k€eH; 11

Note that ¢; approaches zero when ¢’(z;) is close to zero, and the amount of gradient information
for the weights connected to the node j is proportional to ¢;.

Activation functions have saturation areas where gradients are (almost) zero, which restricts the
updating of parameters. When a net value is close to the saturation areas, it is hard to move further
since the gradient becomes zero for the net. While the saturation areas hinder training, the functions
can play an important role (i.e., nonlinear transformation) around the saturation areas where ¢(z;)
actually provides the nonlinear property.

2.2 DROPOUT

Since dropout was proposed in Hinton et al.|(2012)) to prevent co-adaptation among the hidden nodes
of deep feed-forward neural networks, it has been successfully applied to many deep learning models
(Dahl et al.| [2013} |Srivastava et al.,|2014). This method randomly omits (or drops out) hidden nodes
with probability p (usually p = 0.5) during each iteration of the training process, and only the weights
that are connected to the surviving nodes are updated by backpropagation. The forward propagation
with dropout is defined as follows:

zZj = Z I/dell'z + bj, (4)

Under review as a conference paper at ICLR 2019

where d; is drawn independently from the Bernoulli distribution with probability p. When d; is zero,
the input node z; is dropped out.

After a model with N nodes is trained with dropout, to test new samples, the nodes of the model
are rescaled by multiplying (1 — p), which has the effect of taking the geometric mean of 2V
dropped-out models. It makes the performance more stable as in the bagging methods (Baldi &
Sadowskil 2013)). In|[Hinton et al.| (2012); Srivastava et al.| (2014])); [Sainath et al.| (2013)), it is shown
that the neural networks trained with dropout have excellent generalization capabilities and achieve
the state-of-the-art performance in several benchmark datasets (Schmidhuber,|2015)). In addition to
feed-forward layers, dropout can be applied to the convolutional or the recurrent layers. To preserve
the spatial or temporal structure while dropping out random nodes, spatial dropout (Tompson et al.|
2015)) and RnnDrop (Moon et al., 2015) were proposed for the convolutional and the recurrent layers,
respectively.

There are a couple of papers that explain how dropout improves the performance (Baldi & Sadowski,
2013 [Kingma et al., 2015 (Gal & Ghahramanil 2016)). Those papers formalize dropout with proba-
bilistic models, assuming that dropout avoids the co-adaptation problem. However, there has been no
questioning about co-adaptation avoidance with dropout, to the best of our knowledge.

Interestingly, [loffe & Szegedy| pointed out that batch-normalization could eliminate the need for
dropout and they both work towards the same goal as regularizers. If batch-normalization could
eliminate the need for dropout, then does batch-normalization reduce co-adaptation? Or was co-
adaptation not important for performance improvement by dropout?

In this paper, we question the conventional explanation about the dropout effect, and argue that
dropout might be an effective optimization technique, which does not avoid co-adaptation. In
addition, dropout usually takes much more time to train neural networks. Thus, if we can replace
dropout with a faster technique based on our explanation, the dropout effect can be achieved with a
less training time.

2.3 NOISE INJECTION TO THE NETWORK

Like the L1 or L2 norms, regularizers can prevent models from overfitting and improve generalization
capability. It has been known that adding noise during training is equivalent to regularizing the model
(Bishop}, [1995)). In addition to dropout, there are several methods to train neural networks with noise,
including weight noise injection (Graves et al.| |2013), denosing auto-encoder (Vincent et al., 2008)),
and dropconnect (Wan et al.,[2013)). Those methods add (or multiply) Gaussian (or Bernoulli) noise
to weight (or node) values. For example, weight noise injection adds Gaussian noise to weight values,
and dropout multiplies random values drawn from the Bernoulli distribution to node values. Such
methods improve performance in many tasks (Graves et al.,|2013; |Pham et al.,[2014)).

On the other hand, noise can be applied to activation function as in noisy activation function (Gulcehre
et al., [2016). Noisy activation function adds noise where the node output would saturate, so that
some gradient information can be propagated even when the outputs are saturated. Although noisy
activation function trains the network with noise, it is not explicitly considered as a regularizer. We
understand dropout in the same line with noisy activation function, that is, dropout makes gradient
flow even in the saturation areas, which is described in the next section.

3 DROPOUT ANALYSIS

In this section, first we show some evidence that the effect of dropout cannot be explained by avoiding
co-adaptation. Then, we argue that dropout can work as an effective optimization technique by
making more gradient information flow through nonlinear activation functions.

3.1 CO-ADAPTATION

To check the presence of the co-adaptation problem, we investigate the correlation between the node
values. Generally, correlation between node values is a necessary condition for co-adaptation of the
nodes. If dropout avoids co-adaptation, the correlations with dropout should be smaller than the
ones without dropout. We checked the correlations between the node values with the MNIST test

Under review as a conference paper at ICLR 2019

dataset after training two feed-forward neural networks with or without dropout. Figure [T]and Table|[T]
show the distributions of node correlations of each layer and the counts of cases which have high
correlation values, respectively.

Dropout Dropout Dro
pout
a /\ No Dropout 14 /\ No Dropout 14 No Dropout
1.2 \ 12
\ gk
1.0 1.0 //
0.8 0.8 /
0.6 0.6
0.4 0.4
0.2 0.2
%% -0.5 0.0 0.5 1.0 00.% -05 0.0 05 1.0
(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 1: Comparison of distributions of node correlations after training two deep network models
on MNIST. The horizontal axis indicates the Pearson coefficient and the vertical axis indicate the
density.

In Figure[I] the nodes trained with dropout have higher correlations than the nodes trained without
dropout, which is against the conventional explanation for the effect of dropout. Actually, dropout
increases the degree of correlation between nodes, which indicates high probability of co-adaptation.
In Table[I] when the model is trained with dropout, the absolute values of correlation of some node
pairs are higher than 0.9, which is not frequently observed in the model trained without dropout.
Based on the results, we argue that co-adaptation avoidance is not the best explanation for the dropout
effect.

Table 1: The number of cases that the absolute correlation value is higher than a certain value (0.9,
0.8, 0.7, 0.6, and 0.5) out of all the node pairs.

Without Dropout With Dropout
correlation | >0.9 >0.8 >0.7 >06 >05 | >09 >08 >0.7 >06 >0.5
Layer3 1 123 676 1989 4393 | 174 618 1625 3388 6037
Layer2 0 6 71 373 1305 | 35 287 1016 2541 5077
Layerl 0 5 91 826 3939 | 16 181 769 2510 6734

3.2 OPTIMIZATION

If co-adaptation avoidance is not the best explanation for dropout, then what can explain the per-
formance improvement by dropout? In this section, We argue that dropout generates more gradient
information though layers as an optimization technique. The amount of gradient information can be
measured by the average of the absolute amount of gradient in each layer. We calculated the gradient
information at k-th layer GG, with following equation.

N

1 1
Gk:ﬁz:l(i*jz

.3

oE,,
owl;

), 6)

where N is the number of nodes in the layer, and ij is the weight of the k-th layer. To confirm
our argument, we compared how much gradient information flows during training models with or
without dropout. Table 2] summarizes the amount of gradient information. We can see that dropout
increases the amount of gradient information flowing, which is around five times larger than the
baseline model.

Then, the next question is how come dropout increases the amount of gradient information. We take
a clue from how noisy activation function works (Gulcehre et al., 2016)), where the noise allows

Under review as a conference paper at ICLR 2019

Table 2: The amount of gradient information flowing through layers during training. The values in
the table are the average value of the absolute value of gradient of all nodes in each layer during the
whole iterations.

Without Dropout | With Dropout
Layer3 9.35E-05 5.83E-04
Layer2 1.40E-04 6.52E-04
Layerl 1.07E-04 5.93E-04

gradients to flow easily even when the net is in the saturation areas. Likewise, we believe that dropout
could increase the amount of gradient in a similar way.

In deterministic neural networks, the net values are determined with zero variance. However, dropout
makes a significant variance for the net, due to the randomness of d;. That is,

N N
Var(zj) = VaT’(Z Wz]d,fz + b]) = Var(z Wwdﬂ}z) > 0. (6)

It also can be empirically confirmed. The node variances from the model for MNIST trained with
dropout are summarized in Table To check the variance of net value, z;, we obtained the net values
for the same batch 20 times with different random dropout masks during training when the model
almost converged. Then, we calculated the variance for the net values of each node and took the
average of the variances in each layer. Table [3|presents the average of net variances for one batch
(128 data samples) in each layer. Note that the variance of Layerl is zero, since there is no dropout in
the input layer, and Last Layer has a variance generated by dropout in Layer3.

Table 3: The average of net variances in each layer during training with dropout.

Net Variance
Last Layer 1.97
Layer3 1.07
Layer2 1.07

Now, how come the variance helps increase the amount of gradient information? The variance of the
net values increases chances to have more gradient information especially around the boundary of
saturation areas. In Figure[2| when the derivative ¢'(z;) is (almost) zero without dropout, there is
no gradient flowing through the node. However, if it has a variance, z; can randomly move to the
right or left. In Figure 2, when z; moves to the right, there is no gradient information as before, but
when it moves to the left, it obtains gradient information which is generated by dropout. That is,
with a certain amount of probability, gradient information can flow even for z; in the figure. This
phenomenon can explain the dropout effect.

Figure 2: Variance in the saturation area increases the probability to have gradient information, by
which dropout generates gradients.

To see whether dropout actually pushes the net values towards the saturation areas, we checked
the node value distributions with test data after training. Figure 3| presents the difference between
distributions of net values for MNIST test data after training with and without dropout. The model
trained with dropout has more net values in the saturation area of tanh, which is critical to have

Under review as a conference paper at ICLR 2019

better generalization for test data. Interestingly, the higher layer has more net values in the saturation
area, since the variance of the lower layers are transfered to the higher layer.

Dropout Dropout Dropout
0.30 No Dropout 030 /\ No Dropout 0.30 No Dropout

- a - A

. A

0.10 0.10
0.05 0.05
0.00 0.00
-5.0 -2.5 0.0 25 50 -5.0 -2.5 0.0 25 5.0
(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 3: Distributions of net values to tanh for the MNIST test data.

4 GRADIENT ACCELERATION IN ACTIVATION FUNCTIONS

Now we understand dropout as an effective optimization technique to increase the amount of gradient
information flowing through layers. Then, we are interested in if there is any way to increase gradient
information other than dropping out nodes randomly, which takes a lot of time to train the whole
networks. We propose a new technique, gradient acceleration in activation function (GAAF). The
idea is to directly add gradient information for the backpropagation, while not changing (or almost
not changing) the output values for the forward-propagation.

Given a nonlinear activation function, ¢(-), we modify it by adding a gradient acceleration function,
¢(+) which is defined by

glx) = (r+*K—|z*xK]|—-05)/K, (7)

where |-] is the floor operation, and K is a frequency constant (10,000 in our experiments). Note that
the value of g() is almost zero (< +) but the gradient of g(z) is 1 almost everywhere, regardless of

the input value z. The difference between ¢ () and the new function ¢(z) + g(x) is less than -,
which is negligible. Figure a) presents what g(x) looks like.

As dropout does not generate gradient information on the leftmost or rightmost saturation areas, we
also decrease the gradient acceleration on those areas by multiplying a shape function s(-) to g(-),
which leads to our new activation function as follows:

Pnew(r) = o) + g(x) * 5(z), ®)

where s(-) needs to be defined properly depending on the activation function, ¢(-). For example,
when ¢ is tanh or ReLU, an exponential function or a shifted sigmoid function can work well as
s(+), respectively, as shown in Figure b,c). Basically, GAAF can be applied to all kinds of activation
functions with a little adjustment of the shape function, which depends on where the saturation areas
are located in the activation function.

The proposed gradient acceleration function g(-) generates gradients in a deterministic way, while
dropout generates gradient stochastically based on the net variances. Thus, GAAF has the same effect
as dropout but it converges faster than dropout. In line with that interpretation, we can understand
the different dropout rates Ba & Frey|(2013). Generally, if the rate of dropout decreases, then the
net variance would decrease, which in turn decreases the amount of gradient on the saturation areas.
To obtain the same effect with GAAF, the shape function s(-) needs to be reshaped according to the
dropout rate.

Under review as a conference paper at ICLR 2019

0.0005

-0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015

-0.0005

(a) Gradient acceleration function, g(z), which is drawn by the slash lines.

4 3 =2 -101237'4 -1 0 1
(b) A shape function for tanh (c) A shape function for ReLU

Figure 4: (a) Gradient acceleration function, and (b,c) two shape functions for two activation
functions.

5 EXPERIMENTS

We evaluate GAAF on several image classification datasets: MNIST (LeCun et al., [1998)), CIFAR-10,
CIFAR-100 (Krizhevsky & Hinton", 2009), and SVHN (Netzer et al.,|2011). The MNIST dataset
has hand written digit images (60K train images and 10K test images) of 10 classes (0-9 digits). The
CIFAR-10 and CIFAR-100 datasets have 50K train images and 10K test images of 10 and 100 classes,
respectively. The SVHN dataset has color images of house numbers from Google Street View and
consists of 73K train images and 26K test images of 10 classes (0-9 digits). We use some simple
models like DNN for the MNIST and VGG16 (Simonyan & Zisserman) [2014) for the CIFAR and
SVHN dataset. In these experiments, we want to check if our GAAF can improve the performance of
models, not achieve the state-of-the-art results.

5.1 MNIST

To evaluate GAAF on MNIST, we compared three different models: base model, dropout model,
and GAAF model. The models have the same architecture, consisting of four feed-forward layers
(512-256-256-10) with the tanh activation function. GAAF uses an exponential function as shape
function for tanh. Table 4{ summarizes test accuracies and the number of training epochs for each
model to converge. The proposed GAAF model improves the test accuracy as much as the dropout
model, while it needs less training epochs than the dropout model.

Table 4: Experiment results on MNIST. The accuracies and epochs are the average values of five
executions. The numbers in the parentheses are the corresponding standard deviations.

Model Activation | Test Accuracy (%) | Train Epochs
Base Model tanh 98.23 (0.075) 82 (16.6)
+Dropout tanh 98.40 (0.034) 169 (9.7)
+GAAF GAAF 98.35 (0.059) 114 (24.8)

In addition, as expected, GAAF increased the gradients flowing through the layers as follows: 1.15E-3,
6.43E-4, 1.78E-4 for the three layers. Compared to the numbers in Table [2} the amounts of gradients
by GAAF are as large as by dropout, which are much greater than the amounts by the base model
without dropout. Also, we compared the GAAF model and the model without dropout with the the
distribution of net values. Figure [5|shows that GAAF pushes the net to the saturation area. Although
the difference is not as large as in dropout, but this seems enough to achieve the same level of
performance as dropout. Also, by changing the shape function, we expect that we can push the net
further, which is our future work.

Under review as a conference paper at ICLR 2019

0.35 0.35 0.35

No Drop No Drop No Drop

GAAF(Tanh) GAAF(Tanh) GAAF(Tanh)

0.30 0.30 0.30

0.25

0.20

0.15

0.10

0.05

. 0.00
50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 5: Distributions of net values to tanh for the MNIST test data.

5.2 CIFAR AND SVHN

For the CIFAR datasets, we designed a base model similar to VGG16 model (Simonyan & Zisserman,
2014). The model architecture is the same as the original VGG16 model, except that we removed
the last three CNN layers and reduced the number of hidden nodes in the feed-forward layers. It is
because the CIFAR image size is much smaller than ImageNet.

For the SVHN dataset, we used a simple CNN model as the base model. It has four CNN layers with
max pooling after every second CNN layer, and three feed-forward layers on top of the CNN layers.

We evaluated four different models: base model, base model with batch normalization (loffe &
Szegedy, [2015), GAAF model, and GAAF model with batch normalization. TableE] summarizes the
experiment results on the CIFAR and SVHN datasets. We used ReLLU as the activation function for
the CNN and feed-forward layers. Thus, GAAF uses a shifted sigmoid function as shape function for
ReLU.

Table 5: Test accuracies (%) on CIFAR and SVHN. The numbers are Top-1 accuracies. The
improvements achieved by GAAF are presented in the parentheses.

Model Activation CIFAR100 CIFARI10 SVHN
Base Model RelLLU 59.63 89.55 92.03
+Batch Norm (BN) ReLU 67.48 91.1 93.80
+GAAF GAAF 61.29 (+1.66) | 90.16 (+0.61) | 92.19 (+0.16)
+BN +GAAF GAAF 69.36 (+1.88) | 91.92 (+0.82) | 94.16 (+0.36)

The results confirm that our proposed GAAF improves the base model’s performance. More inter-
estingly, GAAF improves performance even with batch normalization, contrary to dropout whose
need is eliminated by batch normalization. This shows that GAAF works independently of batch
normalization (maybe other optimization techniques too), while dropout hinders batch normalization
(or other optimization techniques) by dropping out some (usually the half) of nodes.

In addition, after training, the base and GAAF models have almost the same training accuracies
(98.2%, 99.6%, and 99.9% for CIFAR100, CIFAR10 and SVHN, respectively), while GAAF has
better test accuracies as shown in Table[5] This supports that GAAF converges on a flat region by
pushing the nets towards the saturation areas.

6 CONCLUSION

Dropout has been known to regularize large models to avoid overfitting, which was explained by
avoiding co-adaptation. In this paper, we presented that dropout works as an effective optimization
technique to generate more gradient information flowing through the layers so that it pushes the

Under review as a conference paper at ICLR 2019

nets towards the saturation areas of nonlinear activation functions. This explanation enriches our
understanding on how neural networks work.

Based on this explanation, we proposed gradient acceleration in activation function (GAAF) that
accelerates gradient information in a deterministic way, so that it has a similar effect to the dropout
method, but with less iterations. In addition, GAAF works well with batch normalization, while
dropout does not. Experiment analysis supports our explanation and experiment results confirm that
the proposed technique GAAF improves performances. GAAF can be applied to other nonlinear
activation functions with a correspondingly redesigned shape function.

REFERENCES

J. Ba and B. Frey. Adaptive dropout for training deep neural networks. In Advances in Neural
Information Processing Systems, 2013.

Pierre Baldi and Peter J. Sadowski. Understanding Dropout. In Advances in Neural Information
Processing Systems 26, pp. 2814-2822, 2013.

C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7
(1):108-116, 1995.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, and Yann LeCun. Entropy-SGD: Biasing
gradient descent into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving deep neural networks for LVCSR using
rectified linear units and dropout. In Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal
Processing, 2013.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation : Representing Model
Uncertainty in Deep Learning. 48, 2016.

A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In
INTERSPEECH, 2013.

Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy Activation Functions.
In ICML, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv preprint arXiv:1512.03385, 2015.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.

Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neural computation, 9(1):1-42, 1997.

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv, 2015. doi: 10.1007/s13398-014-0173-7.2. URL
http://arxiv.org/abs/1502.03167.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational Dropout and the Local Reparame-
terization Trick. arXiv, pp. 1-13, 2015.

A. Krizhevsky and G. Hinton". Learning multiple layers of features from tiny images. Technical
Report, 20009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Taesup Moon, Heeyoul Choi, Hoshik Lee, and Inchul Song. RNNDROP : A Novel Dropout for
RNNs in ASR. In ASRU, 2015.

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2019

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proc. Int’l Conf. Machine Learning (ICML), 2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. Dropout improves recurrent neural networks
for handwriting recognition. In /ICFHR, 2014.

Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

T. N. Sainath, B. Kingsbury, A. Mohamed, G. E. Dahl, G. Saon, H. Soltau, T. Beran, A. Y. Aravkin,
and B. Ramabhadran. Improvements to deep convolutional neural networks for LVCSR. In ASRU,
2013.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization using
convolutional networks. In Computer Vision and Pattern Recognition (CVPR), pp. 648-656, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. arXiv preprint arXiv:1706.03762, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In ICML, pp. 1096-1103, 2008. doi:
10.1145/1390156.1390294.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of neural
networks using dropconnect. In ICML, pp. 109-111, 2013. doi: 10.1109/TPAMI.2017.2703082.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

10

http://arxiv.org/abs/1409.1556

	Introduction
	Background
	Nonlinear Activation Functions in Neural Networks
	Dropout
	Noise Injection to the Network

	Dropout Analysis
	Co-adaptation
	Optimization

	Gradient Acceleration in Activation Functions
	Experiments
	MNIST
	CIFAR and SVHN

	Conclusion

