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ABSTRACT

When an image classifier makes a prediction, which parts of the image are relevant
and why? We can rephrase this question to ask: which parts of the image, if they
were not seen by the classifier, would most change its decision? Producing an
answer requires marginalizing over images that could have been seen but weren’t.
We can sample plausible image in-fills by conditioning a generative model on the
rest of the image. We then optimize to find the image regions that most change
the classifier’s decision after in-fill. Our approach contrasts with ad-hoc in-filling
approaches, such as blurring or injecting noise, which generate inputs far from the
data distribution, and ignore informative relationships between different parts of
the image. Our method produces more compact and relevant saliency maps, with
fewer artifacts compared to previous methods.

1 INTRODUCTION

The decisions of powerful image classifiers are difficult to interpret. Saliency maps are a tool for
interpreting differentiable classifiers that, given a particular input example and output class, computes
the sensitivity of the classification with respect to each input dimension. Fong & Vedaldi (2017) and
Dabkowski & Gal (2017) cast saliency computation an optimization problem informally described by
the following question: which inputs, when replaced by an uninformative reference value, maximally
change the classifier output? Because these methods use heuristic reference values, e.g. blurred input
(Fong & Vedaldi, 2017) or random colors (Dabkowski & Gal, 2017), they ignore the context of the
surrounding pixels, often producing unnatural in-filled images (Figure 2). If we think of a saliency
map as interrogating the neural network classifier, these approaches have to deal with a somewhat
unusual question of how the classifier responds to images outside of its training distribution.

To encourage explanations that are consistent with the data distribution, we modify the question at
hand: which region, when replaced by plausible alternative values, would maximally change classifier
output? In this paper we provide a new model-agnostic framework for computing and visualizing
feature importance of any differentiable classifier, based on variational Bernoulli dropout (Gal &
Ghahramani, 2016). We marginalize out the masked region, conditioning the generative model on the
non-masked parts of the image to sample counterfactual inputs that either change or preserve classifier
behavior. By leveraging a powerful in-filling conditional generative model we produce saliency maps
on ImageNet that identify relevant and concentrated pixels better than existing methods.

2 RELATED WORK

Gradient-based approaches (Simonyan et al., 2013; Springenberg et al., 2014; Zhang et al., 2016;
Selvaraju et al., 2016) derive a saliency map for a given input example and class target by computing
the gradient of the classifier output with respect to each component (e.g., pixel) of the input. The
reliance on the local gradient information induces a bias due to gradient saturation or discontinuity in
the DNN activations (Shrikumar et al., 2017). Adebayo et al. (2018) observed that some gradient-
based saliency computation reflect an inductive bias due to the convolutional architecture, which is
independent of the network parameter values.
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Figure 1: Graphical models. (1a) pM(c|x) is classifier whose behavior we wish to analyze. (1b) To
explain its response to a particular input x we partition the input x into masked (unobserved) region
xr and their complement x = xr ∪ x\r. Then we replace the xr with uninformative reference value
x̂r to test which region xr is important for classifier’s output pM(c|xr,x\r). Heuristic in-filling
(Fong & Vedaldi, 2017) computes x̂r ad-hoc such as image blur. This biases the explanation when
samples [x̂r,x\r] deviate from the data distribution p(xr,x\r). (1c) We instead sample xr efficiently
from a conditional generative model xr ∼ pG(xr|x\r) that respects the data distribution.

Reference-based approaches analyze the sensitivity of classifier outputs to the substitution of certain
inputs/pixels with an uninformative reference value. Shrikumar et al. (2017) linearly approximates
this change in classifier output using an algorithm resembling backpropagation. This method is
efficient and addresses gradient discontinuity, but ignores nonlinear interactions between inputs. Chen
et al. (2018) optimizes a variational bound on the mutual information between a subset of inputs and
the target, using a variational family that sets input features outside the chosen subset to zero. In both
cases, the choice of background value as reference limits applicability to simple image domains with
static background like MNIST.

Zintgraf et al. (2017) computes the saliency of a pixel (or image patch) by treating it as unobserved
and marginalizing it out, then measuring the change in classification outcome. This approach is
similar in spirit to ours. The key difference is that where Zintgraf et al. (2017) iteratively execute this
computation for each region, we leverage a variational Bernoulli distribution to efficiently search for
optimal solution while encouraging sparsity. This reduces computational complexity and allows us to
model the interaction between disjoint regions of input space.

Fong & Vedaldi (2017) computes saliency by optimizing the change in classifier outputs with respect
to a perturbed input, expressed as the pixel-wise convex combination of the original input with a
reference image. They offer three heuristics for choosing the reference: mean input pixel value
(typically gray), Gaussian noise, and blurred input. Dabkowski & Gal (2017) amortize the cost of
estimating these perturbations by training an auxiliary neural network.

3 PROPOSED METHOD

Dabkowski & Gal (2017) propose two objectives for computing the saliency map:

• Smallest Deletion Region (SDR) considers a saliency map as an answer to the question: What is
the smallest input region that could be removed and swapped with alternative reference values in
order to minimize the classification score?

• Smallest Supporting Region (SSR) instead poses the question: What is the smallest input region
that could substituted into a fixed reference input in order to maximize the classification score?

Solving these optimization problems (which we formalize below) involves a search over input masks,
and necessitates reference values to be substituted inside (SDR) or outside (SSR) the masked region.
These values were previously chosen heuristically, e.g., mean pixel value per channel. We instead
consider inputs inside (SDR) or outside (SSR) the masked region as unobserved variables to be
marginalized efficiently by sampling from a strong conditional generative model1. We describe our
approach for an image application where the input comprises pixels, but our method is more broadly
applicable to any domain where the classifier is differentiable.

1 Whereas (Zintgraf et al., 2017) iteratively marginalize single patches conditioned on their surroundings, we
model a more expressive conditional distribution considering the joint interaction of non-contiguous pixels.
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Figure 2: Computed saliency for a variety of in-filling techniques. The classifier predicts the
correct label, “drake”. Each saliency map (top row) results from maximizing in-class confidence of
mixing a minimal region (red) of the original image with some reference image in the complementary
(blue) region. The resulting mixture (bottom row) is fed to the classifier. We compare 6 methods
for computing the reference, 3 heuristics and 3 generative models. We argue that strong generative
models—e.g., Contextual Attention GAN (CA) (Yu et al., 2018)—ameliorate in-fill artifacts, making
explanations more plausible under the data distribution.

Figure 3: Visualization of reference value infilling methods under centered mask. The ResNet
output probability of the correct class is shown (as a percentage) for each imputed image.

Consider an input image x comprising U pixels, a class c, and a classifier with output distribution
pM(c|x). Denote by r a subset of the input pixels that implies a partition of the input x = xr ∪ x\r.
We refer to r as a region, although it may be disjoint. We are interested in the classifier output when
xr are unobserved, which can be expressed by marginalization as

pM(c|x\r) = Exr∼p(xr|x\r)

[
pM(c|x\r,xr)

]
. (1)

We then approximate p(xr|x\r) by some generative model with distribution pG(xr|x\r) (specific
implementations are discussed in section 4.1). Then given a binary mask2 z ∈ {0, 1}U and the
original image x, we define an infilling function3 φ as a convex mixture of the input and reference
with binary weights,

φ(x, z) = z � x+ (1− z)� x̂ where x̂ ∼ pG(x̂|xz=0). (2)

3.1 OBJECTIVE FUNCTIONS

The classification score function sM(c) represents a score of classifier confidence on class c; in our
experiments we use log-odds:

sM(c|x) = log pM(c|x)− log(1− pM(c|x)). (3)

SDR seeks a mask z yielding low classification score when a small number of reference pixels are
mixed into the mask regions. Without loss of generality4, we can specify a parameterized distribution

2 zu = 0 means the u-th pixel of x is dropped out. The remaining image is xz=0.
3 The infilling function is stochastic due to randomness in x̂.
4 We can search for a single mask z′ using a point mass distribution qz′(z) = δ(z = z′)
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p(c|x) = 1.000 p(c|x̂) = 0.448 p(c|x̂) = 0.999 p(c|x̂) = 0.945 p(c|x̂) = 0.347

Figure 4: Classifier confidence of infilled images. Given an input, FIDO-CA finds a minimal pixel
region that preserves the classifier score following in-fill by CA-GAN (Yu et al., 2018). Dabkowski
& Gal (2017) (Realtime) assigns saliency coarsely around the central object, and the heuristic infill
reduces the classifier score. We mask further regions (head and body) of the FIDO-CA saliency map
by hand, and observe a drop in the infilled classifier score. The label for this image is “goose”.

over masks qθ(z) and optimize its parameters. The SDR problem is a minimization w.r.t θ of

LSDR(θ) = Eqθ(z) [sM(c|φ(x, z)) + λ‖z‖1] . (4)

On the other hand, SSR aims to find a masked region that maximizes classification score while
penalizing the size of the mask. For sign consistency with the previous problem, we express this as a
minimization w.r.t θ of

LSSR(θ) = Eqθ(z) [−sM(c|φ(x, z)) + λ‖1− z‖1] . (5)

Naively searching over all possible z is exponentially costly in the number of pixels U . Therefore we
specify qθ(z) as a factorized Bernoulli:

qθ(z) =

U∏
u=1

qθu(zu) =

U∏
u=1

Bern(zu|θu). (6)

This corresponds to applying Bernoulli dropout (Srivastava et al., 2014) to the input pixels and
optimizing the per-pixel dropout rate. θ is our saliency map since it has the same dimensionality as
the input and provides a probability of each pixel being marginalized (SDR) or retained (SSR) prior
to classification. We call our method FIDO because it uses a strong generative model (see section
4.1) to Fill-In the DropOut region.

To optimize the θ through the discrete random mask z, we follow Gal et al. (2017) in computing
biased gradients via the Concrete distribution (Maddison et al., 2017; Jang et al., 2017); we use
temperature 0.1. We initialize all our dropout rates θ to 0.5 since we find it increases the convergence
speed and avoids trivial solutions. We optimize using Adam (Kingma & Ba, 2014) with learning
rate 0.05 and linearly decay the learning rate for 300 batches in all our experiments. Our PyTorch
implementation takes about one minute on a single GPU to finish one image.

3.2 COMPARISON TO FONG & VEDALDI (2017)

Fong & Vedaldi (2017) compute saliency by directly optimizing the continuous mask z ∈ [0, 1]U

under the SDR objective, with x̂ chosen heuristically; we call this approach Black Box Meaningful
Perturbations (BBMP). We instead optimize the parameters of a Bernoulli dropout distribution qθ(z),
which enables us to sample reference values x̂ from a learned generative model. Our method uses
mini-batches of samples z ∼ qθ(z) to efficiently explore the huge space of binary masks and obtain
uncertainty estimates, whereas BBMP is limited to a local search around the current point estimate of
the mask z. See Figure 5 for a pseudo code comparison. In Appendix A.1 we investigate how the
choice of algorithm affects the resulting saliency maps.

To avoid unnatural artifacts in φ(x, z), (Fong & Vedaldi, 2017) and (Dabkowski & Gal, 2017)
additionally included two forms of regularization: upsampling and total variation penalization.
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Algorithm 1: BBMP (Fong & Vedaldi, 2017)
Input image x, classifier score sM, sparsity
hyperparameter λ, objective
L ∈ {LSSR, LSDR}

Initialize single mask z ∈ [0, 1]d

while loss L is not converged do
Clip z to [0, 1]
Compute reference image x̂ heuristically
Compute in-fill
φ(x, z) = x · z + x̂ · (1− z)

With φ, compute L by Equation 4 or 5
Update z with∇zL

end while
Return z as per-feature saliency map

Algorithm 2: FIDO (Ours)
Input image x, classifier score sM, sparsity
hyperparameter λ, objective
L ∈ {LSSR, LSDR}, generative model pG

Initialize dropout rate θ ∈ [0, 1]d

while loss L is not converged do
Sample minibatch z ∈ {0, 1}d ∼ Bern(θ)
Sample reference image x̂ ∼ pG(x̂|z,x)
Compute in-fill
φ(x, z) = x · z + x̂ · (1− z)

With φ, compute L by Equation 4 or 5
Update θ with∇θL (Maddison et al., 2017)

end while
Return θ as per-feature saliency map

Figure 5: Pseudo code comparison. Differences between the approaches are shown in blue.

Upsampling is used to optimize a coarser θ (e.g. 56 × 56 pixels), which is upsampled to the full
dimensionality (e.g. 224 × 224) using bilinear interpolation. Total variation penalty smoothes θ
by a `2 regularization penalty between spatially adjacent θu. To avoid losing too much signal from
regularization, we use upsampling size 56 and total variation as 0.01 unless otherwise mentioned. We
examine the individual effects of these regularization terms in Appendices A.2 and A.4, respectively.

4 EXPERIMENTS

We first evaluate the various infilling strategies and objective functions for FIDO. We then compare
explanations under several classifier architectures. In section 4.5 we show that FIDO saliency maps
outperform BBMP (Fong & Vedaldi, 2017) in a successive pixel removal task where pixels are
in-filled by a generative model (instead of set to the heuristic value). FIDO also outperforms the
method from (Dabkowski & Gal, 2017) on the so-called Saliency Metric on ImageNet. Appendices
A.1–A.6 provide further analysis, including consistency and the effects of additional regularization.

4.1 INFILLING METHODS

We describe several methods for producing the reference value x̂. The heuristics do not depend on z
and are from the literature. The proposed generative approaches, which produce x̂ by conditioning
on the non-masked inputs xz=0, are novel to saliency computation.

Heuristics: Mean sets each pixel of x̂ according to its per-channel mean across the training data.
Blur generates x̂ by blurring x with Gaussian kernel (σ = 10) (Fong & Vedaldi, 2017). Random
samples x̂ from independent per-pixel per-channel uniform color with Gaussians (σ = 0.2).

Generative Models: Local computes x̂ as the average value of the surrounding non-dropped-out
pixels xz=0 (we use a 15 × 15 window). VAE is an image completion Variational Autoencoder
(Iizuka et al., 2017). Using the predictive mean of the decoder network worked better than sampling.
CA is the Contextual Attention GAN (Yu et al., 2018); we use the authors’ pre-trained model.

Figure 3 compares these methods with a centered mask. The heuristic in-fills appear far from the
distribution of natural images. This is ameliorated by using a strong generative model like CA, which
in-fills texture consistent with the surroundings. See Appendix A.5 for a quantitative comparison.

4.2 COMPARING THE SDR AND SSR OBJECTIVE FUNCTIONS

Here we examine the choice of objective function between LSDR and LSSR; see Figure 6. We
observed more artifacts in the LSDR saliency maps, especially when a weak in-filling method (Mean)
is used. We suspect this unsatisfactory behavior is due to the relative ease of optimizing LSDR. There
are many degrees of freedom in input space that can increase the probability of any of the 999 classes
besides c; this property is exploited when creating adversarial examples (Szegedy et al., 2013). Since
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Figure 6: Choice of objective between LSDR and LSSR. The classifier (ResNet) gives correct
predictions for all the images. We show the LSDR and LSSR saliency maps under 2 infilling methods:
Mean and CA. Here the red means important and blue means non-important. We find that LSDR is
more susceptible to artifacts in the resulting saliency maps than LSSR.

it is more difficult to infill unobserved pixels that increase the probability of a particular class c, we
believe LSSR encourages FIDO to find explanations more consistent with the classifier’s training
distribution. It is also possible that background texture is easier for a conditional generative model to
fit. To mitigate the effect of artifacts, we use LSSR for the remaining experiments.

4.3 COMPARING INFILLING METHODS

Figure 7: Comparison of saliency map under different infilling methods by FIDO SSR using
ResNet. Heuristics baselines (Mean, Blur and Random) tend to produce more artifacts, while
generative approaches (Local, VAE, CA) produce more focused explanations on the targets.

Here we demonstrate the merits of using strong generative model that produces substantially fewer
artifacts and a more concentrated saliency map. In Figure 7 we generate saliency maps of different
infilling techniques by interpreting ResNet using LSSR with sparsity penalty λ = 10−3. We observed
a susceptibility of the heuristic in-filling methods (Mean, Blur, Random) to artifacts in the resulting
saliency maps, which may fool edge filters in the low level of the network. The use of generative
in-filling (Local, VAE, CA) tends to mitigate this effect; we believe they encourage in-filled images
to lie closer to the natural image manifold. To quantify the artifacts in the saliency maps by a proxy:
the proportion of the MAP configuration (θ > 0.5) that lies outside of the ground truth bounding box.
FIDO-CA produces the fewest artifacts by this metric (Figure 8).
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Figure 8: Proportion of saliency map outside bounding box. Different in-filing methods evaluating
ResNet trained on ImageNet, 1, 971 images. The lower the better.

4.4 INTERPRETING VARIOUS CLASSIFIER ARCHITECTURES

We use FIDO-CA to compute saliency of the same image under three classifier architectures: AlexNet,
VGG and ResNet; see Figure 9. Each architecture correctly classified all the examples. We observed
a qualitative difference in the how the classifiers prioritize different input regions (according to the
saliency maps). For example in the last image, we can see AlexNet focuses more on the body region
of the bird, while Vgg and ResNet focus more on the head features.

Figure 9: Comparison of saliency maps for several classifier architectures. We compare 3 net-
works: AlexNet, Vgg and ResNet using FIDO-CA with λ = 10−3)

4.5 QUANTITATIVE EVALUATION

We follow Fong & Vedaldi (2017) and Shrikumar et al. (2017) in measuring the classifier’s sensitivity
to successively altering pixels in order of their saliency scores. Intuitively, the “best” saliency map
should compactly identify relevant pixels, so that the predictions are changed with a minimum number
of altered pixels. Whereas previous works flipped salient pixel values or set them to zero, we note
that this moves the classifier inputs out of distribution. We instead dropout pixels in saliency order
and infill their values with our strongest generative model, CA-GAN. To make the log-odds score
suppression comparable between images, we normalize per-image by the final log-odds suppression
score (all pixels infilled). In Figure 10 we evaluate on ResNet and carry out our scoring procedure on
1, 533 randomly-selected correctly-predicted ImageNet validation images, and report the number of
pixels required to reduce the normalized log-odds score by a given percent. We evaluate FIDO under
various in-filling strategies as well as BBMP with Blur and Random in-filling strategies. We put both
algorithms on equal footing by using λ = 1e−3 for FIDO and BBMP (see Section A.1 for further
comparisons). We find that strong generative infilling (VAE and CA) yields more parsimonious
saliency maps, which is consistent with our qualitative comparisons. FIDO-CA can achieve a given
normalized log-odds score suppression using fewer pixels than competing methods. While FIDO-
CA may be better adapted to evaluation using CA-GAN, we note that other generative in-filling
approaches (FIDO-Local and FIDO-VAE) still out-perform heuristic in-filling when evaluated with
CA-CAN.

We compare our algorithm to several strong baselines on two established metrics. We first evaluate
whether the FIDO saliency map can solve weakly supervised localization (WSL) (Dabkowski & Gal,
2017). After thresholding the saliency map θ above 0.5, we compute the smallest bounding box
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Figure 10: Number of salient pixels required to change normalized classification score. Pixels
are sorted by saliency score and successively replaced with CA-GAN in-filled values. We select
λ = 1e−3 for BBMP and FIDO. The lower the better.

FIDO

Max Center Grad Deconv GradCAM Realtime Mean Blur Random Local VAE CA BBox

WSL 59.7% 46.9% 52.1% 49.4% 41.9% 47.8% 53.1% 51.6% 50.8% 46.7% 50.2% 57.0% 0.0%

SM 1.029 0.414 0.577 0.627 0.433 0.076 0.836 0.766 0.728 0.543 0.433 -0.021 0.392

Table 1: Weakly Supervised Localization (WSL) error and Saliency Metric (SM). All the methods
evaluating under ResNet on 50k validation sets of ImageNet. For both metrics the lower the better.

containing all salient pixels. This prediction is “correct” if it has intersection-over-union (IoU) ratio
over 0.5 with any of the ground truth bounding boxes. Using FIDO with various infilling methods,
we report the average error rate across all 50, 000 validation images in Table 1. We evaluate the
authors’ pre-trained model of Dabkowski & Gal (2017)5, denoted as “Realtime” in the results. We
also include five baselines: Max (entire input as the bounding box), Center (centered bounding box
occupying half the image), Grad (Simonyan et al., 2013), Deconvnet (Springenberg et al., 2014), and
GradCAM (Selvaraju et al., 2016). We follow the procedure of mean thresholding in Fong & Vedaldi
(2017): we normalize the heatmap between 0 and 1 and binarize by threshold θ = αµi where µi is
the average heatmap for image i. Then we take the smallest bounding box that encompasses all the
binarized heatmap. We search α between 0 to 5 with 0.2 step size on a holdout set to get minimun
WSL error. The best α are 1.2, 2 and 1 respectively.

FIDO-CA frugally assigns saliency to contextually important pixels while preserving classifier
confidence (Figure 4), so we do not necessarily expect our saliency maps to correlate with the typically
large human-labeled bounding boxes. The reliance on human-labeled bounding boxes makes WSL
suboptimal for evaluating saliency maps, so we evaluate the so-called Saliency Metric proposed by
Dabkowski & Gal (2017), which eschews the human labeled bounding boxes. The smallest bounding
box A is computed as before. The image is then cropped using this bounding box and upscaling to its
original size. The Saliency Metric is logmax(Area(A), 0.05) − log p(c|CropAndUpscale(x, A)),
the log ratio between the bounding box area and the in-class classifier probability after upscaling.
This metric represents the information concentration about the label within the bounded region.
From the superior performance of FIDO-CA we conclude that a strong generative model regularizes
explanations towards the natural image manifold and finds concentrated region of features relevant to
the classifier’s prediction.

5 We use the authors’ PyTorch pre-trained model https://github.com/PiotrDabkowski/
pytorch-saliency.
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Figure 11: Examples from the ablation study. We show how each of our two innovations, FIDO
and generative infilling, improve from previous methods that adopts BBMP with hueristics infilling
(e.g. Blur and Random). Specifically, we compare with a new variant BBMP-CA that uses strong
generative in-filling CA-GAN via thresholding the continous masks: we test a variety of decreasing
thresholds. We find both FIDO (searching over Bernoulli masks) and generative in-filling (CAGAN)
are needed to produce compact saliency maps (the right-most column) that retain class information.
See Appendix B for more qualitative examples and in section A.7 for quantitative results.

4.6 ABLATION STUDY

Can existing algorithms be improved by adding an in-filling generative model without modeling
a discrete distribution over per-feature masks? And does filling in the dropped-out region suffice
without an expressive generative model? We carried out a ablation study that suggests no on both
counts. We compare FIDO-CA to a BBMP variant that uses CA-GAN infilling (called BBMP-CA);
we also evaluate FIDO with heuristic infilling (FIDO-Blur, FIDO-Random). Because the continuous
mask of BBMP does not naturally partition the features into observed/unobserved, BBMP-CA first
thresholds the masked region r = I(z > τ) before generating the reference φ(xr,x\r) with a sample
from CA-GAN. We sweep the value of τ as 1, 0.7, 0.5, 0.3, 0.1 and 0. We find BBMP-CA is brittle
with respect to its threshold value, producing either too spread-out or stringent saliency maps (Figure
11). We observed that FIDO-Blur and FIDO-Random produce more concentrated saliency map than
their BBMP counterpart with less artifacts, while FIDO-CA produces the most concentrated region
on the target with fewest artifacts. Each of these baselines were evaluated on the two quantitative
metrics (Appendix A.7); BBMP-CA considerably underperformed relative to FIDO-CA.

5 SCOPE AND LIMITATIONS

Because the classifier behavior is ill-defined for out-of-distribution inputs, any explanation that
relies on out-of-distribution feature values is unsatisfactory. By modeling the input distribution via
an expressive generative model, we can encourage explanations that rely on counterfactual inputs
close to the natural manifold. However, our performance is then upper-bounded by the ability of
the generative model to capture the conditional input density. Fortunately, this bound will improve
alongside future improvements in generative modeling.

6 CONCLUSION

We proposed FIDO, a new framework for explaining differentiable classifiers that uses adaptive
Bernoulli dropout with strong generative in-filling to combine the best properties of recently proposed
methods (Fong & Vedaldi, 2017; Dabkowski & Gal, 2017; Zintgraf et al., 2017). We compute saliency
by marginalizing over plausible alternative inputs, revealing concentrated pixel areas that preserve
label information. By quantitative comparisons we find the FIDO saliency map provides more
parsimonious explanations than existing methods. FIDO provides novel but relevant explanations
for the classifier in question by highlighting contextual information relevant to the prediction and
consistent with the training distribution. We released the code in PyTorch at https://github.
com/zzzace2000/FIDO-saliency.
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A FURTHER ANALYSIS

A.1 COMPARISONS OF BBMP AND FIDO

Here we compare FIDO with two previously proposed methods, BBMP with Blur in-filling strategy
(Fong & Vedaldi, 2017) and BBMP with Random in-filling strategy (Dabkowski & Gal, 2017). One
potential concern in qualitatively comparing these methods is that each method might have a different
sensitivity to the sparsity parameter λ. Subjectively, we observe that BBMP requires roughly 5 times
higher sparsity penalty λ to get visually comparable saliency maps. In our comparisons we sweep
λ over a reasonable range for each method and show the resulting sequence of increasingly sparse
saliency maps (Figure 12). We use λ = 5e−4, 1e−3, 2e−3, 5e−3.

We observe that all methods are prone to artifacts in the low λ regime, so the appropriate selection of
this value is clearly important. Interestingly, BBMP Blur and Random respectively find artifacts with
different quality: small patches and pixels for Blur and structure off-object lines for Random. FIDO
with CA is arguably the best saliency map, producing fewer artifacts and concentrating saliency on
small regions for the images.

Figure 12: BBMP vs FIDO saliency map by increasing the sparsity penalty λ value from left to
right. We compare with BBMP under Blur and Random, and FIDO under CA in-filling strategies.
Note that here BBMP and FIDO methods use different λ. We show the heuristics produce more
artifacts (BBMP Blur) or produces weird lines (BBMP Random) compared to our method (FIDO
CAGAN).

A.2 UPSAMPLING EFFECT

Here we examine the effect of learning a reduced dimensionality θ that upsampled to the full image
size during optimization. We consider a variety of upsampling rates, and in a slight abuse of
terminology we refer to the upsampling “size” as the square root of the dimensionality of θ before
upsampling, so smaller size implies more upsampling. In Figure 13, we demonstrate two examples
with different upsampling size under Mean and CA infilling methods with SSR objectives. The
weaker infilling strategy Mean apparently requires stronger regularization to avoid artifacts compared
to CA. Note that although CA produces much less artifacts compared to Mean, it still produces
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some small artifacts outside of the objects which is unfavored. We then choose 56 for the rest of our
experiments to balance between details and the removal of the artifacts.

Figure 13: Comparisons of upsampling effect in Mean and CA infilling methods with no total
variation penalty. We show the upsampling regularization removes the artifacts especially in the
weaker infilling method Mean.

A.3 STABILITY

To show the stability of our method, we test our method with different random seeds and observe
if they are similar. In Figure 14, our method produces similar saliency map for 4 different random
seeds.

Figure 14: Testing the stability of our method with 4 different random seeds. They produce similar
saliency maps. (Using CA infilling method with ResNet and λ = 10−3)

A.4 TOTAL VARIATION EFFECT

Here we test the effect of total variation prior regularization in Figure 15. We find the total variation
can reduce the adversarial artifacts further, while risking losing signals when the total variation
penalty is too strong.

A.5 ANALYSIS OF GENERATIVE MODEL INFILLING

Here we quantitatively compare the in-filling strategies. The generative approaches (VAE and CA)
perform visually sharper images than four other baselines. Since we expect this random removal
should not remove the target information, we use the classification probability of the ResNet as our
metric to measure how good the infilling method recover the target prediction. We quantitatively
evaluate the probability for 1, 000 validation images in Figure 16. We find that VAE and CA
consistently outperform other methods, having higher target probability. We also note that all the
heuristic baselines (Mean, Blur, Random) perform much worse since the heuristic nature of these
approaches, the images they generate are not likely under the distribution of natural images leading
to the poor performance by the classifier.
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Figure 15: Total Variation Regularization Effect. We show the saliency maps of 4 increasing total
variation (TV) regularization. We show that strong regularization risks removing signal.
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Figure 16: Box plot of the classifier probability under different infilling with respect to random
masked pixels using ResNet under 1, 000 images. We show that generative models (VAE and CA)
performs much better in terms of classifier probability.

A.6 BATCH SIZE EFFECTS

Figure 17 shows the effect of batch size on the saliency map. We found unsatisfactory results for
batch size less than 4, which we attribute this to the high variance in the resulting gradient estimates.

Figure 17: Batch size effects of final saliency output. We observed unsatisfactory results for batch
size less than 4.

A.7 ABLATION STUDY

We show the performance of BBMP-CA with various thresholds τ on both WSL and SM on subset of
1, 000 images in Table 2. We also show more qaulitative examples in Figure 22. We find BBMP-CA
is relatively brittle across different thresholds of τ . Though with τ = 0.3, the BBMP-CA perform
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slightly better than BBMP and FIDO with heuristics infilling, it still performs substantially inferior to
FIDO-CA. We also perform the flipping experiment in Figure 18 and show our FIDO-CA substantially
outperforms BBMP-CA with varying different thresholds.

BBMP BBMP-CA FIDO

Blur Random 0 0.1 0.2 0.3 0.4 0.5 0.7 1 Blur Random CA BBox

WSL 61.3% 55.0% 68.6% 90.2% 89.1% 79.1% 57.5% 63.1% 63.5% 63.5% 48.7% 53.3% 52.1% 0.0%

SM 1.097 0.912 0.722 1.426 1.272 0.535 0.595 1.103 1.123 1.117 0.763 0.784 -0.092 0.432

Table 2: Weakly Supervised Localization (WSL) error and Saliency Metric (SM) with comparisons
on BBMP-CA with varying thresholds τ . FIDO (various in-filling methods) evaluating ResNet on
1, 000 validation sets of ImageNet. For both metrics the lower the better.

10% 20% 30% 40%
Percent of Normalized Log-odds Score Suppression

0

10000

20000

30000

40000

50000

M
in

im
al

 R
em

ov
ed

 R
eg

io
n 

Si
ze

 (p
ix

el
) BBMP

BBMP-Blur
BBMP-Random

BBMP-CA
BBMP-CA 0.
BBMP-CA 0.1
BBMP-CA 0.3
BBMP-CA 0.5
BBMP-CA 1.

FIDO
FIDO-Blur 
FIDO-Random 
FIDO-CAGAN

Figure 18: Number of salient pixels required to change normalized classification score with
comparison to BBMP-CA across variety of thresholds. Pixels are sorted by saliency score and
successively replaced with CA-GAN in-filled values. The lower the better.

B MORE EXAMPLES

Figure 19 shows several more infilled counterfactual images, along with the counterfactuals produced
by the method from Dabkowski & Gal (2017). More examples comparing the various FIDO infilling
approaches can be found in Figure 20 and 21.
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Figure 19: More examples of classifier confidence on infilled images. Realtime denotes the method
of Dabkowski & Gal (2017); FIDO-CA is our method with CA-GAN infilling (Yu et al., 2018).
Classifier confidence p(c|x̂) is reported below the input and each infilled image. We hypothesize by
that FIDO-CA is able to isolate compact pixel areas of contextual information. For example, in the
upper right image pixels in the net region around the fish are highlighted; this context information
is missing from the Realtime saliency map but are apparently relevant to the classifier’s prediction.
These 4 examples are bulbul, tench, junco, and ptarmigan respectively.
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Figure 20: Additional Saliency Maps for FIDO under total variation 0.01 with a variety of in-filling
methods. We include the method from Dabkowski & Gal (2017) in the right-most column.
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Figure 21: Additional Saliency Maps for FIDO under total variation 0.01 with a variety of in-filling
methods. We include the method from Dabkowski & Gal (2017) in the right-most column.
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Figure 22: Additional examples of ablation study.
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