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ABSTRACT

Adversarial attacks on neural networks perturb the input at test time in order to
fool trained and deployed neural network models. Most attacks such as gradient-
based Fast Gradient Sign Method (FGSM) by Goodfellow et al. (2015) and Deep-
Fool by Moosavi-Dezfooli et al. (2016) are input-dependent, small, pixel-wise
perturbations, and they give different attack directions for different inputs. On the
other hand, universal adversarial attacks are input-agnostic and the same attack
works for most inputs. Translation or rotation-equivariant neural network mod-
els provide one approach to prevent universal attacks based on simple geometric
transformations. In this paper, we observe an interesting spectral property shared
by all of the above input-dependent, pixel-wise adversarial attacks on translation
and rotation-equivariant networks. We exploit this property to get a single univer-
sal attack direction that fools the model on most inputs. Moreover, we show how
to compute this universal attack direction using principal components of the exist-
ing input-dependent attacks on a very small sample of test inputs. We complement
our empirical results by a theoretical justification, using matrix concentration in-
equalities and spectral perturbation bounds. We also empirically observe that the
top few principal adversarial attack directions are nearly orthogonal to the top few
principal invariant directions.

1 INTRODUCTION

Neural network-based models achieve state of the art results on several speech and visual recognition
tasks but these models are known to be vulnerable to various adversarial attacks. Szegedy et al.
(2013) show that small, pixel-wise changes that are almost imperceptible to the human eye can
make neural networks models grossly misclassify. They try to maximize the prediction error of a
given model by finding a small pixel-wise perturbation using box-constrained L-BFGS. Goodfellow
et al. (2015) propose the Fast Gradient Sign Method (FGSM) as a faster approach to find such an
adversarial perturbation given by x′ = x + ε sign (∇xJ(θ, x, y)), where x denotes the input, y
denotes the class label, θ denotes the model parameters, and J(θ, x, y) denotes the loss function
used to train the model.

In subsequent work on FGSM, its iterative variant called Projected Gradient Descent (PGD) was in-
troduced by Kurakin et al. (2017); also see Madry et al. (2018). Goodfellow et al. (2015) and Madry
et al. (2018) study adversarial perturbations from the `∞-ball around the input x, namely, each pixel
value is perturbed by a quantity within [−ε,+ε]. DeepFool by Moosavi-Dezfooli et al. (2016) gives
a method to compute the minimal `2-norm perturbation. Broadly, all the above-mentioned adver-
sarial attacks give directions to perturb any given test input in a way that is model-dependent and
input-dependent. Tramer et al. (2017) also mention model-agnostic perturbations using the direction
of the difference between the intra-class means, in an attempt to understand how adversarial attacks
transfer across different models.

Universal adversarial attacks are input-agnostic so that the same perturbation or input transformation
fools the trained model on most or nearly all test inputs. Recent work by Moosavi-Dezfooli et al.
(2016; 2017) on universal adversarial attacks looks at the curvature of the decision boundary. Their
universal attacks or perturbations are more sophisticated than the simple and fast, gradient-based ad-
versarial perturbations, and require significantly more computation. Moosavi-Dezfooli et al. (2017)
give a theoretical analysis of existence of universal adversarial attacks using directions in which the
decision boundary has positive curvature.
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Geometric transformations such as rotations, translations are simple input transformations that are
model-agnostic and input-agnostic. Geometric transformations of input at test time are also possible
natural attacks; see Dumont et al. (2018), Gilmer et al. (2018). One way to counter such attacks
is to use neural network models that are translation and rotation-equivariant by construction. Stan-
dard Convolutional Neural Networks (StdCNNs) are translation-equivariant but not equivariant with
respect to other spatial symmetries such as rotations, reflections etc. Variants of CNNs to achieve
rotation-equivariance and other symmetries have received much attention recently, notably, Har-
monic Networks (H-Nets) by Worrall et al. (2016), cyclic slicing and pooling by Dieleman et al.
(2016), Tranformation-Invariant Pooling (TI-Pooling) by Laptev et al. (2016), Group-equivariant
Convolutional Neural Networks (GCNNs) by Cohen & Welling (2016), Steerable CNNs by Co-
hen & Welling (2017), Deep Rotation Equivariant Networks (DREN) by Li et al. (2017), Rotation
Equivariant Vector Field Networks (RotEqNet) by Marcos et al. (2017), Polar Transformer Net-
works (PTN) by Esteves et al. (2018). Among these, GCNNs are based on steerable filters, have
a solid theoretical justification Kondor & Trivedi (2018), and achieve nearly state of the art results
on MNIST-rot1 and CIFAR10 as reported in Esteves et al. (2018). However, both StdCNNs and
GCNNs do require rotation augmentation at training time to be robust to rotations.

The above discussion raises an important question: are there any interesting properties shared by
translation and rotation-equivariant neural network models that can be exploited to come up with
simple universal attacks? Can one find a universal attack direction using only a small fraction of
test inputs but that fools the trained model on most test inputs? We answer both of these questions
affirmatively in this paper.

2 SUMMARY OF OUR RESULTS

In this paper, we mostly study StdCNNs and GCNNs, which are translation-equivariant and rotation-
equivariant, respectively. Some of our experiments also include Fully Connected NNs and RotE-
qNets.

• Our first observation is that even though the adversarial attack directions based on gradi-
ents, FGSM and DeepFool for StdCNN and GCNN models are input-dependent, overall
they have only a small number of dominant principal components. For example, the top 5
(or 5/784 ≈ 0.64%) principal components of the gradient directions on all test inputs con-
tain around 10% of the total spectrum for StdCNNs, GCNNs as well as RotEqNets trained
on MNIST, Fashion MNIST. For CIFAR10 the top 5 (or 5/3072 ≈ 0.16%) principal com-
ponents of the gradient directions contain ≈ 1% of the total spectrum and this goes upto
3% when train and test augmented with a larger range of random rotations.

• Our second observation is that a small pixel-wise perturbation in the direction of the top
principal component alone can be used as a universal attack to fool these models on around
80-90% test inputs for MNIST and Fashion MNIST, and around 60-70% test inputs for
CIFAR10. And our universal attack becomes better as we train these models with larger
rotations.

• Our third observation is that the top principal component can be well-approximated using
only 1% sample of FGSM or DeepFool attack directions on the test data, and this approx-
imation can still give a small pixel-wise perturbation to fool the model on around 80% of
test inputs for MNIST and Fashion MNIST, and around 60% of test inputs for CIFAR10.
We give a theoretical justification of this phenomenon using matrix concentration inequal-
ities and spectral perturbation bounds. An interesting aspect of our empirical study is that
these observations hold across multiple input-dependent attacks (gradient, FGSM, Deep-
Fool) and the choice of equivariant neural network models (StdCNNs, GCNNs).

3 PRINCIPAL COMPONENTS OF ATTACK AND INVARIANT DIRECTIONS

We take a StdCNN or GCNN network as given in Table 2 and train it with 60,000 samples for MNIST
and Fashion MNIST, and 50,000 samples for CIFAR10 training data augmented with random rota-
tions in the range [−180◦,+180◦]. We have also performed some of the experiments for NN (fully

1http://www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/MnistVariations
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connected neural networks) and RotEqNet. We then use the gradient (similarly FGSM, DeepFool)
directions obtained for this trained model on the 10,000 test inputs (which are also augmented with
random rotations in the range [−180◦,+180◦]). We form a matrix whose rows are unit vectors
along these 10,000 gradient (similarly FGSM, DeepFool) directions and obtain its Singular Value
Decomposition (SVD). For gradients, we observe, as in Figure (1), that the top 5 or less than 1% in
number of the squared singular values of this matrix add up to more than 10% of the overall sum of
squared singular values. This is irrespective of whether the trained model is NN, StdCNN, GCNN
or RotEqNet. For MNIST, Figures (18a), (2a), (3a), and (17a) show how the sigular values drop
when we consider gradient, FGSM, DeepFool directions for NNs, StdCNNs, GCNNs, RotEqNets,
respectively. For Fashion MNIST, Figures (21a), (19a) and (20a) show how the sigular values drop
when we consider gradient, FGSM, DeepFool directions for NNs, StdCNNs, GCNNs, respectively.
For CIFAR10, Figures (4a) and (5a) show how the sigular values drop when we consider gradient,
FGSM, DeepFool directions for StdCNNs and GCNNs, respectively. These indicate that the drop
in singular values is a common phenomenon for the different attacks and different translation and
rotation-equivariant neural network models we consider.

We next consider the principal components of invariant directions. For this, the MNIST/Fashion
MNIST/CIFAR10 test data is augmented with random rotations in the range [−180◦,+180◦], and we
look at the difference vectors between such images and their small 2◦ rotations. For NN, StdCNN,
GCNN or RotEqNet trained with rotation augmentation, we expect the difference between a small
rotation of an image and the image itself to be along the invariant subspace tangent to the level sets
of the loss function. We take the principal components of these difference or invariant directions,
and observe that the top 5 singular vectors of the adversarial directions are nearly orthogonal to
the top 5 singular vectors of the invariant directions, i.e., their average dot product is roughtly less
than 0.1. Figures (18b), (2b), (3b), (17b) indicate that this property is shared by NNs, StdCNNs,
GCNNs and RotEqNets for MNIST, and also holds when we look at a smaller sample of only 500
test points instead of all 10,000 test points. Similarly Figures (21b), (19b) and (20b) indicate that this
property is shared by NNs, StdCNNs, GCNNs for Fashion MNIST. And Figures (4b), (5b) indicate
that this property is shared by StdCNNs and GCNNs for CIFAR10. Table 1 shows deeper analysis
using principal angles between subspaces that the two 5-dimensional SVD subspaces of adversarial
directions and invariant directions, respectively, have nearly 90◦ principal angles.

The intensity maps of top singular vectors for the gradient, FGSM, DeepFool directions for NNs,
StdCNNs, GCNNs and RotEqNets also have interesting structure as seen in Figures (36)-(54). As we
have already observed, these are nearly orthogonal to the invariant directions which lead to steerable
filters similar to Figure (35). We believe this underlying structure is useful and of independent
interest.

4 UNIVERSAL ADVERSARIAL ATTACK USING A SMALL SAMPLE

We now plot the fooling rate or the fraction of test inputs that the trained model misclassifies, when
we perturb all of them using the top singular vector of gradient direction scaled by ε that denotes
the norm of perturbation. In Figures (6)-(9) we plot these fooling rate to show that we can fool
80-90% of test inputs using the same small-norm universal adversarial attack for MNIST dataset.
In Figures (10)-(13) we plot these fooling rate to show that we can fool 60-70% of test inputs using

Table 1: Subspace angles between Top 5 SVD vectors from gradients of test points for each network
and invariant directions (small 2◦ rotations) respectively.

Dataset Model 1 2 3 4 5
MNIST StdCNN 89.82170934 88.06580815 84.76831292 81.22444162 78.85267548
MNIST GCNN 89.06822425 88.27986252 87.45134508 84.26710498 68.77651938
MNIST RotEqNet 89.75561818 88.88988678 85.60567329 82.28177397 68.96832307
MNIST NN 89.9915157 88.78972167 88.5374161 86.56321357 70.12080709
Fashion MNIST StdCNN 89.21807572 79.28255649 77.29202168 70.53545269 63.20996031
Fashion MNIST GCNN 88.90127175 87.92549838 73.42571367 70.55420976 69.19559671
Fashion MNIST NN 89.9895849 87.71857462 87.5599056 84.38550172 58.77045895
CIFAR10 StdCNN 89.97432038 89.91897569 89.84706226 89.71168446 89.56515156
CIFAR10 GCNN 89.99666115 89.82916528 89.71339735 89.59987204 88.90306292
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Figure 1: Fraction of the total spectrum contained in top 5 squared singular values of gradient
directions for 10,000 test inputs, when train and test augmented with random rotations in [−x◦, x◦]
range for NN, StdCNN, GCNN and RotEqNet, respectively. (left) MNIST (center) Fashion MNIST
(below) CIFAR10

(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 2: On MNIST, Principal components of adversarial and invariant directions for StdCNN

the same small-norm universal adversarial attack for CIFAR10 dataset. Moreover, if we pick a
small sample of 100 random test points (about 1% of test data) and take their gradients, their top
singular vector also gives a good universal adversarial attack direction with a comparable fooling
rate, namely, simultaneously fooling the model on roughly 80% of test points using the same small-
norm perturbation for MNIST dataset and roughly 60% for CIFAR10 datset.

Please see Figures (22)-(29) in the appendix for additional experiments.

Figures (7), (9) for MNIST and (11), (13) for CIFAR10 show that a simple approach using the
top singular vector of the gradient directions on a small sample gives a universal adversarial attack
comparable to Moosavi-Dezfooli et al. (2017) which we denote in the plots as M-DFFF. For applying
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(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 3: On MNIST, Principal components of adversarial and invariant directions for GCNN

(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 4: On CIFAR10, Principal components of adversarial and invariant directions for StdCNN

(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 5: On CIFAR10, Principal components of adversarial and invariant directions for GCNN

M-DFFF we take the perturbation got by their method, scale it to a unit vector and apply to the test
set with varying norm of perturbation to plot the fooling rate.

Figures (14)-(16) and (30)-(34) show how the fooling rate of our adversarial attack gets better when
the training is augmented with larger rotations.
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Figure 6: On MNIST, StdCNN: fooling rate vs. norm of perturbation along top singular vector of
attack directions on 100/500/10000 sample, (left) gradients (center) FGSM (right) DeepFool

Figure 7: On MNIST, StdCNN: fooling rate vs. norm of perturbation along top singular vector of
attack directions on, (left) 100 samples, (right) 500 samples

Figure 8: On MNIST, GCNN: fooling rate vs. norm of perturbation along top singular vector of
attack directions on 100/500/10000 samples, (left) gradients (center) FGSM (right) DeepFool

Figure 9: On MNIST, GCNN: fooling rate vs. norm of perturbation along top singular vector of
attack directions on, (left) 100 samples, (right) 500 samples
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Figure 10: On CIFAR10, StdCNN: fooling rate vs. norm of perturbation along top singular vector
of attack directions on 100/500/10000 sample, (left) gradients (center) FGSM (right) DeepFool

Figure 11: On CIFAR10, StdCNN: fooling rate vs. norm of perturbation along top singular vector
of attack directions on, (left) 100 samples, (right) 500 samples

Figure 12: On CIFAR10, GCNN: fooling rate vs. norm of perturbation along top singular vector of
attack directions on 100/500/10000 sample, (left) gradients (center) FGSM (right) DeepFool

Figure 13: On CIFAR10, GCNN: fooling rate vs. norm of perturbation along top singular vector of
attack directions on, (left) 100 samples, (right) 500 samples

5 ANALYSIS OF UNIVERSAL ADVERSARIAL PERTURBATIONS

In this section, we attempt to provide a theoretical justification for the existence of universal ad-
versarial perturbations. Assume that our data is in d dimensions X ⊆ Rd with an underlying
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Figure 14: On MNIST, fooling rate of our universal attack using top singular vector of 100 test
point gradients, for StdCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test
unrotated, (right) test-augmented with the same range of rotations as the training set.

Figure 15: On MNIST, fooling rate of our universal attack using top singular vector of 100 test point
gradients, for GCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test unrotated,
(right) test-augmented with the same range of rotations as the training set.

Figure 16: On CIFAR10, fooling rate of our universal attack using top singular vector of 100 test
point gradients, for StdCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test
unrotated, (right) test-augmented with the same range of rotations as the training set.

distribution given by probability density µ(x) at each point x ∈ X . Let ax be an adversarial per-
turbation direction for each x, respectively. Note that ax could be obtained by any of the several
available methods such as the Fast Gradient Sign Method (FGSM), the Kurakin attack, DeepFool
or by finding the nearest point on the decision boundary etc. Two important questions are: (a) Why
does there exist a universal vector or direction that works as an adversarial perturbation for many or
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most data points simultaneously? (b) Can we compute such a universal adversarial perturbation by
looking only at a small subsample of the data?

Given any method that obtains adversarial perturbations for individual data points, if the matrix of
these adversarial perturbation directions taken over all data points satisfies a certain property, then
we show that the top singular vectors of this matrix are good candidates for universal adversarial
perturbations that make many points to be misclassified simultaneously.

Theorem 1. Let X ⊆ Rd be any given input data with the underlying probability density µ(x) at
x ∈ X . Let ax denote an adversarial perturbation vector at point x ∈ X . Let 0 ≤ λ ≤ 1 be the top
eigenvalue of the matrix M ∈ Rd×d defined as

M = E

[
ax
‖ax‖2

aTx
‖ax‖2

]
,

and let v be its corresponding eigenvector. Then

Pr ({x : |〈ax,v〉| ≥ δ ‖ax‖2}) ≥
λ− δ2

1− δ2
.

In particular, plugging in δ =
√
λ/2 we get

Pr

({
x : |〈ax,v〉| ≥

√
λ

2
‖ax‖2

})
≥ λ

2
.

Proof. Define S = {x : |〈ax,v〉| ≥ δ ‖ax‖2} ⊆ X . Since λ is the top eigenvalue of M with v as
its corresponding eigenvector,

λ =

∫
X

〈
ax
‖ax‖2

,v

〉2

µ(x)dx

=

∫
x∈S

〈
ax
‖ax‖2

,v

〉2

µ(x)dx+

∫
x/∈S

〈
ax
‖ax‖2

,v

〉2

µ(x)dx

≤
∫
x∈S

µ(x)dx+ δ2
∫
x/∈S

µ(x)dx because ‖v‖2 = 1

= Pr (S) + δ2 (1− Pr (S))

= (1− δ2) Pr (S) + δ2.

This implies that Pr (S) ≥ (λ− δ2)/(1− δ2).

Observe that tr (M) = 1. Theorem 1 implies that as the top eigenvalue λ dominates the spectrum,
its eigenvector v get more aligned with the adversarial perturbations directions ax/ ‖ax‖2 for most
points x ∈ X . This means that v is a potential candidate for a universal adversarial perturbation.
More generally, Theorem 1 works for any of the top eigenvalues of M and their corresponding
eigenvectors, and thus, gives a subspace spanned by multiple orthogonal directions all of which are
potential candidates for being universal adversarial perturbations that fool a given classifier on many
input examples.

Now let’s consider the second question of finding a good approximation to our candidate universal
adversarial perturbation or the top eigenvector v ofM using only a small subsample ofX . Theorem
2 shows that only a small sample of size independent of |X| but depending only on the dimension d
of the data and the spectral properties of the matrix M suffices.

Theorem 2. Let X ⊆ Rd be any given input data with the underlying probability density µ(x) at
x ∈ X . Let ax denote an adversarial perturbation vector at point x ∈ X . Let 0 ≤ λ ≤ 1 be the top
eigenvalue of the matrix M ∈ Rd×d defined as

M = E

[
ax
‖ax‖2

aTx
‖ax‖2

]
,
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and let v be its corresponding eigenvector. Let x1,x2, . . . ,xm be a i.i.d. sample of m points from
X drawn from the distribution defined by probability density µ, and let λ̃ be the top eigenvalue of
the matrix M̃ ,

M̃ =
1

m

m∑
i=1

axi

‖axi
‖2

aTxi

‖axi
‖2
,

and ṽ be the top eigenvector of M̃ .

Also suppose that there is a gap of at least γλ between the top eigenvalue λ and the second eigen-
value of M . Then for any 0 ≤ ε < γ and m = O(ε−2d log d), we get ‖v − ṽ‖2 ≤ ε/(γ − ε), with a
constant probability. This probability can be boosted to 1 − δ by having an additional log(1/δ) in
the O(·).

Proof. Using matrix Bernstein inequality from Tropp (2015), we get that for m = O(ε−2d log d),
we have that the spectral or the operator norm

∥∥∥M − M̃∥∥∥
2
≤ ελ, with a constant probability. Now

we can use results about spectral perturbation bounds from Bhatia (1997). By Weyl’s theorem, this
implies

∣∣∣λ− λ̃∣∣∣ ≤ ελ. If there is gap of at least γλ between the first and the second eigenvalue of
M with γ > ε, then by Davis-Kahan theorem we get that ‖v − ṽ‖2 ≤ ε/(γ − ε), with a constant
probability.

6 CONCLUSION

We show how to use a small sample of input-dependent adversarial attack directions on test inputs
to find a single universal attack direction that fools translation and rotation-equivariant models such
as CNNs and GCNNs on a large fraction of test inputs. Our main observation is a spectral property
shared by different attacks directions such as gradients, FGSM, DeepFool on these models. We give
a theoretical justification for how this spectral property helps in using the top singular vector as a
universal attack direction computed using only a small sample of test inputs.
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A DETAILS OF EXPERIMENTS

All experiments performed on neural network-based models were done using MNIST, Fashion
MNIST and CIFAR10 datasets with appropriate augmentations applied to the train/validation/test
set.

Data sets MNIST2 dataset consists of 70, 000 images of 28 × 28 size, divided into 10 classes.
55, 000 used for training, 5, 000 for validation and 10, 000 for testing. Fashion MNIST3 dataset
consists of 70, 000 images of 28× 28 size, divided into 10 classes. 55, 000 used for training, 5, 000
for validation and 10, 000 for testing. CIFAR104 dataset consists of 60, 000 images of 32× 32 size,
divided into 10 classes. 40, 000 used for training, 10, 000 for validation and 10, 000 for testing.

2http://www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/MnistVariations
3https://github.com/zalandoresearch/fashion-mnist
4https://www.cs.toronto.edu/ kriz/cifar.html
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Standard CNN GCNN

Conv(10,3,3) + Relu P4ConvZ2(10,3,3) + Relu
Conv(10,3,3) + Relu P4ConvP4(10,3,3) + Relu
Max Pooling(2,2) Group Spatial Max Pooling(2,2)
Conv(20,3,3) + Relu P4ConvP4(20,3,3) + Relu
Conv(20,3,3) + Relu P4ConvP4(20,3,3) + Relu
Max Pooling(2,2) Group Spatial Max Pooling(2,2)
FC(50) + Relu FC(50) + Relu
Dropout(0.5) Dropout(0.5)
FC(10) + Softmax FC(10) + Softmax

Table 2: Architectures used for experiments

Model Architectures For the MNIST and Fashion MNIST based experiments we use the 7 layer
architecture of GCNN similar to Cohen & Welling (2016). The StdCNN architecture is similar to
the GCNN except that the operations are as per CNNs. Refer to Table 2 for details. RotEqNet
architecture is as given in Marcos et al. (2017). The NN architecture is a 2 layer fully connected
with 784-50 neurons in the layers with dropout. For the CIFAR10 based experiments we use the
ResNet18 architecture as in He et al. (2016) and it’s equivalent in GCNN as given in Cohen &
Welling (2016). Input training data was augmented with random cropping and random horizontal
flips, apart from the specific range of rotation augmentation as needed.

(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 17: On MNIST, Principal components of adversarial and invariant directions for RotEqNet

(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 18: On MNIST, Principal components of adversarial and invariant directions for NN
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(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 19: On Fashion MNIST, Principal components of adversarial and invariant directions for
StdCNN

(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 20: On Fashion MNIST, Principal components of adversarial and invariant directions for
GCNN

(a) Singular values of attack directions over a sam-
ple of 500 and 10,000 test points

(b) Avg. dot product of top 5, top 10 singular vec-
tors of adversarial and invariant directions, respec-
tively, for a sample of 500 and 10,000 test points

Figure 21: On Fashion MNIST, Principal components of adversarial and invariant directions for NN
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Figure 22: On MNIST, NN: fooling rate vs. norm of perturbation along top singular vector of attack
directions on 100/500/10000 sample, (left) gradients (center) FGSM (right) DeepFool

Figure 23: On MNIST, NN: fooling rate vs. norm of perturbation along top singular vector of attack
directions on, (left) 100 samples, (right) 500 samples

Figure 24: On Fashion MNIST, StdCNN: fooling rate vs. norm of perturbation along top singular
vector of attack directions on 100/500/10000 sample, (left) gradients (center) FGSM (right) Deep-
Fool

Figure 25: On Fashion MNIST, StdCNN: fooling rate vs. norm of perturbation along top singular
vector of attack directions on, (left) 100 samples, (right) 500 samples

14



Under review as a conference paper at ICLR 2019

Figure 26: On Fashion MNIST, GCNN: fooling rate vs. norm of perturbation along top singular
vector of attack directions on 100/500/10000 sample, (left) gradients (center) FGSM (right) Deep-
Fool

Figure 27: On Fashion MNIST, GCNN: fooling rate vs. norm of perturbation along top singular
vector of attack directions on, (left) 100 samples, (right) 500 samples

Figure 28: On Fashion MNIST, NN: fooling rate vs. norm of perturbation along top singular vector
of attack directions on 100/500/10000 sample, (left) gradients (center) FGSM (right) DeepFool

Figure 29: On Fashion MNIST, NN: fooling rate vs. norm of perturbation along top singular vector
of attack directions on, (left) 100 samples, (right) 500 samples
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Figure 30: On MNIST, fooling rate of our universal attack using top singular vector of 10000 test
point gradients, for StdCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test
unrotated, (right) test-augmented with the same range of rotations as the training set.

Figure 31: On MNIST, fooling rate of our universal attack using top singular vector of 10000 test
point gradients, for GCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test
unrotated, (right) test-augmented with the same range of rotations as the training set.

Figure 32: On CIFAR10, fooling rate of our universal attack using top singular vector of 10000 test
point gradients, for StdCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test
unrotated, (right) test-augmented with the same range of rotations as the training set.
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Figure 33: On CIFAR10, fooling rate of our universal attack using top singular vector of 100 test
point gradients, for GCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test
unrotated, (right) test-augmented with the same range of rotations as the training set.

Figure 34: On CIFAR10, fooling rate of our universal attack using top singular vector of 10000
test point gradients, for GCNN train-augmented with random rotations in range [−θ◦, θ◦] (left) test
unrotated, (right) test-augmented with the same range of rotations as the training set.

Figure 35: On MNIST, Top 5 SVD vectors from image difference

Figure 36: On MNIST, Top 5 SVD vectors from Gradients in StdCNN with rotation augmentations

Figure 37: On MNIST, Top 5 SVD vectors from FGSM in StdCNN with rotation augmentations
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Figure 38: On MNIST, Top 5 SVD vectors from DeepFool in StdCNN with rotation augmentations

Figure 39: On MNIST, M-DFFF perturbation vectors for StdCNN with rotation augmentations, with
(left) 100 samples (right) 500 samples

Figure 40: On MNIST, Top 5 SVD vectors from Gradients in GCNN with rotation augmentations

Figure 41: On MNIST, Top 5 SVD vectors from FGSM in GCNN with rotation augmentations

Figure 42: On MNIST, Top 5 SVD vectors from DeepFool in GCNN with rotation augmentations

Figure 43: On MNIST, M-DFFF perturbation vectors for GCNN with rotation augmentations, with
(left) 100 samples (right) 500 samples

Figure 44: On MNIST, Top 5 SVD vectors from Gradients in RotEqNet with rotation augmentations
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Figure 45: On MNIST, Top 5 SVD vectors from FGSM in RotEqNet with rotation augmentations

Figure 46: On MNIST, Top 5 SVD vectors from DeepFool in RotEqNet with rotation augmentations

Figure 47: On MNIST, Top 5 SVD vectors from Gradients in NN with rotation augmentations

Figure 48: On MNIST, Top 5 SVD vectors from FGSM in NN with rotation augmentations

Figure 49: On MNIST, Top 5 SVD vectors from DeepFool in NN with rotation augmentations

Figure 50: On MNIST, M-DFFF perturbation vectors for NN with rotation augmentations, with
(left) 100 samples (right) 500 samples
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Figure 51: On CIFAR10, Top 5 SVD vectors from Gradients in StdCNN with rotation augmentations

Figure 52: On CIFAR10, Top 5 SVD vectors from FGSM in StdCNN with rotation augmentations
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Figure 53: On CIFAR10, Top 5 SVD vectors from DeepFool in StdCNN with rotation augmentations

Figure 54: On CIFAR10, M-DFFF perturbation vectors for StdCNN with rotation augmentations,
with (left) 100 samples (right) 500 samples

21


	Introduction
	Summary of our results
	Principal components of attack and invariant directions
	Universal adversarial attack using a small sample
	Analysis of universal adversarial perturbations
	Conclusion
	Details of experiments

