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ABSTRACT

Building upon the recent success of deep reinforcement learning methods, we
investigate the possibility of on-policy reinforcement learning improvement by
reusing the data from several consecutive policies. On-policy methods bring many
benefits, such as ability to evaluate each resulting policy. However, they usually
discard all the information about the policies which existed before. In this work,
we propose adaptation of the replay buffer concept, borrowed from the off-policy
learning setting, to create the method, combining advantages of on- and off-policy
learning. To achieve this, the proposed algorithm generalises the Q-, value and
advantage functions for data from multiple policies. The method uses trust region
optimisation, while avoiding some of the common problems of the algorithms
such as TRPO or ACKTR: it uses hyperparameters to replace the trust region
selection heuristics, as well as the trainable covariance matrix instead of the fixed
one. In many cases, the method not only improves the results comparing to the
state-of-the-art trust region on-policy learning algorithms such as PPO, ACKTR
and TRPO, but also with respect to their off-policy counterpart DDPG.

1 INTRODUCTION

The past few years have been marked by active development of reinforcement learning methods.
Although the mathematical foundations of reinforcement learning have been known long before
(Sutton & Barto, 1998), starting from 2013, the novel deep learning techniques allowed to solve
vision based discrete control tasks such as Atari 2600 games (Mnih et al., 2013) as well as continu-
ous control problems (Lillicrap et al., 2015; Mnih et al., 2016). Many of the leading state-of-the-art
reinforcement learning methods share the actor-critic architecture (Crites & Barto, 1995). Actor-
critic methods separate the actor, providing a policy, and the critic, providing an approximation for
the expected discounted cumulative reward or some derived quantities such as advantage functions
(Baird III, 1993). However, despite improvements, state-of-the-art reinforcement learning still suf-
fers from poor sample efficiency and extensive parameterisation. For most real-world applications,
in contrast to simulations, there is a need to learn in real time and over a limited training period,
while minimising any risk that would cause damage to the actor or the environment.

Reinforcement learning algorithms can be divided into two groups: on-policy and off-policy learn-
ing. On-policy approaches (e. g., SARSA (Rummery & Niranjan, 1994), ACKTR (Wu et al., 2017))
evaluate the target policy by assuming that future actions will be chosen according to it, hence the
exploration strategy must be incorporated as a part of the policy. Off-policy methods (e. g., Q-
learning (Watkins, 1989), DDPG (Lillicrap et al., 2015)) separate the exploration strategy, which
modifies the policy to explore different states, from the target policy.

The off-policy methods commonly use the concept of replay buffers to memorise the outcomes of the
previous policies and therefore exploit the information accumulated through the previous iterations
(Lin, 1993). Mnih et al. (2013) combined this experience replay mechanism with Deep Q-Networks
(DQN), demonstrating end-to-end learning on Atari 2600 games. One limitation of DQN is that it
can only operate on discrete action spaces. Lillicrap et al. (2015) proposed an extension of DQN to
handle continuous action spaces based on the Deep Deterministic Policy Gradient (DDPG). There,
exponential smoothing of the target actor and critic weights has been introduced to ensure stability
of the rewards and critic predictions over the subsequent iterations. In order to improve the variance
of policy gradients, Schulman et al. (2015b) proposed a Generalised Advantage Function. Mnih
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et al. (2016) combined this advantage function learning with a parallelisation of exploration using
differently trained actors in their Asynchronous Advantage Actor Critic model (A3C); however,
Wang et al. (2016) demonstrated that such parallelisation may also have negative impact on sam-
ple efficiency. Although some work has been performed on improvement of exploratory strategies
for reinforcement learning (Hester et al., 2013), but it still does not solve the fundamental restric-
tion of inability to evaluate the actual policy, neither it removes the necessity to provide a separate
exploratory strategy as a separate part of the method.

In contrast to those, state-of-the-art on-policy methods have many attractive properties: they are
able to evaluate exactly the resulting policy with no need to provide a separate exploration strategy.
However, they suffer from poor sample efficiency, to a larger extent than off-policy reinforcement
learning. TRPO method (Schulman et al., 2015a) has introduced trust region policy optimisation to
explicitly control the speed of policy evolution of Gaussian policies over time, expressed in a form of
Kullback-Leibler divergence, during the training process. Nevertheless, the original TRPO method
suffered from poor sample efficiency in comparison to off-policy methods such as DDPG. One
way to solve this issue is by replacing the first order gradient descent methods, standard for deep
learning, with second order natural gradient (Amari, 1998). Wu et al. (2017) used a Kronecker-
factored Approximate Curvature (K-FAC) optimiser (Martens & Grosse, 2015) in their ACKTR
method. PPO method (Schulman et al., 2017) proposes a number of modifications to the TRPO
scheme, including changing the objective function formulation and clipping the gradients. Wang
et al. (2016) proposed another approach in their ACER algorithm: in this method, the target network
is still maintained in the off-policy way, similar to DDPG (Lillicrap et al., 2015), while the trust
region constraint is built upon the difference between the current and the target network.

Related to our approach, recently a group of methods has appeared in an attempt to get the bene-
fits of both groups of methods. Gu et al. (2017) propose interpolated policy gradient, which uses
the weighted sum of both stochastic (Sutton et al., 2000) and deterministic policy gradient (Silver
et al., 2014). Nachum et al. (2018) propose an off-policy trust region method, Trust-PCL, which
exploits off-policy data within the trust regions optimisation framework, while maintaining stability
of optimisation by using relative entropy regularisation.

While it is a common practice to use replay buffers for the off-policy reinforcement learning, their
existing concept is not used in combination with the existing on-policy scenarios, which results in
discarding all policies but the last. Furthermore, many on-policy methods, such as TRPO (Schulman
et al., 2015a), rely on stochastic policy gradient (Sutton et al., 2000), which is restricted by station-
arity assumptions, in a contrast to those based on deterministic policy gradient (Silver et al., 2014),
like DDPG (Lillicrap et al., 2015). In this article, we describe a novel reinforcement learning algo-
rithm, allowing the joint use of replay buffers with trust region optimisation and leading to sample
efficiency improvement. The contributions of the paper are given as follows:

1. a reinforcement learning method, enabling replay buffer concept along with on-policy data;

2. theoretical insights into the replay buffer usage within the on-policy setting are discussed;

3. we show that, unlike the state-of-the-art methods as ACKTR (Wu et al., 2017), PPO (Schul-
man et al., 2017) and TRPO (Schulman et al., 2015a), a single non-adaptive set of hyper-
parameters such as the trust region radius is sufficient for achieving better performance on
a number of reinforcement learning tasks.

As we are committed to make sure the experiments in our paper are repeatable and to further ensure
their acceptance by the community, we will release our source code shortly after the publication.

2 BACKGROUND

2.1 ACTOR-CRITIC REINFORCEMENT LEARNING

Consider an agent, interacting with the environment by responding to the states st, t ≥ 0, from the
state space S, which are assumed to be also the observations, with actions at from the action space
A chosen by the policy distribution πθ(·|st), where θ are the parameters of the policy. The initial
state distribution is ρ0 : S → R. Every time the agent produces an action, the environment gives
back a reward r(st, at) ∈ R, which serves as a feedback on how good the action choice was and
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switches to the next state st+1 according to the transitional probability P (st+1|st, at). Altogether, it
can be formalised as an infinite horizon γ-discounted Markov Decision Process (S,A, P, r, ρ0, γ),
γ ∈ [0, 1) (Wu et al., 2017; Schulman et al., 2015a). The expected discounted return (Bellman,
1957) is defined as per Schulman et al. (2015a):

ρ(π) = Es0,a0,···

[ ∞∑
t=0

γtr(st, at)

]
(1)

The advantage function Aπ (Baird III, 1993), the value function V π and the Q-function Qπ are
defined as per Mnih et al. (2016); Schulman et al. (2015a):

Aπ(s, a) = Qπ(s, a)− V π(s), (2)

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr(st+l, at+l)

]
, t ≥ 0, (3)

V π(st) = Eat,st+1,...

[ ∞∑
l=0

γlr(st+l, at+l)

]
, t ≥ 0 (4)

In all above definitions s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at), and the policy π = πθ
is defined by its parameters θ.

2.2 TRUST REGION POLICY OPTIMISATION (TRPO)

A straightforward approach for learning a policy is to perform unconstrained maximisation ρ(πθ)
with respect to the policy parameters θ. However, for the state-of-the-art iterative gradient-based
optimisation methods, this approach would lead to unpredictable and uncontrolled changes in the
policy, which would impede efficient exploration. Furthermore, in practice the exact values of ρ(πθ)
are unknown, and the quality of its estimates depends on approximators which tend to be correct
only in the vicinity of parameters of observed policies.

Schulman et al. (2015a), based on theorems by Kakade (2002), prove the minorisation-maximisation
(MM) algorithm (Hunter & Lange, 2004) for policy parameters optimisation. Schulman et al.
(2015a) mention that in practice the algorithm’s convergence rate and the complexity of maximum
KL divergence computations makes it impractical to apply this method directly. Therefore, they
proposed to replace the unconstrained optimisation with a similar constrained optimisation problem,
the Trust Region Policy Optimisation (TRPO) problem:

arg max
θ
ρ(πθ) (5)

DKL(πθold , πθ) ≤ δ, (6)
where DKL is the KL divergence between the old and the new policy πθold and πθ respectively, and
δ is the trust region radius. Despite this improvement, it needs some further enhancements to solve
this problem efficiently, as we will elaborate in the next section.

2.3 SECOND ORDER ACTOR-CRITIC NATURAL GRADIENT OPTIMISATION

Many of the state-of-the-art trust region based methods, including TRPO (Schulman et al., 2015a)
and ACKTR (Wu et al., 2017), use second order natural gradient based actor-critic optimisation
(Amari, 1998; Kakade, 2002). The motivation behind it is to eliminate the issue that gradient de-
scent loss, calculated as the Euclidean norm, is dependent on parametrisation. For this purpose, the
Fisher information matrix is used, which is, as it follows from Amari (1998) and Kakade (2002),
normalises per-parameter changes in the objective function. In the context of actor-critic optimisa-
tion it can be written as (Wu et al., 2017; Kakade, 2002), where p(τ) is the trajectory distribution
p(s0)

∏T
t=0 π(at|st)p(st+1|st, at):

F = Ep(τ)

[
∇θ log π(at|st) (∇θ log π(at|st))T

]
. (7)

However, the computation of the Fisher matrix is intractable in practice due to the large number of
parameters involved; therefore, there is a need to resort to approximations, such as the Kronecker-
factored approximate curvature (K-FAC) method (Martens & Grosse, 2015), which has been first
proposed for ACKTR in (Wu et al., 2017). In the proposed method, as it is detailed in Algorithm 1,
this optimisation method is used for optimising the policy.
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3 METHOD DESCRIPTION

While the original trust regions optimisation method can only use the samples from the very last
policy, discarding the potentially useful information from the previous ones, we make use of samples
over several consecutive policies. The rest of the section contains definition of the proposed replay
buffer concept adaptation, and then formulation and discussion of the proposed algorithm.

3.1 USAGE OF REPLAY BUFFERS

Mnih et al. (2013) suggested to use replay buffers for DQN to improve stability of learning, which
then has been extended to other off-policy methods such as DDPG (Lillicrap et al., 2015). The
concept has not been applied to on-policy methods like TRPO (Schulman et al., 2015a) or ACKTR
(Wu et al., 2017), which do not use of previous data generated by other policies. Although based on
trust regions optimisation, ACER (Wang et al., 2016) uses replay buffers for its off-policy part.

In this paper, we propose a different concept of the replay buffers, which combines the on-policy
data with data from several previous policies, to avoid the restrictions of policy distribution station-
arity for stochastic policy gradient (Sutton et al., 2000). Such replay buffers are used for storing
simulations from several policies at the same time, which are then utilised in the method, built upon
generalised value and advantage functions, accommodating data from these policies. The following
definitions are necessary for the formalisation of the proposed algorithm and theorems.

We define a generalised Q-function for multiple policies {π1, . . . , πn, . . . , πN} as

Qπ(st, at) = EnEsnt+1,a
n
t+1,...

[ ∞∑
l=0

γlr(snt+l, a
n
t+l)

]
, t ≥ 0, (8)

sn0 ∼ ρ0(sn0 ), snt+1 ∼ P (snt+1|snt , ant ), ant ∼ πn(ant |snt ). (9)
We also define the generalised value function and the generalised advantage function as

V π(st) = EnEat,st+1,at+1

[ ∞∑
l=0

γlr(snt+l, a
n
t+l)

]
, t ≥ 0, (10)

Aπn(st) = Qπn(st, at)− V π(st), t ≥ 0, (11)
To conform with the notation from Sutton et al. (2000), we define

ρ(π) = V π(s0), Dπn(s) =

∞∑
k=0

γkP (s0 → s, k, πn), (12)

P (s→ x, k, π), as in Sutton et al. (2000), is the probability of transition from the state s to the state
x in k steps using policy π.
Theorem 1. For the set of policies {π1, . . . , πN} the following equality will be true for the gradient:

∂ρπ

∂θ
=

N∑
n=1

p(πn)

∫
s

dsDπn(s)

∫
a

da
∂πn(s, a)

∂θ
[Qπn(s, a) + bπn(s)], (13)

where θ are the joint parameters of all policies {πn} and bπn(s) is a bias function for the policy.

The proof of Theorem 1 is given in Appendix B. Applying a particular case of the bias function
bπn(s) = −V π(s) and using the likelihood ratio transformation, one can get

∂ρπ

∂θ
=

N∑
n=1

p(πn)

∫
s

dsDπn(s)

∫
a

daπn(s, a)
∂ log πn(s, a)

∂θ
Aπn(s, a) (14)

3.2 ALGORITHM DESCRIPTION

The proposed approach is summarised in Algorithm 1. The replay buffer Rp contains data collected
from several subsequent policies. The size of this buffer is RBP CAPACITY.
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Algorithm 1 Trust Regions Algorithm with a Replay Buffer

{Initialisation} Randomly initialise the weights θ of the policy estimator π(·) and Ψ of the value
function estimator Ṽ (·). Initialise the policy replay buffer Rp = {}, set i = 0, δ = DELTA
while i < MAX TIMESTEPS do
{Stage 1} Collect ni data paths using the current policy π(·): P ={〈

(sj0, a
j
0, r

j
0), . . . , (sjkj , a

j
kj
, rjkj )

〉}ni

j=0
, increase i by the total number of timesteps in

all new paths.
{Stage 2} Put recorded paths into the policy paths replay buffer Rp ← P .
{Stage 3} For every path in Rp compute the targets for the value function regression using
equation (15). Ψ = Update the value function estimator parameters
{Stage 4} For every path in Rp, estimate the advantage function using Equation (23).
{Stage 5} Update parameters of the policy θ for N ITER PL UPDATE iterations using the
gradient from Equation (25) and a barrier function defined in Equation (26).

end while

During Stage 1, the data are collected for every path until the termination state is received, but at
least TIMESTEPS PER BATCH steps in total for all paths. The policy actions are assumed to
be sampled from the Gaussian distribution, with the mean values predicted by the policy estimator
along with the covariance matrix diagonal. The covariance matrix output was inspired, although the
idea is different, by the EPG paper (Ciosek & Whiteson, 2017).

At Stage 2, the obtained data for every policy are saved in the policy replay buffer Rp.

At Stage 3, the regression of the value function is trained using Adam optimiser (Kingma & Ba,
2015) with step size VF STEP SIZE for N ITER VF UPDATE iterations. For this regression,
the sum-of-squares loss function is used. The value function target values are computed for every
state st for every policy in the replay buffer using the actual sampled policy values, where tmax is
the maximum policy step index:

V̂ (st) =

tmax−t∑
l=0

γlr(st+l, at+l), (15)

During Stage 4, we perform the advantage function estimation.

Schulman et al. (2015b) proposed the Generalised Advantage Estimator for the advantage function
Aπ(st, at) as follows:

Ãπ(st, at) = (1− λ)(Â
π,(1)
t + λÂ

π,(2)
t + λ2Â

π,(3)
t + . . .), (16)

where
Â
π,(1)
t = −Ṽ π(st) + rt + γṼ π(st+1), . . . (17)

Â
π,(k)
t = −Ṽ π(st) + rt + . . .+ γk−1rt+k−1 + γkṼ π(st+k), . . . (18)

Here k > 0 is a cut-off value, defined by the length of the sequence of occured states and actions
within the MDP, λ ∈ [0, 1] is an estimator parameter, and Ṽ π(st) is the approximation for the value
function Vπ(st), with the approximation targets defined in Equation (15). As proved in Schulman
et al. (2015b), after rearrangement this would result in the generalised advantage function estimator

Ãπ(st, at) =

k−1∑
l=0

(γλ)l(rt+l + γṼ π(st+l+1)− Ṽ π(st+l)), (19)

For the proposed advantage function (see Equation 11), the estimator could be defined similarly to
Schulman et al. (2015b) as

Ãπn(st, at) = (1− λ)(Â
πn,(1)
t + λÂ

πn,(2)
t + λ2Â

πn,(3)
t + . . .), (20)

Â
πn,(1)
t = −Ṽ π(st) + rt + γṼ πn(st+1), . . . (21)

Â
πn,(k)
t = −Ṽ π(st) + rt + γrt+1 + . . .+ γk−1rt+k−1 + γkṼ πn(st+k). (22)
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However, it would mean the estimation of multiple value functions, which diminishes the replay
buffer idea. To avoid it, we modify this estimator for the proposed advantage function as

Ãπn(st, at) =

k−1∑
l=0

(γλ)l(rt+l + γṼ π(st+l+1)− Ṽ π(st+l)), (23)

Theorem 2. The difference between the estimators (20) and (23) is

∆Ãπn(st, at) = γ(1− λ)

k∑
l=1

λl−1γl−1(Ṽ πn(st+l)− Ṽ π(st+l)). (24)

The proof of Theorem 2 is given in Appendix C. It shows that the difference between two estimators
is dependent of the difference in the conventional and the generalised value functions; given the
continuous value function approximator it reveals that the closer are the policies, within a few trust
regions radii, the smaller will be the bias.

During Stage 5, the policy function is approximated, using the K-FAC optimiser (Martens & Grosse,
2015) with the constant step size PL STEP SIZE. As one can see from the description, and dif-
ferently from ACKTR, we do not use any adaptation of the trust region radius and/or optimisation
algorithm parameters. Also, the output parameters include the diagonal of the (diagonal) policy
covariance matrix. The elements of the covariance matrix, for the purpose of efficient optimisation,
are restricted to universal minimum and maximum values MIN COV EL and MAX COV EL.

As an extention from Schulman et al. (2015b) and following Theorem 1 with the substitution of
likelihood ratio, the policy gradient estimation is defined as

∇ρ(θ) ≈ EnEπn

[ ∞∑
t=0

Ãπn(snt , a
n
t )∇θ log πn(ant |snt )

]
. (25)

To practically implement this gradient, we substitute the parameters θπ , derived from the latest
policy for the replay buffer, instead of joint θ parameters assuming that the parameters would not
deviate far from each other due to the trust region restrictions; it is still possible to calculate the
estimation of Ãπn(snt , a

n
t ) for each policy using Equation (23) as these policies are observed. For

the constrained optimisation we add the linear barrier function to the function ρ(θ):

ρb(θ) = ρ(θ)− α ·max(0, DKL(πθold , πθ)− δ), (26)

where α > 0 is a barrier function parameter and θold are the parameters of the policy on the previous
iteration. Besides of removing the necessity of heuristical estimation of the optimisation parameters,
it also conforms with the theoretical prepositions shown in Schulman et al. (2017) and, while our ap-
proach is proposed independently, pursues the similar ideas of using actual constrained optimisation
method instead of changing the gradient step size parameters as per Schulman et al. (2015a).

The networks’ architectures correspond to OpenAI Baselines ACKTR implementation (Dhariwal
et al., 2017) ,which has been implemented by the ACKTR authors (Wu et al., 2017). The only de-
parture from the proposed architecture is the diagonal covariance matrix outputs, which are present,
in addition to the mean output, in the policy network.

4 EXPERIMENTS

4.1 EXPERIMENTAL RESULTS

In order to provide the experimental evidence for the method, we have compared it with the on-policy
ACKTR (Wu et al., 2017), PPO (Schulman et al., 2017) and TRPO (Schulman et al., 2015a) meth-
ods, as well as with the off-policy DDPG (Lillicrap et al., 2015) method on the MuJoCo (Todorov
et al., 2012) robotic simulations. The technical implementation is described in Appendix A.

Figure 1 shows the total reward values and their standard deviations, averaged over every one hun-
dred simulation steps over three randomised runs. The results show drastic improvements over the
state-of-the-art methods, including the on-policy ones (ACKTR, TRPO, PPO), on most problems.
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(a) HumanoidStandup v2 (b) Half Cheetah v2 (c) Humanoid v2 (d) Walker2d v2

(e) Striker v2 (f) Hopper v2 (g) Pusher v2 (h) Reacher v2

(i) Ant v2 (j) Thrower v2

Figure 1: Experiments in MuJoCo environment (Todorov et al., 2012): comparison with TRPO
(Schulman et al., 2015a), ACKTR (Wu et al., 2017) and PPO (Schulman et al., 2017)

(a) HumanoidStandup v2 (b) Half Cheetah v2 (c) Humanoid v2 (d) Walker2d v2

(e) Striker v2 (f) Hopper v2 (g) Pusher v2 (h) Reacher v2

(i) Ant v2 (j) Thrower v2

Figure 2: Experiments in MuJoCo environment (Todorov et al., 2012): comparison between differ-
ent replay buffer depth values
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(a) HumanoidStandup v2 (b) Half Cheetah v2 (c) Humanoid v2 (d) Walker2d v2

(e) Striker v2 (f) Hopper v2 (g) Pusher v2 (h) Reacher v2

(i) Ant v2 (j) Thrower v2

Figure 3: Experiments in MuJoCo environment (Todorov et al., 2012): comparison between the
proposed algorithm and DDPG (Lillicrap et al., 2015)

In contrast to those methods, the method shows that the adaptive values for trust region radius can
be advantageously replaced by a fixed value in a combination with the trainable policy distribution
covariance matrix, thus reducing the number of necessary hyperparameters. The results for ACKTR
for the tasks HumanoidStandup, Striker and Thrower are not included as the baseline ACKTR imple-
mentation (Dhariwal et al., 2017) diverged at the first iterations with the predefined parameterisation.
PPO results are obtained from baselines implementation PPO1 (Dhariwal et al., 2017).

Figure 2 compares results for different replay buffer sizes; the size of the replay buffers reflects the
number of policies in it and not actions (i.e. buffer size 3 means data from three successive policies
in the replay buffer). We see that in most of the cases, the use of replay buffers show performance
improvement against those with replay buffer size 1 (i.e., no replay buffer with only the current
policy used for policy gradient); substantial improvements can be seen for HumanoidStandup task.

Figure 3 shows the performance comparison with the DDPG method (Lillicrap et al., 2015). In all the
tasks except HalfCheetah and Humanoid, the proposed method outperforms DDPG. For HalfChee-
tah, the versions with a replay buffer marginally overcomes the one without. It is also remarkable
that the method demonstrates stable performance on the tasks HumanoidStandup, Pusher, Striker
and Thrower, on which DDPG failed (and these tasks were not included into the DDPG article).

5 CONCLUSION

The paper combines replay buffers and on-policy data for reinforcement learning. Experimental
results on various tasks from the MuJoCo suite (Todorov et al., 2012) show significant improvements
compared to the state of the art. Moreover, we proposed a replacement of the heuristically calculated
trust region parameters, to a single fixed hyperparameter, which also reduces the computational
expences, and a trainable diagonal covariance matrix.

The proposed approach opens the door to using a combination of replay buffers and trust regions for
reinforcement learning problems. While it is formulated for continuous tasks, it is possible to reuse
the same ideas for discrete reinforcement learning tasks, such as ATARI games.
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A TECHNICAL IMPLEMENTATION

The parameters of Algorithm 1, used in the experiment, are given in Table 1; the parameters were
initially set, where possible, to the ones taken from the state-of-the-art trust region approach imple-
mentation (Wu et al., 2017; Dhariwal et al., 2017), and then some of them have been changed based
on the experimental evidence. As the underlying numerical optimisation algorithms are out of the
scope of the paper, the parameters of K-FAC optimiser from Dhariwal et al. (2017) have been used
for the experiments; for the Adam algorithm (Kingma & Ba, 2015), the default parameters from
Tensorflow (Abadi et al., 2016) implementation (β1 = 0.9, β2 = 0.999, ε = 1 · 10−8) have been
used.

The method has been implemented in Python 3 using Tensorflow (Abadi et al., 2016) as an extension
of the OpenAI baselines package (Dhariwal et al., 2017). The neural network for the control exper-
iments consists of two fully connected layers, containing 64 neurons each, following the OpenAI
ACKTR network implementation (Dhariwal et al., 2017).
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Parameter Value
α 100
TIMESTEPS PER BATCH 1000
VF STEP SIZE 1 · 10−3

PL STEP SIZE 1 · 10−2

DELTA 0.1
N ITER VF UPDATE 100

Parameter Value
N ITER PL UPDATE 10
RBP CAPACITY 3
MAX TIMESTEPS 1000000
MIN COV EL 0.2
MAX COV EL 5.0
γ 0.99
λ 0.97

Table 1: The parameters of Algorithm 1

B PROOF OF THEOREM 1

Proof. Extending the derivation from Sutton et al. (2000), one can see that:

∂V π(s)

∂θ

def
=

∂

∂θ

∫
a

daπ(s, a)(Qπ(s, a) + bπ(s)) =∫
x

dx

∞∑
k=0

γkP (s→ x, k, π)

∫
a

da
∂π(x, a)

∂θ
(Qπ(x, a) + bπ(x)) (27)

Then,

∂ρπ

∂θ
=

N∑
n=1

p(πn)
∂V πn(s0)

∂θ
=

N∑
n=1

p(πn)

∫
s

ds

∞∑
k=0

γkP (s0 → s, k, πn)

∫
a

da
∂πn(s, a)

∂θ
(Qπn(s, a) + bπn(s)) =

N∑
n=1

p(πn)

∫
s

dsDπn(s)

∫
a

da
∂πn(s, a)

∂θ
(Qπn(s, a) + bπn(s)) (28)

C PROOF OF THEOREM 2

Proof. The difference between the two k-th estimators is given as

∆Â
πn,(k)
t = γk(Ṽ πn(st+k)− Ṽ π(st+k)︸ ︷︷ ︸

∆V k

) (29)

By substituting this into the GAE estimator difference one can obtain

∆Ãπn(st, at) = (1− λ)(γ∆V 1 + λγ2∆V 2 + λ2γ3∆V 3 + . . .+ λk−1γk∆V k) =

γ(1− λ)

k∑
l=1

λl−1γl−1∆V l. (30)
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