
Under review as a conference paper at ICLR 2019

SWITCHING LINEAR DYNAMICS FOR VARIATIONAL
BAYES FILTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

System identification of complex and nonlinear systems is a central problem
for model predictive control and model-based reinforcement learning. Despite
their complexity, such systems can often be approximated well by a set of linear
dynamical systems if broken into appropriate subsequences. This mechanism not
only helps us find good approximations of dynamics, but also gives us deeper
insight into the underlying system. Leveraging Bayesian inference and Variational
Autoencoders, we show how to learn a richer and more meaningful state space,
e.g. encoding joint constraints and collisions with walls in a maze, from partial
and high-dimensional observations. This representation translates into a gain of
accuracy of the learned dynamics which we showcase on various simulated tasks.

1 INTRODUCTION

Learning dynamics from raw data (also known as system identification) is a key component of model
predictive control and model-based reinforcement learning. Problematically, environments of interest
often give rise to very complex and highly nonlinear dynamics which are seemingly difficult to
approximate. However, switching linear dynamical systems (SLDS) approaches claim that those
environments can often be broken down into simpler units made up of areas of equal and linear
dynamics (Ackerson & Fu, 1970; Chang & Athans, 1978). Not only are those approaches capable
of good predictive performance, which often is the sole goal of learning a system’s dynamics, they
also encode valuable information into so called switching variables which determine the dynamics
of the next transition. For example, when looking at the movement of an arm, one is intuitively
aware of certain restrictions of possible movements, e.g. constraints to the movement due to joint
constraints or obstacles. The knowledge is present without the need to simulate; it’s explicit. Exactly
this kind of information will be encoded when successfully learning switching dynamics. Our goal in
this work will therefore entail the search for richer representations in the form of latent state space
models which encode knowledge about the underlying system dynamics. In turn, we expect this to
improve the accuracy of our simulation as well. Such a representation alone could then be used in a
reinforcement learning approach that possibly only takes advantage of the learned latent features but
not necessarily its learned dynamics.

To learn richer representations, we identify one common problem with prevalent recurrent Variational
Autoencoder models (Karl et al., 2017a; Krishnan et al., 2015; Chung et al., 2015; Fraccaro et al.,
2016): the non-probabilistic treatment of the transition dynamics often modeled by a powerful
nonlinear function approximator. From the history of the Autoencoder to the Variational Autoencoder,
we know that in order to detect features in an unsupervised manner, probabilistic treatment of the
latent space is paramount. As our starting point, we will build on previously proposed approaches by
Krishnan et al. (2017) and Karl et al. (2017a). The latter already made use of locally linear dynamics,
but only in a deterministic fashion. We extend their approaches by a stochastic switching LDS model
and show that such treatment is vital for learning richer representations and simulation accuracy.

2 BACKGROUND

We consider discretized time-series data consisting of continuous observations xt ∈ X ⊂ Rnx
and control inputs ut ∈ U ⊂ Rnu that we would like to model by corresponding latent states
zt ∈ Z ⊂ Rnz . We’ll denote sequences of variables by x1:T = (x1, x2, ..., xT).

1

Under review as a conference paper at ICLR 2019

s1 s2 s3

z1 z2 z3

u1 u2

x1 x2 x3

(a) SLDS graphical model.

w s2 s3

z1 z2 z3

u1 u2

x1 x2 x3

(b) Our generative model.

Figure 1: (a) st denote discrete switch variables, zt are continuous latent variables, xt continuous
observed variables, ut are (optional) continuous control inputs. (b) By introducing a special latent
variable w used for initial state inference, we want to make explicit that the first step is treated
differently from the rest of the sequence.

2.1 SWITCHING LINEAR DYNAMICAL SYSTEMS

Switching Linear Dynamical System models (SLDS) enable us to model nonlinear time series data
by splitting it into sequences of linear dynamical models. At each time t = 1, 2, ..., T , a discrete
switch variable st ∈ 1, ...,M chooses of a set LDSs a system which is to be used to transform our
continuous latent state zt to the next time step (Barber, 2012).

zt = A(st)zt−1 +B(st)ut−1 + ε(st) ε(st) ∼ N (0, Q(st))

xt = H(st)zt + η(st) η(st) ∼ N (0, R(st))
(1)

Here A ∈ Rnz×nz is the state matrix, B ∈ Rnz×nu control matrix, ε the transition noise with covari-
ance matrix Q and η the emission/sensor noise with covariance matrix R. Finally, the observation
matrix H ∈ Rnx×nz defines a linear mapping from latent to observation space which we will replace
by a nonlinear transformation parameterized by a neural net. These equations imply the following
joint distribution:

p(x1:T , z1:T , s1:T | u1:T) =

T∏
t=1

p(xt | zt) p(zt | zt−1, ut−1, st) p(st | zt−1, ut−1, st−1) (2)

with p(z1 | z0, u0, s1) = p(z1) being the initial state distribution. The corresponding graphical model
is shown in figure 1a.

2.2 STOCHASTIC GRADIENT VARIATIONAL BAYES

p(x) =

∫
p(x, z) dz =

∫
p(x | z)p(z) dz (3)

Given the simple graphical model in equation (3), Kingma & Welling (2014) and Rezende et al.
(2014) introduced the Variational Autoencoder (VAE) which overcomes the intractability of posterior
inference of q(z | x) by maximizing the evidence lower bound (ELBO) of the model log-likelihood.

LELBO(x; θ, φ) = Eqφ(z|x)[ln pθ(x | z)]− DKL(qφ(z | x) || p(z)) ≤ log p(x) (4)
Their main innovation was to approximate the intractable posterior distribution by a recognition
network qφ(z|x) from which they can sample via the reparameterization trick to allow for stochastic
backpropagation through both the recognition and generative model at once. Assuming that the latent
state is normally distributed, a simple transformation allows us to obtain a Monte Carlo gradient
estimate of Eqφ(z|x) [ln pθ(x|z)] w.r.t. to φ. Given that z ∼ N (µ, σ2), we can generate samples by
drawing from an auxiliary variable ε ∼ N (0, 1) and applying the deterministic and differentiable
transformation z = µ+ σε.

2.3 THE CONCRETE DISTRIBUTION

One simple and efficient way to obtain samples d from a k-dimensional categorical distribution with
class probabilities α is the Gumbel-Max trick:

d = one_hot (argmax[gi + logαi]) , with g1, . . . , gk ∼ Gumbel(0, 1) (5)

2

Under review as a conference paper at ICLR 2019

However, since the derivative of the argmax is 0 everywhere except at the boundary of state changes,
where it is undefined, we can’t learn a parameterization by backpropagation. The Gumbel-Softmax
trick approximates the argmax by a softmax which gives us a probability vector (Maddison et al.,
2017; Jang et al., 2017). We can then draw samples via

dk =
exp((logαk + gk)/λ)∑n
i=1 exp((logαi + gi)/λ)

, with g1, . . . , gk ∼ Gumbel(0, 1) (6)

This softmax computation approaches the discrete argmax as temperature λ → 0, for λ → ∞ it
approaches a uniform distribution.

3 RELATED WORK

Our model can be viewed as a Deep Kalman Filter (Krishnan et al., 2015) with structured inference
(Krishnan et al., 2017). In our case, structured inference entails another stochastic variable model
with parameter sharing inspired by Karl et al. (2017b) and Karl et al. (2017a) which pointed out
the importance of backpropagating the reconstruction error through the transition. We are different
to a number of stochastic sequential models like Bayer & Osendorfer (2014); Chung et al. (2015);
Shabanian et al. (2017); Goyal et al. (2017) by directly transitioning the stochastic latent variable
over time instead of having an RNN augmented by stochastic inputs. Fraccaro et al. (2016) has a
transition over both a deterministic and a stochastic latent state sequence, wanting to combine the
best of both worlds.

Previous models (Watter et al., 2015; Karl et al., 2017a; Fraccaro et al., 2017) have already combined
locally linear models with recurrent Variational Autoencoders, however they provide a weaker
structural incentive for learning latent variables determining the transition function. Van Steenkiste
et al. (2018) approach a similar multi bouncing ball problem (see section 5.1) by first distributing
the representation of different balls into their own entities without supervision and then structurally
hardwiring a transition function with interactions based on an attention mechanism.

Recurrent switching linear dynamical systems (Linderman et al., 2016) uses message passing for
approximate inference, but has restricted itself to low-dimensional observations and a multi-stage
training process. Johnson et al. (2016) propose a similar model to ours but combine message
passing for discrete switching variables with a neural network encoder for observations learned by
stochastic backpropagation. Tackling the problem of propagating state uncertainty over time, various
combinations of neural networks for inference and Gaussian processes for transition dynamics have
been proposed (Eleftheriadis et al., 2017; Doerr et al., 2018). However, these models have not been
demonstrated to work with high-dimensional observation spaces like images. One feature a switching
LDS model may learn are interactions which have recently been approached by employing Graph
Neural Networks (Battaglia et al., 2016; Kipf et al., 2018). These methods are similar in that they
predict edges which encode interactions between components of the state space (nodes).

4 PROPOSED APPROACH

Our goal is to fit a series of continuous state z1:T and switching variables s2:T to a given sequence of
observations x1:T . We assume a nonlinear mapping between observations and latent space which we
generally approximate by neural networks, apart from the transition which is modeled by a locally
linear function. Our generative model is shown in figure 1b an our inference model in figure 2a.

4.1 GENERATIVE MODEL

Our generative model for a single xt is described by

p(xt) =

∫
s≤t

∫
z≤t

p(xt | zt)p(zt | zt−1, st, ut−1)p(st | st−1, zt−1, ut−1)p(zt−1, st−1) (7)

which is close to the one of the original SLDS model (see figure 1a). Latent states zt are continuous
and represent the state of the system while states st are the switching variables determining the
transition. We approximate the discrete switching variables by a continuous relaxation, namely

3

Under review as a conference paper at ICLR 2019

the Concrete distribution.1 Differently to the original model, we do not condition the likelihood
of the current observation pθ(xt | zt) directly on the switching variables. This limits the influence
of the switching variables to choosing a proper transition dynamic for the continuous latent space.
The likelihood model is parameterized by a neural network with either a Gaussian or a Bernoulli
distribution as output depending on the data.

There is both a transition on the continuous states zt and discrete latent states st. For the contin-
uous state transition p(zt | zt−1, st, ut−1) we follow (1) and maintain a set of M base matrices
{
(
A(i), B(i), Q(i)

)
| ∀i. 0 < i < M} as our linear dynamical systems to choose from. For the tran-

sition on discrete latent states p(st | st−1, zt−1, ut−1), we usually require the learning of a Markov
transition matrix. However, since we approximate our discrete switching variables by a continuous
relaxation, we can parameterize this transition by a neural network. Therefore, our entire generative
model can be learned end-to-end by (stochastic) backpropagation. Finally, the resulting dynamics
matrices are computed through a linear combination of the base matrices:

At(st) =

M∑
i=1

s
(i)
t A(i), B(st) =

M∑
i=1

s
(i)
t B(i), Q(st) =

M∑
i=1

s
(i)
t Q(i) (8)

Both transition models – the continuous state transition pθ(zt | zt−1, st, ut−1) and concrete switching
variables transition pθ(st | st−1, zt−1, ut−1) – are shared with the inference model which is key for
good performance.

pθ(zt | zt−1, st, ut−1) = N
(
µ, σ2

)
where [µ, σ2] = fθ(zt−1, st, ut−1)

pθ(st | st−1, zt−1, ut−1) = Concrete(α, λprior) where α = gθ(zt−1, st−1, ut−1)
(9)

4.2 INFERENCE

4.2.1 STRUCTURED INFERENCE OF CONTINUOUS LATENT STATE

We split our inference model qφ(zt | zt−1, st, x≥t, u≥t−1) into two parts: 1) transition model
qtrans(zt | zt−1, st, ut−1) and 2) inverse measurement model qmeas(zt | x≥t, u≥t) as previously
proposed in Karl et al. (2017b). This split allows us to reuse our generative transition model in place
of qtrans(zt | zt−1, st, ut−1). This sharing of variables is essential for good performance as it forces
the reconstruction error to be backpropagated through the transition model. For practical reasons,
we only share the computation of the transition mean µtrans but not the variance σ2

trans between
inference and generative model. Both parts, qmeas and qtrans, will give us independent predictions
about the new state zt which will be combined in a manner akin to a Bayesian update in a Kalman
Filter.

qφ(zt | zt−1, st, x≥t, u≥t−1) ∝ qmeas(zt | x≥t, u≥t)× qtrans(zt | zt−1, st, ut−1) = N
(
µq, σ

2
q

)
qmeas(zt | x≥t, u≥t) = N

(
µmeas, σ

2
meas

)
where [µmeas, σ

2
meas] = hφ(x≥t, u≥t)

qtrans(zt | zt−1, st, ut−1) = N
(
µtrans, σ

2
trans

)
where [µtrans, σ

2
trans] = fθ(zt−1, st, ut−1)

(10)

The densities of qmeas and qtrans are multiplied resulting in another Gaussian density:

µq =
µtransσ

2
meas + µmeasσ

2
trans

σ2
meas + σ2

trans

, σ2
q =

σ2
measσ

2
trans

σ2
meas + σ2

trans

(11)

This update scheme is highlighted in figure 2b.

We found empirically that conditioning the inverse measurement model qmeas(zt | x≥t, u≥t) solely
on the current observation xt instead of the entire remaining trajectory to lead to better results. We
hypothesize that the recurrent model needlessly introduces very high-dimensional and complicated
dynamics which are harder to approximate with our locally linear transition model.

For the initial state z1 we do not have a conditional prior from the transition model as in the rest of
the sequence. Other methods (Krishnan et al., 2015) have used a standard normal prior, however this
is not a good fit. We therefore decided that instead of predicting z1 directly to predict an auxiliary

1As an ablation study, we will compare this to modeling switching variables by a Gaussian distribution.

4

Under review as a conference paper at ICLR 2019

variable w that is then mapped deterministically to a starting state z1. A standard Gaussian prior is
then applied to w. Alternatively, we could specify a more complex or learned prior for the initial state
like the VampPrior (Tomczak & Welling, 2017). Empirically, this has lead to worse results.

qφ(w | x1:T , u1:T) = N
(
w;µw, σ

2
w

)
where [µw, σ

2
w] = iφ(x1:T , u1:T)

z1 = fφ(w)
(12)

While we could condition on the entire sequence, we restrict it to just the first couple of observations.

b2 b3

w s2 s3

z1 z2 z3

u1 u2

x1 x2 x3

(a) Inference model.

qmeas(zt | xt)qmeas(st | x≥t)

×qtrans(zt | ·)

q(zt | x≥t, zt−1, st,ut−1)

×qtrans(st | ·)

pθ(xt | zt)

zt−1

st−1

zt−1
q(st | x≥t, zt−1, st−1,ut−1)

st

xtx≥t ut−1ut−1

. . .

(b) High-level overview.

Figure 2: (a) Depicts the inference model. bt is the hidden state of the backward RNN of
qφ(st | x≥t, u≥t). Initial inference of w may be conditioned on the entire sequence of observa-
tions, or just a subsequence. We’ve omitted the arrows for sake of clarity for the rest of the graph.
(b) Shows schematically how we combine the transition with the inverse measurement model in the
inference network. Transitions (in blue) are (partially) shared with the generative model.

4.2.2 INFERENCE OF SWITCHING VARIABLES

Following Maddison et al. (2017) and Jang et al. (2017), we can reparameterize a dis-
crete latent variable with the Gumbel-softmax trick. Again, we split our inference network
qφ(st | st−1, zt−1, x≥t, u≥t−1) in an identical fashion into two components: 1) Transition model
qtrans(st | st−1, zt−1, ut−1) and 2) inverse measurement model qmeas(st | x≥t, u≥t). The transition
model is again shared with the generative model and is implemented via a neural network as we po-
tentially require quick changes to chosen dynamics. The inverse measurement model is parametrized
by a backward LSTM. However, for the case of concrete variables, we cannot do the same Gauss
multiplication as in the previous case. Therefore, we let each network predict the logits of a Concrete
distribution and our inverse measurement model qφ(st | x≥t, u≥t) produces an additional vector γ,
which determines the value of a gate deciding how the two predictions are to be weighted:

qφ(st | st−1, zt−1, x≥t, u≥t−1) = Concrete(α, λposterior) with α = γαtrans + (1− γ)αmeas

qmeas(st | x≥t, u≥t) = Concrete(αmeas, λposterior) where [αmeas, γ] = kφ(x≥t, u≥t)

qtrans(st | st−1, zt−1, ut−1) = Concrete(αtrans, λprior) where α = gθ(zt−1, st−1, ut−1)

(13)

The temperatures λposterior and λprior are set as a hyperparameter and can be set differently for
the prior and approximate posterior. The gating mechanism gives the model the option to balance
between prior and approximate posterior. If the prior is good enough to explain the next observation,
γ will be pushed to 1 which ignores the measurement and minimizes the KL between prior and
posterior by only propagating the prior. If the prior is not sufficient, information from the inverse
measurement model can flow by decreasing γ and incurring a KL penalty.

Since the concrete distribution is a relaxation of the categorical, our sample will not be a one-hot
vector, but a vector whose elements sum up to 1. We face two options here: we could take a categorical
sample by choosing the linear system corresponding to the highest value in the sample (hard forward
pass) and only use the relaxation for our backward pass. This, however, means that we will follow a
biased gradient. Alternatively, we can use the relaxed version for our forward pass and aggregate the
linear systems based on their corresponding weighting (see (8)). Here, we lose the discrete switching
of linear systems, but maintain a valid lower bound. We note that the hard forward pass has led to
worse results and focus on the soft forward pass for this paper.

Lastly, we could go further away from the theory and instead treat the switching variables also
as normally distributed. If this worked better than the approach with Concrete variables, it would

5

Under review as a conference paper at ICLR 2019

highlight still existing optimization problems of discrete random variables. As such, it will act as an
ablation study for our model. The mixing coefficients for linear systems would then be determined
by a linear combination of these latent variables:

α = softmax(Wst + b) ∈ RM (14)

Our inference scheme for normally distributed switching variables is then identical to the one
described in the previous section. We compare both approaches throughout our experimental section.

4.3 TRAINING

Our objective function is the commonly used evidence lower bound for our hierarchical model.

Lθ,φ(x1:T | u1:T) ≥ Eqφ(z1:T ,s1:T |x1:T)[log pθ(x1:T | z1:T , s1:T , u1:T)]

− DKL(qφ(z1:T , s1:T | x1:T , u1:T) || p(z1:T , s1:T | u1:T))
(15)

We choose to factorize over time, so the loss for a single observation xt becomes:

Lθ,φ(xt | u1:T) = Eqφ(st|st−1,zt−1,x≥t,u≥t−1)

[
Eqφ(zt|st,zt−1,x≥t,u≥t−1)[log pθ(xt | zt)]

]
− Est−1

[
Ezt−1

[DKL(qφ(st | st−1, zt−1, x≥t, u≥t−1) || pθ(st | st−1, zt−1, ut−1))]
]

− Ezt−1
[Est [DKL(qφ(zt | zt−1, st, x≥t, u≥t−1) || pθ(zt | zt−1, st, ut−1))]]

(16)

The full derivation can be found in appendix A. We learn the parameters of our model by backpropa-
gation through time and we (generally) approximate the expectations with one sample by using the
reparametrization trick. The exception is the KL between two Concrete random variables in which
case we take 10 samples for the approximation. For the KL on the switching variables, we further
introduce a scaling factor β < 1 (as first suggested in Higgins et al. (2016), although they suggested
increasing the KL term) to down weigh its importance. More details on the training procedure can be
found in appendix B.2.

5 EXPERIMENTS

In this section, we evaluate our approach on a diverse set of physics and robotics simulations based
on partially observable system states or high-dimensional images as observations. We show that our
model outperforms previous models and that our switching variables learn meaningful representations.

Models we compare to are Deep Variational Bayes Filter (DVBF) (Karl et al., 2017a), DVBF Fusion
(Karl et al., 2017b) (called fusion as they do the same Gauss multiplication in the inference network)
which is closest to our model but doesn’t have a stochastic treatment of the transition, the Kalman
VAE (KVAE) (Fraccaro et al., 2017) and a LSTM (Hochreiter & Schmidhuber, 1997).

(a) Multi agent maze envi-
ronment.

(b) Variable encoding free
space for agent 2.

(c) Variable encoding walls
for agent 1.

(d) System activation for
deterministic transition.

Figure 3: Figures (b) and (c) depict an agent’s position colored by the average value of a single latent
variable s marginalized over all control inputs u and velocities. Figure (d) highlights a representative
activation for a single transition system for the deterministic treatment of the transition dynamics. It
doesn’t generalize to the entire maze and stays fairly active in proximity to the wall.

6

Under review as a conference paper at ICLR 2019

5.1 MULTIPLE BOUNCING BALLS IN A MAZE

Our first experiment is a custom 3-agent maze environment simulated with Box2D. Each agent is
fully described by its x and y coordinates and its current velocity and has the capability to accelerate
in either direction. We learn in a partially observable setting and limit the observations to the agents’
positions, therefore x ∈ R6 while the true state space is in R12 and u ∈ R6. First, we train a linear
regression model on the latent space z to see if we have recovered a linear encoding of the unobserved
velocities. We achieve an R2 score of 0.92 averaged over all agents and velocity directions.

Our focus shifts now to our switching variables which we expect to encode interactions with walls.
We provide a visual confirmation of that in figure 3 where we see switching variables encoding
all space where there is no interaction in the next time step, and variables which encode walls,
distinguishing between vertical and horizontal ones. In figure 3d one can see show that if the choice
of locally linear transition is treated deterministically, we don’t learn global features of the same kind.
To confirm our visual inspection, we train a simple decision tree based on latent space s in order to
predict interaction with a wall. Here, we achieve an F1 score of 0.46. It is difficult to say what a good
value should look like as collisions with low velocity are virtually indistinguishable from no collision.

We compare our prediction quality to several other methods in table 1 where we outperform all of
our chosen baselines. Also, modeling switching variables by a Normal distribution outperforms the
Concrete distribution in all of our experiments. Aside from known practical issues with training a
discrete variable via backpropagation, we explore one reason why that may be in section 5.4, which
is the greater susceptibility to the scale of temporal discretization. We provide plots of predicted
trajectories in appendix D. Transitioning multiple agents with a single transition matrix comes with
scalability issues with regards to switching dynamics which we explore further in appendix C.

Table 1: Mean squared error (MSE) on predicting future observations. Static refers to constantly
predicting the first observation of the sequence.

REACHER 3-BALL MAZE

PREDICTION STEPS 1 5 10 1 5 10

STATIC 5.80E-02 5.36E-01 1.25E+00 1.40E-02 5.74E-01 2.65E+00
LSTM 3.07E-01 7.76E-01 1.22E+00 7.20E-02 1.58E-01 2.60E-01
DVBF 1.10E-01 3.08E-01 6.07E-01 6.20E-02 1.36E-01 1.82E-01
DVBF FUSION 4.90E-03 2.97E-02 8.25E-02 4.33E-03 2.03E-02 4.88E-02
OURS (CONCRETE) 1.06E-02 5.73E-02 1.56E-01 2.28E-03 1.22E-02 3.40E-02
OURS (NORMAL) 3.39E-03 1.85E-02 4.97E-02 1.30E-03 5.52E-03 1.38E-02

5.2 REACHER

We then evaluate our model on the Roboschool reacher environment. To make things more interesting,
we learn only on partial observations, removing time derivative information (velocities), leaving
us with just the positions or angles of various joints as observations. Table 1 shows a comparison
of various methods on predicting the next couple of time steps. One critical point is the possible
collision2 between lower and upper joint which is one we’d like our model to capture. We again learn
a linear classifier based on latent space s to see if this is successfully encoded and reach an F1 score
of 0.46.

5.3 BALL IN A BOX ON IMAGE DATA

Finally, we evaluate our method on high-dimensional image observations using the single bouncing
ball environment used by Fraccaro et al. (2017). They simulated 5000 sequences of 20 time steps
each of a ball moving in a two-dimensional box, where each video frame is a 32× 32 binary image.
There are no forces applied to the ball, except for the fully elastic collisions with the walls. Initial
position and velocity are randomly sampled.

2We roughly identify a collision to be the point where the lower joint decelerates by over a fixed value of 2.

7

Under review as a conference paper at ICLR 2019

Figure 4: First row: data, second row: filtered reconstructions, third row: predictions. The first 4
steps are used to find a stable starting state, predictions start with step 5.

In figure 5a we compare our model to both the smoothed and generative version of the KVAE. The
smoothed version receives the final state of the trajectory after the n predicted steps which is fed
into the smoothing capability of the KVAE. One can see that our model learns a better transition
model, even outperforming the smoothed KVAE for longer sequences. For short sequences, KVAE
performs better which highlights the value of it disentangling the latent space into separate object and
dynamics representation. A sample trajectory is plotted in figure 4.

5.4 SUSCEPTIBILITY TO THE SCALE OF TEMPORAL DISCRETIZATION

In this section, we’d like to explore how the choice of ∆t when discretizing a system influences our
results. In particular, we’d expect our model with discrete (concrete) switching latent variables to be
more susceptible to it than when modeled by a continuous distribution. This is because in the latter
case the switching variables can scale the various matrices more freely, while in the former scaling up
one system necessitates scaling down another. For empirical comparison, we go back to our custom
maze environment (this time with only one agent as this is not pertinent to our question at hand) and
learn the dynamics on various discretization scales. Then we compare the absolute error’s growth
for both approaches in figure 5b which supports our hypothesis. While the discrete approximation
even outperforms for small ∆t, there is a point where it rapidly becomes worse and gets overtaken by
the continuous approximation. This suggests that ∆t was simply chosen to be too large in both the
reacher and the ball in a box with image observations experiment.

0 2 4 6 8 10 12 14 16

0.5

1

1.5

2

2.5

·10−2

steps predicted into the future

Fr
ac

tio
n

of
in

co
rr

ec
tp

ix
el

s

KVAE (smoothed)
KVAE (generative)
Ours (generative)

(a) Fraction of incorrectly predicted pixels.

10−2 10−1

10−2

10−1

∆ t (log scale)

A
bs

ol
ut

e
E

rr
or

(l
og

sc
al

e)

Normal
Concrete

(b) Discretization scale susceptibility.

Figure 5: (a) Our dynamics model is outperforming even the smoothed KVAE for longer trajectories.
(b) Modeling switching variables as Concrete random variables scales less favorably.

6 DISCUSSION

We want to emphasize some subtle differences to previously proposed architectures that make an
empirical difference, in particular for the case when st is chosen to be continuous. In Watter et al.
(2015) and Karl et al. (2017a), the latent space is already used to draw transition matrices, however
they do not extract features such as walls or joint constraints. There are a few key differences from
our approach. First, our latent switching variables st are only involved in predicting the current
observation xt through the transition selection process. The likelihood model therefore doesn’t need
to learn to ignore some input dimensions which are only helpful for reconstructing future observations

8

Under review as a conference paper at ICLR 2019

but not the current one. There is also a clearer restriction on how st and zt may interact: st may now
only influence zt by determining the dynamics, while previously zt influenced both the choice of
transition function as well as acted inside the transition. These two opposing roles lead to conflicting
gradients as to what should be improved. Furthermore, the learning signal for st is rather weak so
that scaling down the KL-regularization was necessary to detect good features. Lastly, a (locally)
linear transition may not be a good fit for variables determining dynamics as such variables may
change very abruptly.

7 CONCLUSION

We have shown that our construction of using switching variables encourages learning a richer and
more interpretable latent space. In turn, the richer representation led to an improvement of simulation
accuracy in various tasks. In the future, we’d like to look at other ways to approximate the discrete
switching variables and exploit this approach for model-based control on real hardware systems.
Furthermore, addressing the open problem of disentangling latent spaces is essential to fitting simple
dynamics and would lead to significant improvements of this approach.

REFERENCES

G Ackerson and K Fu. On state estimation in switching environments. IEEE Transactions on
Automatic Control, 15(1):10–17, 1970.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks. arXiv preprint
arXiv:1411.7610, 2014.

Chaw-Bing Chang and Michael Athans. State estimation for discrete systems with switching
parameters. IEEE Transactions on Aerospace and Electronic Systems, (3):418–425, 1978.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in neural information processing
systems, pp. 2980–2988, 2015.

Andreas Doerr, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan Schaal, Marc Toussaint,
and Sebastian Trimpe. Probabilistic recurrent state-space models. arXiv preprint arXiv:1801.10395,
2018.

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of
gaussian process state space models. In Advances in Neural Information Processing Systems, pp.
5309–5319, 2017.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. In Advances in neural information processing systems, pp. 2199–2207,
2016.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recognition
and nonlinear dynamics model for unsupervised learning. In Advances in Neural Information
Processing Systems, pp. 3604–3613, 2017.

Anirudh Goyal, Alessandro Sordoni, Marc-Alexandre Côté, Nan Ke, and Yoshua Bengio. Z-forcing:
Training stochastic recurrent networks. In Advances in Neural Information Processing Systems, pp.
6713–6723, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

9

Under review as a conference paper at ICLR 2019

Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir
Mohamed, and Alexander Lerchner. Early Visual Concept Learning with Unsupervised Deep
Learning. 2016. URL http://arxiv.org/abs/1606.05579.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax.
International Conference on Learning Representations, pp. 1–13, nov 2017. URL http://
arxiv.org/abs/1611.01144.

Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast inference.
In Advances in neural information processing systems, pp. 2946–2954, 2016.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep Variational
Bayes Filters: Unsupervised Learning of State Space Models from Raw Data. In Proceedings of
the International Conference on Learning Representations (ICLR), 2017a.

Maximilian Karl, Maximilian Soelch, Philip Becker-Ehmck, Djalel Benbouzid, Patrick van der
Smagt, and Justin Bayer. Unsupervised real-time control through variational empowerment. arXiv
preprint arXiv:1710.05101, 2017b.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR), 2014.

T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for interacting
systems. In Proceedings of the 35th International Conference on Machine Learning, 2018.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep Kalman Filters. arXiv preprint
arXiv:1511.05121, (2000):1–7, 2015. URL http://arxiv.org/abs/1511.05121.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In AAAI, pp. 2101–2109, 2017.

Scott W. Linderman, Andrew C. Miller, Ryan P. Adams, David M. Blei, Liam Paninski, and Matthew J.
Johnson. Recurrent switching linear dynamical systems. 2016. URL http://arxiv.org/
abs/1610.08466.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables. In Proceedings of the International Conference on
Learning Representations (ICLR), pp. 1–17, 2017. ISBN 0780365402. URL http://arxiv.
org/abs/1611.00712.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32, ICML’14, pp. II–1278–
II–1286. JMLR.org, 2014.

Samira Shabanian, Devansh Arpit, Adam Trischler, and Yoshua Bengio. Variational Bi-LSTMs. 2017.
URL http://arxiv.org/abs/1711.05717.

Jakub M Tomczak and Max Welling. Vae with a vampprior. arXiv preprint arXiv:1705.07120, 2017.

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. In Proceedings
of the International Conference on Learning Representations (ICLR), 2018.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

10

http://arxiv.org/abs/1606.05579
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1511.05121
http://arxiv.org/abs/1610.08466
http://arxiv.org/abs/1610.08466
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1711.05717

Under review as a conference paper at ICLR 2019

A LOWER BOUND DERIVATION

For brevity we omit conditioning on control inputs u1:T .

log p(xT) = log

∫
z1:T

∫
s1:T

qφ(s1:T , z1:T | x1:T)
pθ(x1:T | z1:T)pθ(z1:T , s1:T)

qφ(s1:T , z1:T | x1:T)

≥
∫
z1:T

∫
s1:T

qφ(s1:T , z1:T | x1:T) log
pθ(x1:T | z1:T)pθ(z1:T , s1:T)

qφ(s1:T , z1:T | x1:T)

=

T∑
t=1

Est [Ezt [p(xt | zt, st)]]− DKL(q(z1:T , s1:T | x1:T) || p(z1:T , s1:T))

A.1 FACTORIZATION OF THE KL DIVERGENCE

The dependencies on data xT and uT as well as parameters φ and θ are omitted in the following for
convenience.

DKL(q(z1, s2, . . . , sT , zT) || p(z1, s2, . . . , sT , zT))

(Factorization of the variational approximation)

=

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . . q(sT | zT−1, sT−1)q(zT | zT−1, sT)

log
q(z1)q(s2 | z1) . . . q(sT | zT−1, sT−1)q(zT | zT−1, sT)

p(z1, s2, . . . , sT , zT)

(Factorization of the prior)

=

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . . q(sT | zT−1, sT−1)q(zT | zT−1, sT)

log
q(z1)q(s2 | z1) . . . q(sT | zT−1, sT−1)q(zT | zT−1, sT)

p(z1)p(s2 | z1) . . . p(sT | zT−1, sT−1)p(zT | zT−1, sT)

(Expanding the logarithm by the product rule)

=

∫
z1

q(z1) log
q(z1)

p(z1)
+

∫
z1

∫
s1

q(z1)q(s1 | z1) log
q(s1 | z1)

p(s1 | z1)

+

T∑
t=2

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . . q(zT | zT−1, sT) log
q(zt | zt−1, st)
p(zt | zt−1, st)

+

T∑
t=3

∫
z1

∫
s2

· · ·
∫
sT

∫
zT

q(z1)q(s2 | z1) . . . q(zT | zT−1, sT) log
q(st | zt−1, st−1)

p(st | zt−1, st−1)

(Ignoring constants)
= DKL(q(z1) || p(z1)) + Ez1∼q(z1)[DKL(q(s2 | z1) || p(s2 | z1))]

+

T−1∑
t=2

Est,zt−1
[DKL(q(zt | zt−1, st) || p(zt | zt−1, st))]

+

T−1∑
t=3

Est−1,zt−1 [DKL(q(st | zt−1, st−1) || p(st | zt−1, st−1))]

11

Under review as a conference paper at ICLR 2019

Table 2: Dimensionality of environments.

Dimensionality of Observation Space Control Input Space Ground Truth State Space

Reacher 7 2 9
Hopper 8 3 15
Multi Agent Maze 4 6 12
Image Ball in Box 32× 32 0 4

B DETAILS OF THE EXPERIMENTAL SETUP

B.1 ENVIRONMENTS

B.1.1 ROBOSCHOOL REACHER

To generate data, we follow a Uniform distribution U ∼ [−1, 1] as the exploration policy. Before we
record data, we take 20 warm-up steps in the environment to randomize our starting state. We take
the data as is without any other preprocessing.

B.1.2 MULTI AGENT MAZE

Observations are normalized to be in [−1, 1]. Both position and velocity is randomized for the starting
state. We again follow a Uniform distribution U ∼ [−1, 1] as the exploration policy.

B.2 TRAINING

Overall, training the Concrete distribution has given us the biggest challenge as it was very susceptible
to various hyperparameters. We made use of the fact that we can use a different temperature for
the prior and approximate posterior (Maddison et al., 2017) and we do independent hyperparameter
search over both. For us, the best values were 0.75 for the posterior and 2 for the prior. Additionally,
we employ an exponential annealing scheme for the temperature hyperparameter of the Concrete
distribution. This leads to a more uniform combination of base matrices early in training which has
two desirable effects. First, all matrices are scaled to a similar magnitude, making initialization less
critical. Second, the model initially tries to fit a globally linear model, leading to a good starting state
for optimization. We also tried increasing the number of samples taken (up to 100) to approximate
the KL between the Concrete distributions, however we have not observed an improvement of
performance. We therefore restrict ourselves to 10 samples for all experiments.

In all experiments, we train everything end-to-end with the ADAM optimizer.(Kingma & Ba, 2015)
We start with learning rate of 5e−4 and use an exponential decay schedule with rate 0.97 every 2000
iterations.

B.3 NETWORK ARCHITECTURE

For most networks, we use MLPs implemented as residual nets (He et al., 2016) with ReLU activa-
tions.

Networks used for the reacher and maze experiments.

• qmeas(zt | ·): MLP consisting of two residual blocks with 256 neurons each. We only
condition on the current observation xt although we could condition on the entire sequence.
This decision was taken based on empirical results.

• qtrans(zt | ·): In the case of Concrete random variables, we just combine the base matrices
and apply the transition dynamics to zt−1. For the Normal case, the combination of matrices
is preceded by a linear combination with softmax activation. (see equation 14)

• qmeas(st | ·): is implemented by a backward LSTM with 256 hidden units. We reuse the
preprocessing of qmeas(zt | xt) and take the last hidden layer of that network as the input to
the LSTM.

12

Under review as a conference paper at ICLR 2019

• qtrans(st | ·): MLP consisting of one residual block with 256 neurons.
• qinitial(w | ·): MLP consisting of two residual block with 256 neurons optionally followed

by a backward LSTM. We only condition on the first 3 or 4 observations for our experiments.
• qinitial(s2): The first switching variable in the sequence has no predecessor. We there-

fore require a replacement for qtrans(st | ·) in the first time step, which we achieve by
independently parameterizing another MLP.
• p(xt | zt): MLP consisting of two residual block with 256 neurons.
• p(zt | ·): Shared parameters with qtrans(zt | ·).
• p(st | ·): Shared parameters with qtrans(st | ·).

We use the same architecture for the image ball in a box experiment, however we increase number of
neurons of qmeas(zt | ·) to 1024.

B.4 HYPERPARAMETERS

Table 3: Overview of hyperparameters.

Multi Agent Maze Reacher Image Ball in Box

episodes 50000 20000 5000
episode length 20 30 20
batch size 256 128 256
dimension of z 32 16 8
dimension of s 16 8 8
posterior temperature 0.75 0.75 0.67
prior temperature 2 2 2
temperature annealing steps 100 100 100
temperature annealing rate 0.97 0.97 0.98
β (KL-scaling of switching variables) 0.1 0.1 0.1

C ON SCALING ISSUES OF SWITCHING LINEAR DYNAMICAL SYSTEMS

Let’s consider a simple representation of a ball in a rectangular box where its state is represented by
its position and velocity. Given a small enough ∆t, we can approximate the dynamics decently by
just 3 systems: no interaction with the wall, interaction with a vertical or horizontal wall (ignoring
the corner case of interacting with two walls at the same time). Now consider the growth of required
base systems if we increase the number of balls in the box (even if these balls cannot interact with
each other). We would require a system for all combinations of a single ball’s possible states: 32.
This will grow exponentially with the number of balls in the environment.

One way to alleviate this problem that requires only a linear growth in base systems is to independently
turn individual systems on and off and let the resulting system the sum of all activated systems. A
base system may then represent solely the transition for a single ball being in specific state, while the
complete system is then a combination ofN such systems whereN is the number of balls. Practically,
this can be achieved by replacing the softmax by a sigmoid activation function or by replacing the
categorical variable s of dimension M by M Bernoulli variables indicating whether a single system
is active or not. We do this for our multiple agents in a maze environment.

Theoretically, a preferred approach would be to disentangle multiple systems (like balls, joints)
and apply transitions only to their respective states. This, however, would require a proper and
unsupervised separation of (mostly) independent components. We defer this to future work.

13

Under review as a conference paper at ICLR 2019

D FURTHER RESULTS

D.1 3-AGENT MAZE

Figure 6: Comparison of actual and predicted 20 step trajectories. The diamond marker denotes the
starting position of a trajectory.

D.2 IMAGE BALL IN A BOX

Figure 7: First row: data, second row: reconstructions, third row: predictions. The first 4 steps are
used to find a stable starting state, predictions start with step 5.

14

	Introduction
	Background
	Switching linear dynamical systems
	Stochastic gradient variational Bayes
	The concrete distribution

	Related Work
	Proposed Approach
	Generative Model
	Inference
	Structured inference of continuous latent state
	Inference of Switching Variables

	Training

	Experiments
	Multiple Bouncing Balls in a Maze
	Reacher
	Ball in a Box on Image Data
	Susceptibility to the scale of temporal discretization

	Discussion
	Conclusion
	Lower bound derivation
	Factorization of the KL divergence

	Details of the Experimental Setup
	Environments
	Roboschool Reacher
	Multi Agent Maze

	Training
	Network architecture
	Hyperparameters

	On Scaling Issues of switching linear dynamical systems
	Further Results
	3-Agent Maze
	Image Ball in a Box

