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ABSTRACT

Online learning has attracted great attention due to the increasing demand for sys-
tems that have the ability of learning and evolving. When the data to be processed
is also high dimensional and dimension reduction is necessary for visualization or
prediction enhancement, online dimension reduction will play an essential role.
The purpose of this paper is to propose new online learning approaches for super-
vised dimension reduction. Our first algorithm is motivated by adapting the sliced
inverse regression (SIR), a pioneer and effective algorithm for supervised dimen-
sion reduction, and making it implementable in an incremental manner. The new
algorithm, called incremental sliced inverse regression (ISIR), is able to update
the subspace of significant factors with intrinsic lower dimensionality fast and ef-
ficiently when new observations come in. We also refine the algorithm by using
an overlapping technique and develop an incremental overlapping sliced inverse
regression (IOSIR) algorithm. We verify the effectiveness and efficiency of both
algorithms by simulations and real data applications.

1 INTRODUCTION

Dimension reduction aims to explore low dimensional representation for high dimensional data. It
helps to promote our understanding of the data structure through visualization and enhance the pre-
dictive performance of machine learning algorithms by preventing the “curse of dimensionality”.
Therefore, as high dimensional data become ubiquitous in modern sciences, dimension reduction
methods are playing more and more important roles in data analysis. Dimension reduction algo-
rithms can be either unsupervised or supervised. Principle component analysis (PCA) might be the
most popular unsupervised dimension reduction method. Other unsupervised dimension reduction
methods include the kernel PCA, multidimensional scaling, and manifold learning based methods
such as isometric mapping and local linear embedding. Unlike unsupervised dimension reduction,
supervised dimension reduction involves a response variable. It finds the intrinsic lower-dimensional
representations that are relevant to the prediction of the response values. Supervised dimension
reduction methods can date back to the well known linear discriminant analysis (LDA) while its
blossom occurred in the last twenty years. Many approaches have been proposed and successfully
applied in various scientific domains; see Li (1991); Cook & Weisberg (1991); Li (1992); Xia et al.
(2002); Setodji & Cook (2004); Fukumizu et al. (2004); Li & Yin (2008); Wu (2008); Wu et al.
(2009); Cook & Zhang (2014) and the references therein.

We are in a big data era and facing the challenges of big data processing, thanks to the fast de-
velopment of modern information technology. Among others, two primary challenges are the big
volume and fast velocity of the data. When a data set is too big to be stored in a single machine
or when the data arrives in real time and information update is needed frequently, analysis of the
data in an online manner is necessary and efficient. If the data is simultaneously big and high di-
mensional, it becomes necessary to develop online learning approaches for dimension reduction. As
PCA and LDA are the most wildly used dimension reduction techniques, a bunch of PCA-based and
LDA-based online dimension reduction algorithms has been proposed. Incremental PCA have been
described in Hall et al. (1998; 2000); Weng et al. (2003); Zhao et al. (2006); Rodriguez & Wohlberg
(2014). Incremental LDA have been developed in Pang et al. (2005); Zhao & Yuen (2008); Kim
et al. (2007); Chu et al. (2015). Other strategies like QR decomposition or SVD have also been used
in Chandrasekaran et al. (1997); Ye et al. (2005); Ren & Dai (2010).
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In this paper, our purpose is to propose a new online learning approach for supervised dimension
reduction. Our motivation is to implement the sliced inverse regression (SIR) in an incremental man-
ner. SIR was proposed in Li (1991) and has become one of the most efficient supervised dimension
reduction method. SIR and its refined versions have been found successful in many scientific ar-
eas such as bioinformatics, hyperspectral image analysis, and physics; see Cook (1994); Belhumeur
et al. (1997); Becker & Fried (2003); Elnitski et al. (2003); Gannoun et al. (2004); He et al. (2003);
Antoniadis et al. (2003); Li & Li (2004); Dai et al. (2006); Zhang et al. (2016). SIR can be imple-
mented by solving an generalized eigen-decomposition problem, Γβ = λΣβ, where Γ is a matrix
depending on the response variable (whose definition is described in the next section) and Σ is the
covariance matrix. To make it implementable in an online manner we rewrite it as standard eigen-
decomposition problem Σ−

1
2 ΓΣ−

1
2η = λη where η = Σ

1
2β and adopt the ideas from incremental

PCA. We need to overcome two main challenges in this process. First, how do we transform the
data so that they are appropriate for the transformed PCA problem? Note that simply normalizing
the data does not work. Second, online update of Σ−

1
2 , if not impossible, seems very difficult. The

first contribution of this paper is to overcome these difficulties and design a workable incremental
SIR method. Our second contribution will be to refine the method by an overlapping technique and
design an incremental overlapping SIR algorithm.

The rest of this paper is arranged as follows. We review SIR algorithm in Section 2 and the incre-
mental PCA algorithm in Section 3. We propose the incremental SIR algorithm in Section 4 and
refine it in Section 5. Simulations are done in Section 6. We close with discussions in Section 7.

2 SLICED INVERSE REGRESSION

The goal of supervised dimension reduction is to find an intrinsic lower-dimensional subspace that
contains all the information to predict the response variable. Assume a multivariate predictor x =
(x1, x2, . . . , xp)> ∈ Rp and a scalar response y are linked by a semi-parametric regression model

y = f(β>1x,β>2x, . . . ,β>Kx, ε), (1)

where βk ∈ Rp is a p× 1 vector and ε is the error term independent of x. It implies

y |= x|B>x (2)

where |= denotes “statistical independence” and B = (β1,β2, . . . ,βK) is a p × K matrix. The
column space of B is called the effective dimension reduction (EDR) space and each βi is an EDR
direction. Note B>x contains all information for the prediction of y. The purpose of supervised
dimension reduction is to learn the EDR directions from data.

Unlike the classical regression problem which regresses y against x, sliced inverse regression consid-
ers regressing x against y. With the semi-parametric model (1) and the assumption that x follows an
elliptical contour distribution (e.g., normal distribution), it was proved in Li (1991) that the centered
regression curve E[x|y] − E[x] falls into the K-dimensional subspace spanned by EDR directions
Σβk, k = 1, . . . ,K. Consequently, all or part of the EDR directions can be recovered by solving a
generalized eigenvalue decomposition problem:

Γβ = λΣβ (3)

where

Γ = E

[(
E[x|y]−E[x]

)(
E[x|y]−E[x]

)>]
is the covariance matrix of inverse regression curve E[x|y], Σ is the covariance matrix of x. Each
eigenvector associated with a non-zero eigenvalue is an EDR direction.

Given i.i.d observations {(xi, yi)}ni=1, SIR algorithm can be implemented as follows:

1) Compute sample mean x̄ = 1
n

∑n
i=1 xi and the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)>.
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2) Bin the observations into H slices according to y values. For each slice sh, h = 1, . . . ,H,
compute the sample probability p̂h = nh

n and the sample slice mean m̂h = 1
nh

∑
yi∈sh xi.

The matrix Γ is estimated by

Γ̂ =

H∑
h=1

p̂h (m̂h − x̄) (m̂h − x̄)>.

3) Solve the generalized eigen-decomposition problem

Γ̂B̂ = Σ̂B̂Λ.

The EDR directions are estimated by the top K eigenvectors β̂k, k = 1, 2, . . . ,K.

This algorithm is not very sensitive to the choice of parameter H provided it is sufficiently larger
than K while not greater than n

2 . Root-n consistency is usually promised. It is suggested samples
are evenly distributed into the H slices for the best performance.

3 INCREMENTAL PCA

PCA looks for directions along which the data have the largest variances. It is implemented by
solving an eigen-decomposition problem

Σ̂u = λu. (4)

The principal components are the eigenvectors corresponding to largest eigenvalues. Throughout
this paper, we assume all eigenvalues are arranged in a descending order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λp.
Suppose that we need to retain the top K principal components. Denote UK = [u1, . . . ,uK ],
ΛK = diag(λ1, . . . , λK). We have a reduced system Σ̂UK = UKΛK .

In incremental PCA, after receiving a new coming observation x0, we need to update the reduced
eigen-system to a new one

Σ̂′U′K ≈ U′KΛ′K . (5)

A “=” is generally impossible unless λK+1 = . . . = λp = 0 in (4).

The idea of updating the system in Hall et al. (1998) is as follows. Compute a residual vector

v = (x0 − x̄′)−UKU>K(x0 − x̄′)

where x̄′ is the mean of all observations (including x0). It defines the component of x0 that is
perpendicular with the subspace defined by UK . If x0 lies exactly within the current eigenspace,
then the residual vector is zero and there is no need to update the system. Otherwise, we normalize
v to obtain v̄ = v

‖v‖ .We may reasonably assume each column vector of U′K is a linear combination
of column vectors of UK and v̄. (Note this is exactly true if λK+1 = . . . = λp = 0.) This allows us
to write

[U′K ,u
′
K+1] = [UK , v̄]R.

where R is a (K + 1) × (K + 1) rotation matrix and u′K+1 is an approximation of the (K + 1)th
eigenvector of Σ̂′. So we have

Σ̂′[UK , v̄]R = [UK , v̄]RΛ′K+1,

which is equivalent to

[UK , v̄]>Σ̂′[UK , v̂]R = RΛ′K+1.

This is an eigen-decomposition problem of dimensionality K + 1� p. It solves the rotation matrix
R and allows us to update principal components to U′K , given by the first K column of [UK , v̄]R.
If we need to increase the number of principal components, we can just update the system to K ′ =
K+ 1 and U′K′ = [U′K ,u

′
K+1]. This incremental PCA algorithm was shown convergent to a stable

solution when the sample size increases (Hall et al., 1998).
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4 INCREMENTAL SIR

Our idea to develop the incremental sliced inverse regression (ISIR) is motivated by reformulating
SIR problem to a PCA problem. To this end, we define η = Σ

1
2β, called the standardized EDR

direction, and rewrite the generalized eigen-decomposition problem (3) as an eigen-decomposition
problem

Σ−
1
2 ΓΣ−

1
2η = λη. (6)

Note that Σ−
1
2 ΓΣ−

1
2 is the covariance matrix of Σ−

1
2 E[x|y]. So (6) can be regarded as a PCA

problem with data collected for Σ−
1
2 E[x|y]. To apply the ideas from IPCA to this transformed PCA

problem, however, is not as direct as it looks like. We face two main challenges. First, when a
new observation (x0, y0) is received, we need to transform it to an observation for the standardized
inverse regression curve. This is different from simply standardizing the data. Second, conceptually,
we need to update Σ−

1
2 in an online manner in order to standardize the data. This does not seem

feasible. In the following, we will describe in detail how we address these challenges and make the
ISIR implementable.

Suppose we have n observations in hand with well defined sample slice probabilities p̂h and means
(m̂h, ȳh) for h = 1, . . . ,H, and the eigenvectors B̂ = [β̂1, . . . , β̂K ] of the generalized eigen-
decomposition problem Γ̂ = λΣ̂β. Then with ΛK = diag(λ1, . . . , λK), we have

Γ̂B̂ = Σ̂B̂ΛK .

Denote Ξ = Σ̂
1
2 B̂. We have

Σ̂
− 1

2 Γ̂Σ̂
− 1

2 Ξ = ΞΛK . (7)

When we have a new observation (x0, y0), we first locate which slice it belongs to according to
the distances from y0 to sample slice mean values ȳh of the response variable. Let us suppose the
distance from y0 to ȳk is the smallest. So we place the new observation into the slice k and update
sample slice probabilities by p̂′h = np̂h

n+1 for h 6= k and p′k =
np′

k+1
n+1 . Let nk = npk be the number of

observations in slice k before receiving the new observation. For slice mean values we update

m̂′k =
nk

nk + 1
m̂k +

1

nk + 1
x0

for slice k only. We can regard z0 = Σ̂
− 1

2 m′k as a new observation for the standardized inverse
regression curve Σ−

1
2 E[x|y]. Following the idea of IPCA, we define a residual vector

v =

(
z0 − Σ̂

− 1
2 x̄′
)
−ΞΞ>

(
z0 − Σ̂

− 1
2 x̄′
)

and normalize it to v̄ = v
‖v‖ when v is not zero. To update the eigen-decomposition system to

Σ̂′
− 1

2

Γ̂′ Σ̂′
− 1

2

Ξ′ = Ξ′Λ′K , (8)

we assume [Ξ′,η′K+1] = [Ξ, v̄]R with R being a (K+ 1)× (K+ 1) rotation matrix and η′K+1 the

(K + 1)th eigenvector of Σ̂′
− 1

2

Γ̂′ Σ̂′
− 1

2

. So we have

Σ̂′
− 1

2

Γ̂′ Σ̂′
− 1

2

[Ξ, v̄]R = [Ξ, v̄]RΛ′K+1

where Λ′K+1 = diag(Λ′K , λ
′
K+1) and λ′K+1 is the (K + 1)th eigenvalue. Multiplying both sides

by [Ξ, v̄]>, we obtain (
Σ̂′
− 1

2

[Ξ, v̄]

)>
Γ̂′
(

Σ̂′
− 1

2

[Ξ, v̄]

)
R = RΛ′K+1. (9)

Note, however, since Σ̂′
− 1

2

cannot be easily updated, we have to avoid using it. To overcome this
challenge, we notice that

Σ̂′ =
n

n+ 1
Σ̂′ +

n

(n+ 1)2
(x0 − x̄)(x0 − x̄)> (10)

4
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and the well known Sherman-Morisson formula allows us to update the inverse covariance matrix

Σ̂′
−1

=
n+ 1

n
Σ̂
−1
−

1
nΣ̂
−1

(x0 − x̄)(x0 − x̄)>Σ̂
−1

1 + 1
n+1 (x0 − x̄)>Σ̂

−1
(x0 − x̄)

. (11)

If we store Σ̂
−1

and update it incrementally, we can approximate the quantities in (9) as follows:

Σ̂′
− 1

2

Ξ ≈ Σ̂
− 1

2 Ξ = B̂,

Σ̂′
− 1

2

v ≈ Σ̂
−1

(m̂′k − x̄′)− B̂B̂> (m̂′k − x̄′) ,

‖v‖2 = (m̂′k − x̄′)
>
(
Σ̂
−1
− B̂B̂>

)
(m̂′k − x̄′) ,

ṽ = Σ̂′
− 1

2

v̄ =
Σ̂′
− 1

2

v

‖v‖

≈

(
Σ̂
−1
− B̂B̂>

)
(m̂′k − x̄′)√

(m̂′k − x̄′)
>
(
Σ̂
−1
− B̂B̂>

)
(m̂′k − x̄′)

.

So the problem (9) is approximated by[
B̂, ṽ

]>
Γ̂′
[
B̂, ṽ

]
R = RΛ′K+1. (12)

Finally notice that the new EDR space B̂′ = Σ̂′
− 1

2

Ξ′ is the first K columns of Σ̂′
− 1

2

[Ξ′,η′K+1] =

Σ̂′
− 1

2

[Ξ, v̄]R and can be approximated by the first K columns of [B̂, ṽ]R.

Note that we avoided updating the inverse square root of the covariance matrix by using the approx-

imation Σ̂
− 1

2 ≈ Σ̂′
− 1

2

. This approximation can be very accurate when n is large enough because
both converge to Σ−

1
2 . Therefore, we may expect the convergence of ISIR as a corollary of the

convergence of IPCA. However, when n is small, the approximation may be less accurate and result
in larger difference between EDR spaces estimated by ISIR and SIR. So we recommend that ISIR
be used with a warm start, that is, using SIR first on a small amount of data before using ISIR.

In terms of memory, the primary requirement is the storage of Σ̂
−1

, the slice mean matrix M̂ =

[m̂1, . . . , m̂H ], and the EDR space B̂. So the memory requirement is O(p2 + pH + pK). As for

the computational complexity, notice that the update of Σ̂′
−1

in (11) requires the calculation of
Σ̂
−1

(x0 − x̄) and matrix addition and thus has a complexity of O(p2). Since we need to store M̂

and update it sequentially, it is not efficient to store and update Γ̂′ for either memory or computation
consideration. Instead, we use the fact Γ̂′ = M̂′P̂′M̂′> where P̂′ = diag(p̂′1, . . . , p̂

′
H) and write

[B̂, ṽ]>Γ̂′ [B̂, ṽ] =
[
B̂>M̂′, ṽ>M̂′

]
P̂′
[
B̂>M̂′, ṽ>M̂′

]>
.

Notice that

ṽ>M̂′ =

(
Σ̂
−1

(m̂′k − x̄′)
)>

M̂′ −
(
B̂>(m̂′k − x̄′)

)>(
B̂>M̂′

)
√

(m̂′k − x̄′)>
(
Σ̂
−1

(m̂′k − x̄′)
)
−
(
B̂>(m̂′k − x̄′)

)>(
B̂>(m̂′k − x̄′)

)
and B̂>(m̂′k− x̄′) is just the kth column of B̂>M̂′. The most time consuming computations for the

matrix [B̂, ṽ]>Γ̂′ [B̂, ṽ] are B̂>M̂′ and Σ̂
−1

(m̂′k− x̄′) which have a complexity of O(pKH+ p2).

5
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The complexity of the eigen-decomposition in (12) is O((K+ 1)3) and it requires O(p(K+ 1)2) to
update B̂ to B̂′. So the computational complexity for each ISIR update isO(p2+pKH+pK2+K3).
For a high dimensional problem, this is much smaller than the complexity O(p3 + p2n) of SIR.

5 REFINEMENT BY OVERLAPPING

In Zhang et al. (2018) an overlapping technique was introduced to SIR algorithm and shown effec-
tively improving the accuracy of EDR space estimation. It is motivated by placing each observation
in two or more adjacent slices to reduce the deviations of the sample slice means m̂h from the EDR
subspace. This is equivalent to using each observation two or more times. In this section, we adopt
the overlapping technique to ISIR algorithm above to develop an incremental overlapping sliced
inverse regression (IOSIR) algorithm and wish it refines ISIR.

To apply the overlapping idea, we use each observation twice. So when we have n observations,
we duplicate them and assume we have N = 2n observations. When a new observation (x0, y0) is
received, we duplicate it and assume we receive two identical observations. Based on the y0 value
we place the first copy into the slice sk if ȳk is closest to y0 and run ISIR update as described in
Section 4. Note that if ȳ1 < y0 < ȳH , then y0 must fall into the interval [ȳk′ , ȳk] with k′ = k− 1 or
it falls into [ȳk, ȳk′ ] with k′ = k + 1. So we place the second copy of the new observation into the
slice sk′ , an adjacent slice to sk, and run ISIR algorithm again. If y0 ≤ ȳ1 or y0 > ȳH , the second
copy will be still placed into sk to guarantee all observations are weighted equally.

As OSIR has superior performance over SIR, we expect IOSIR will perform better than ISIR by a
price of double calculation time.

We remark that SIR and ISIR can be used for both regression problems and classification problems.
But since the concept of “adjacent slice” cannot be defined for categorical values (as is the case
in classification problems), IOSIR can only be used for regression problems where the response
variable is numeric.

6 SIMULATIONS

In this section, we will verify the effectiveness of ISIR and IOSIR with simulations on artificial and
real-world data. Comparisons will be made between them and SIR.

6.1 ARTIFICIAL DATA

In the simulations with artificial data, since we know the true model, we measure the performance by
the accuracy of the estimated EDR space. We adopt the trace correlation r(K) = trace(PBPB̂)/K
used in Ferré (1998) as the criterion, where PB and PB̂ are the projection operators onto the true
EDR space B and the estimated EDR space B̂, respectively.

We consider the following model from Li (1991)

y = x1(x1 + x2 + 1) + ε, (13)

where x = [x1, x2, . . . , xp]> follows a multivariate normal distribution, ε follows standard normal
distribution and is independent of x. It has K = 2 effective dimensions with β1 = (1, 0, 0, . . . , 0)>

and β2 = (0, 1, 0 . . . , 0)>. We conduct the simulation in p = 10 dimensional space and select
the number of slices as H = 10. We give the algorithm a warm start with the initial guess of
the EDR space obtained by applying SIR algorithm to a small data set of 40 observations. Then
a total of 400 new observations will be fed to update the EDR space one by one. SIR, ISIR, and
IOSIR are applied when each observation was fed in and we calculate their trace correlation and
cumulative computation time. We repeat this process 100 times. The mean trace correlations of all
three methods are reported in Figure 1(a) and the mean cumulative time is in Figure 1(b). We see
that ISIR performs quite similar to SIR. IOSIR slightly outperforms ISIR and SIR. ISIR is much
faster than SIR. IOSIR gains higher accuracy by sacrificing on computation time. This verifies the
convergence and efficiency of ISIR and IOSIR.
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Figure 1: Simulation result for the model (13). (a) Trace correlation and (b) cumulative calculation
time by SIR, ISIR, and IOSIR.

6.2 REAL DATA APPLICATION

We validate the reliability of ISIR on two real data sets: the Concrete Compressive Strength
and Cpusmall (available on https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/regression.html). There have been many proposed algorithms to increase the
prediction accuracy on these data sets (Yeh, 1998; 1999; 2007; Öztaş et al., 2006; Gu et al., 2015).
We do not intend to outperform those methods. Our goal is to compare the performance of super-
vised dimension reduction algorithms and verify the effectiveness of our incremental methods.

The Concrete Compressive Strength data has p = 8 predictors and 1030 samples. We use H = 10
and K = 3 to run SIR, ISIR, and IOSIR. We select 50 observations to warm start ISIR and IOSIR
algorithms, then 700 observations are fed sequentially. The left 280 observations are used as test
data. After each new observation is received we estimate the EDR space, project the available
training set to the estimated EDR space, build a regression model using the k-nearest neighbor
method, and compute the MSE on the test data set. This process is repeated 100 times and the
average MSE was reported in Figure 2(a). For the Cpusmall data, which has p = 12 predictors and
8192 samples, we do the experiment with H = 10, K = 3, 50 observations to warm start ISIR and
IOSIR, 2000 observations for sequential training, and 6142 observations for testing. The average
MSE was plotted in Figure 2(b). The results indicate both ISIR and IOSIR are as effective as SIR.

7 CONCLUSIONS AND DISCUSSIONS

We proposed two online learning approaches for supervised dimension reduction, namely, ISIR
and IOSIR. They are motivated by standardizing the data and reformulate the SIR algorithm to
a PCA problem. However, data standardization is only used to motivate the algorithm while not
explicitly calculated in the algorithms. We proposed to use Sherman Morrison formula to online
update Σ−1 and some approximated calculations to circumvent explicit data standardization. This
novel idea played a key role in our algorithm design. Both algorithms are shown effective and
efficient. While IOSIR does not apply to classification problems, it is usually superior over ISIR in
regression problems.

We remark that the purpose of ISIR and IOSIR is to keep the dimension reduction accuracy in the
situation that a batch learning is not suitable. This is especially the case for streaming data where
information update and system involving is necessary whenever new data becomes available. When
the whole data set is given and one only needs the EDR space from batch learning, ISIR or IOSIR is
not necessarily more efficient than SIR because their complexity to run over the whole sample path
is O(p2N), comparable to the complexity O(p3 + p2N) of SIR.

There are two open problems worth further investigation. First, the need to store and use Σ−1

during the updating process is the main bottleneck for ISIR and IOSIR when the dimensionality of
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(a) (b)

Figure 2: Mean square errors (MSE) for two real data applications: (a) for Concrete Compressive
Strength data and (b) for Cpusmall data.

the data is ultrahigh. Second, for SIR and other batch dimension reduction methods, many methods
have been proposed to determine the intrinsic dimension K; see e.g. Li (1991); Schott (1994); Bura
& Cook (2001); Bai & He (2004); Barrios & Velilla (2007); Nkiet (2008). They depend on all
p eigenvalues of the generalized eigen-decomposition problem and are impractical for incremental
learning. We do not have obvious solutions to these problems at this moment and would like to leave
them for future research.
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