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ABSTRACT

The Boltzmann softmax operator can trade-off well between exploration and ex-
ploitation according to current estimation in an exponential weighting scheme,
which is a promising way to address the exploration-exploitation dilemma in re-
inforcement learning. Unfortunately, the Boltzmann softmax operator is not a
non-expansion, which may lead to unstable or even divergent learning behavior
when used in estimating the value function. The convergence of value iteration
is guaranteed in a restricted set of non-expansive operators and how to character-
ize the effect of such non-expansive operators in value iteration remains an open
problem. In this paper, we propose a new technique to analyze the error bound
of value iteration with the the Boltzmann softmax operator. We then propose the
dynamic Boltzmann softmax(DBS) operator to enable the convergence to the op-
timal value function in value iteration. We also present convergence rate analysis
of the algorithm. Using Q-learning as an application, we show that the DBS oper-
ator can be applied in a model-free reinforcement learning algorithm. Finally, we
demonstrate the effectiveness of the DBS operator in a toy problem called Grid-
World and a suite of Atari games. Experimental results show that outperforms
DQN substantially in benchmark games.

1 INTRODUCTION

In sequential decision making problem, an agent learns to find an optimal policy that maximizes the
expected discounted long-term reward, which can be modeled by a Markov decision process (MDP).
In an MDP, the optimal value function is the fixed point of the Bellman operator. Thus, the opti-
mal value function can be computed by iterative updates from arbitrary initial value function, i.e.,
value iteration (Bellman| (2013)). [Littman & Szepesvari (1996)) proposed the generalized MDP con-
sidering generalized action selection operators, according to which the value function is estimated.
If the generalized action selection operator satisfies the non-expansion property, the uniqueness of
the fixed-point of the generalized Bellman operator is guaranteed, thus ensuring the convergence of
generalized value iteration algorithm. Examples of non-expansive operators include the max and the
mean operators.

Without full information about transition dynamics and reward function of the environment, in rein-
forcement learning, the agent aims to learn an optimal policy by interacting with the unknown envi-
ronment from experience. Reinforcement learning has achieved groundbreaking success for many
decision making problems, both in discrete and continuous domains, including robotics (Kober et al.
(2013)), game playing (Mnih et al.|(2015)), and many others. One of the most fundamental chal-
lenges is how to balance exploration and exploitation, where the exploration-exploitation dilemma
occurs in action selection and value function optimization (Asadi & Littman|(2016)). For value func-
tion optimization, the agent estimates the value function according to the action selection operator
and then updates the estimated value. A number of effective algorithms to address exploration-
exploitation dilemma have their root in alternating the action selection operator, which falls in the
generalized MDP framework.

One of the most important reinforcement learning algorithm, Q-learning, employs the the max oper-
ator for value function optimization. The max operator always greedily selects the action that gives
the best value and updates current estimation according to the value. As the current estimation for
value functions is not accurate, such greedy selection may lead to misbehavior, e.g., the overesti-
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mation phenomenon (Hasselt| (2010)). In fact, the max operator is the extreme case of exploitation,
lacking the ability to explore or consider other choices. On the other hand, the mean operator esti-
mates the value by computing the average. Thus, the mean operator solely explores which fails to
utilize current estimation.

The Boltzmann softmax operator is a natural summary operator that has been widely applied (Cesa-
Bianchi et al.| (2017)). Specifically, it is an exponentially weighting scheme, where the weights are
computed according to the current estimation and its parameter 3. The parameter /3 trades off be-
tween exploration and exploitation. When 5 — oo, it behaves as the max operator which solely
favors exploitation while it behaves as the mean operator when 5 — 0 which purely focuses on
exploration. However, despite from the advantages, it is very challenging to apply the operator in
value function optimization. First, the parameter {3 is difficult to choose (Sutton et al.| (1998))). Sec-
ond, as shown in (Littman & Szepesvari (1996); |Asadi & Littman| (2016)), the Boltzmann softmax
operator is not a non-expansion, which may lead to multiple fixed-points and thus the value function
of this policy is not well-defined. The non-expansive property is vital to guarantee the uniqueness
of the fix-point and the convergence of the learning algorithm. Without such property, the learning
algorithm may misbehave or even diverge. Thus, it is widely believed that the Boltzmann soft-
max operator cannot be used directly due to the violation of the non-expansive property (Littman &
Szepesvari (1996); Asadi & Littman|(2016)). In fact, as far as we know, how to characterize the use
of the Boltzmann softmax operator, which violates the property of non-expansion in value iteration,
remains an open problem (Littman/(1996)).

In this paper, we study the property of the Boltzmann softmax operator and propose a new technique
to characterize its error bound in value iteration with fixed parameter 3. To be specific, we show that
for the error bound between the value function induced by the Boltzmann softmax operator and the
optimal value function, there remains a term related to 5 that will not converge to 0. Thus, although
the Boltzmann softmax operator guarantees the approximate convergence of value iteration, it would
converge to a sub-optimal policy unfortunately. Indeed, the direct use of the Boltzmann softmax
operator inevitably introduces performance drop in value iteration.

We then take a step further and study an essential problem, is there a way that the Boltzmann softmax
operator be applied in value iteration which guarantees the convergence to the optimal policy?

Based on this technique, we propose the dynamic Boltzmann softmax operator boltzg, , termed the
DBS operator, to eliminate the loss and enable the convergence of value iteration to the optimal
value function. Our core idea is to dynamically change 3; in value iteration and present its conver-
gence rate analysis. Then, we propose the DBS Q -learning algorithm with the application of the
DBS operator in a popular model-free reinforcement learning algorithm, i.e., Q-learning (Watkins
& Dayan|(1992)), and prove the convergence of the DBS Q-learning.

We conduct experiments to verify the effectiveness and efficiency of our proposed dynamic Boltz-
mann softmax operator. We first evaluate DBS value iteration and DBS Q-learning on a tabular
case, the GridWorld. Results show that the DBS operator leads to smaller error and faster conver-
gence. We then demonstrate that the DBS operator can be extended to large scale problems, Atari
games. Using DQN as baseline, we show that DQN with the dynamic Boltzmann softmax operator
(abbreviated as DBS-DQN) substantially outperforms DQN in a suite of Atari benchmark games.

2 PRELIMINARIES

A Markov decision process (MDP) is defined by a 5-tuple (S,.A,p,r,~), where S and A denote
the set of states and actions, p(s’|s, a) represents the transition probability from state s to state s’
under action a, and (s, a) is the corresponding immediate reward. The discount factor is denoted
by 7 € [0, 1), which controls the degree of importance of future rewards.

At each time, the agent interacts with the environment with its policy 7, a mapping from state to
action. The objective is to find an optimal policy that maximizes the expected discounted long-term
reward E[>",°, v'r¢|m], which can be solved by estimating value functions. The state value of s
and state-action value of s and a under policy 7 are defined as V™ (s) = E[>_,°7'r¢|so = s] and
Q™ (s,a) = Ex[> 12 g7'r¢|so = s,a0 = a]. The optimal value functions are defined as V*(s) =
max, V™(s) and Q*(s,a) = max, Q™ (s, a).
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Littman & Szepesvari| (1996)) proposed a general framework for reinforcement learning, where the
generalized action selection operator is denoted by ). The optimal value function V* satisfies the
generalized Bellman equation, which is defined recursively as in Equation (T)):

V*(s):® s,a +Z s'|s,a)yV* (s )] (D
a€A s’'esS

Starting from arbitrary initial value function V{, the optimal value function V* can be computed
by value iteration (Bellman| (2013))) according to an iterative update: Vi1 = TV}, where T is the
generalized the Bellman operator as defined in Equation (2).

(TV)(s) = ® s,a)+ Z s'|s,a)yV (s')]. ()

a€cA s’eS

The convergence of value iteration is guaranteed if ) is a non-expansion, which guarantees the
unique solution of the generalized Bellman equation (I)), i.e., 7V* = V*. The non-expansion is

defined as:
| Q) Qi(s,a) — R) Q2(s,a)| < [|Q1(s,-) — Qa(5,)[oos 3)

where || - || denotes the ¢,-norm.

The Boltzmann softmax operator is one kind of the action selection operator (), which is defined

as: " P
T
27 1 Tierr

boltzg(X) = S
=1

4)

3 ANALYSIS OF THE BOLTZMANN SOFTMAX OPERATOR

In this section, we first analyze the property of the Boltzmann softmax operator and then propose a
new technique to analyze its error bound in value iteration.

It has been shown that the Boltzmann softmax operator is not a non-expansion ((Littman &
Szepesvari (1996)); |Asadi & Littman| (2016))) as it does not satisfy Inequality . Indeed, the
non-expansive property is vital to the convergence of the learning algorithm, which guarantees the
uniqueness of the fixed point. We first analyze the property of the Boltzmann softmax operator,
which paves the path for studying the effect of using such operators that violates the non-expansive
property in value iteration.

Proposition 1 For 8 > 0 and X,Y € R", the Boltzmann softmax operator satisfies the following
property:
2log(n)

|boltzp(X) — boltzg(Y)| < || X — Y||oo + 5

&)
where || - || oo is the Loo-norm in R™.

In Proposition |1} we show that although the Boltzmann softmax operator is not a non-expansive
operator, the degree of the violation of the non-expansive property is controlled by 3. The larger the
value of 3 is, the closer it is to the non-expansion. Due to space limit, we put the proof of Proposition

in Appendix [A]

Next, we propose a new technique to characterize the error bound of value iteration with Boltzmann
softmax operator in value iteration, where the full proof is referred to Appendix [B]

Theorem 1 (Error bound of value iteration with Boltzmann softmax operator) Let V; be the
value function computed by the Boltzmann softmax operator at the t-th iteration and Vyy denote the
initial value. After t iterations,

4log(JA[)(1 —~")
Bl —7)

Taking the limit of ¢ in both sides of Inequality (6), we obtain the following result:

Ve = V¥lse <AMVo = V¥l + (6)
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Corollary 1 For the Boltzmann softmax operator boltzg, the error of value functions is

. N log(|A
limy o0 [[Vigr — V|| < 46(()%797)0'

Corollary [T] characterizes the error bound of value iteration with the Boltzmann softmax operator.

With a fixed parameter (3, the error is upper bounded by élﬂ'l’?%%ﬂ:‘)l)’ which decreases with an in-

creasing value of 5. Thus, the direct use of the Boltzmann softmax operator inevitably introduces
performance drop in practice. Motivated by the theoretical findings, we propose the dynamic Boltz-
mann softmax operator, which enables the convergence to the optimal.

4 DYNAMIC BOLTZMANN SOFTMAX OPERATOR

In this section, we propose the dynamic Boltzmann softmax (DBS) operator boltzg, to eliminate
the error in value iteration. Next, we give theoretical analysis of the proposed DBS value iteration
algorithm. We prove that it converges to the optimal policy if /3; approaches oo, as shown in Theorem
We then present the convergence rate analysis in Theorem |3} Finally, we show that the DBS
operator can be applied in a prominent model-free reinforcement learning algorithm, Q-learning,
with convergence guarantee.

From Corollary |1} although the Boltzmann softmax operator can converge, it may suffer from error
due to the violation of the non-expansive property. We propose the dynamic Boltzmann softmax
(DBS) operator to eliminate the error, which is motivated by Corollary that although boltzg is not
a non-expansive operator, it performs very close to the non-expansion when £ is large enough.

Based on the DBS operator, we design the corresponding DBS value iteration algorithm. DBS value
iteration algorithm admits a dynamically changing series {;} (line 1) and update the value function
according to the dynamic Boltzmann softmax operator boltzg, (line 6). Thus, the way to update the
value function is according to the exponential weighting scheme, which is related to both the current
estimation value and the parameter (;.

Algorithm 1: DBS Value Iteration

Input: An increasing series {3 }; termination condition 6
1 Initialize V'(s),Vs € S arbitrarily
2 for each episodet = 1,2, ... do
A+0
for each s € S do
v <+ V(s)
V(s) = boltzs, (32, . p(s',7ls, a)[r + vV (s')])
A <+ max(A, v =V (s)])
if A < 0 then
9 | break

N v R W

®

4.1 CONVERGENCE ANALYSIS

In Theorem [2] we demonstrate that the DBS operator can enable the convergence of DBS value
iteration to the optimal. Due to space limit, see Appendix [C|for proof of the theorem.

Theorem 2 (Convergence of value iteration with the DBS operator) For a sequence of dynamic
Boltzmann softmax operator {B:}, if By — oo, V; converges to V*, where Vy and V* denote the
value function after t iterations and the optimal value function.

Theorem [2] implies that DBS value iteration does converge to the optimal policy if 8; approaches
infinity. Although the Boltzmann softmax operator may violate the non-expansive property for some
values of 3, we only need 3 approaches infinity to guarantee the convergence.

The convergence rate of the DBS operator is shown in Theorem [3| where the proof is provided in
Appendix C.
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Theorem 3 (Convergence rate of value iteration with the DBS operator) For any power
series By = tP(p > 0), we have that for any ¢ € (0,min{0.25,||R||"'}), after

log(L ) +log(+= 1
max{O ( g(el)og(%g)(l‘”)), O(((ljv)é)’))} steps, the error ||V, — V*|| < e

For the larger value of p, the convergence rate is faster. Note that when p approaches co, the conver-
gence bound is dominated by the first term.

From the above theoretical analysis of the DBS operator, we demonstrate that value iteration can still
converge to the optimal even with an operator violating the non-expansive property. Such finding
generalizes previous understanding of the convergence of value iteration, which is restricted to a
class of non-expansive operators. In addition, the convergence rate is of the same order as the
standard Bellman operator. This implies that the DBS operator will not lose too much in terms of
the convergence rate in value iteration. These findings provide theoretical background and pave
the way for the study of the use of the DBS operator in reinforcement learning algorithms, e.g., Q-
learning, which does not have full information about the model. In the absence of full information
about the model, the agent has to explores in the environment and exploits the optimal strategy.

4.2  APPLICATION: Q-LEARNING

In this section, we show that the DBS operator can be applied in a model-free Q-learning algorithm
(Algorithm [9), which requires careful trade-off between exploration and exploitation.

The DBS Q-learning updates the Q-value according to the DBS operator, where it admits a dynam-
ically changing series ;. It is worth noting that in Theorem [3| the larger value of p results in faster
convergence rate in value iteration. However, this is not the case in Q-learning. Indeed, Q-learning
differs from value iteration in that it knows nothing about the environment, which means the agent
has to learn from experience. Thus, the agent needs to balance between exploration and exploitation.
If p is too large, it quickly approximates the max operator that favors pure exploitation.

Algorithm 2: DBS Q-learning

Input: An increasing series {: }
Initialize Q(s,a),Vs € S,a € A arbitrarily, and Q(terminal)-(state,-) = 0
for each episodet = 1,2, ... do
Initialize s
Be = f(1)
for each step of episode do
choose a from s using policy derived from Q
take action a, observe r, s’
Q(s,a) — Q(s,a) + alr +boltzs, (Q(s, ) — Qs, a)]

s+ a

e X N AN R W N =

In Theorem [ we prove that DBS Q-learning converges to the optimal policy under the same ad-
ditional condition as in DBS value iteration. The proof is based on the stochastic approximation
lemma in (Singh et al.| (2000)), and the full proof is referred to Appendix

Theorem 4 (Convergence of DBS Q-learning) The Q-learning algorithm with dynamic Boltzmann
softmax policy given by

Qua1(se, ar) = (1= aqlse, ) Qulse, ) + sy, ar)[re + yboltzp, (Qi(sev1,-))] (D
converges to the optimal Q* (s, a) values if
1. The state and action spaces are finite.
2. 3, au(s,a) =ccand Y, ai(s,a) < oo
3. limy o0 Bt = 0

4. Var(r(s,a)) is bounded.
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(a) Environment. (b) Results of Q-learning.

Figure 1: The grid world experiment.
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Figure 2: Value iteration in the GridWorld.

Note that different from value iteration, Q-learning does not know the full information about the
model and has to learn from experience. Thus, it is vital to trade-off exploration and exploitation.
Unlike the max operator, the DBS operator enables exploration in the begining of learning with a
small value of 3;. Since the estimated value function is not accurate in the begining of learning, it is
better to weight possible choices according to the current estimation rather than greedily selecting
the maximum estimated value. The DBS favors exploitation more as [3; increases, meaning that it is
able to utilize the information of current estimation.

5 EXPERIMENTS

5.1 GRIDWORLD

We first evaluate the performace of DBS value iteration DBS Q-learning in a toy problem, the
GridWorld (Figure Eka)), which is a larger variant of the environment of (O’ Donoghue et al.| (2016)).
The GridWorld consists of 10 x 10 grids, with the dark grids representing walls. The agent starts
at the upper left corner and aims to eat the apple at the bottom right corner upon receiving a reward
of +1. Otherwise, the reward is 0. An episode ends if the agent successfully eats the apple or a
maximum number of steps 300 is reached. For this experiment, we consider the discount factor
v =0.9.

The training loss of value iteration is shown in Figure Z(a). As expected, larger value of / leads to
smaller loss. Figure 2(b) and Figure 2fc) demonstrate the training loss in logarithmic form for the
last episode. For static /3, the value iteration algorithm suffers from some loss which decreases as (3
increases. For dynamic 3, the performance of ¢? and ¢* are the same and achieve the smallest loss.
The convergence rate is illustrated in Figure 2{d). For higher order p of 3, = P, the convergence
rate is faster. We also see that the convergence rate of t? and 10 is very close as discussed before.

Figure g_kb) demonstrates the number of steps the agent spent in each episode. DBS Q-learning with
B¢ = t* achieves the best performance as it best trades off between exploration and exploitation.
When the power p of 8; = tP increases, it performs closer to the max operator for exploitation.
When p = 1, it performs worse than Q-learning in this simple game as it explores more. Thus,
considering trading off between exploration and exploitation, we choose p = 2 in the following
experiments.
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| Mean | Median
DQN ‘ 495.76% 84.72%

DBS-DQN | 1611.49% | 103.95%

Table 1: Summary of Atari games.
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Figure 3: Relative human normalized score on Atari games.

We evaluate the DBS-DQN algorithm on 49 Atari games from the Arcade Learning Environment
(Bellemare et al.|(2013))) by comparing it with DQN. For fair comparison, we use the same setup of
network architectures and hyper-parameters as in Mnih et al.|(2015) for both DQN and DBS-DQN.
Note that DBS-DQN estimates the value for the next state according to the DBS operator, where
B¢ = ct? and c is the coefficient. See Appendix E| for full implementation details. For each game,
we train each algorithm for 50M steps. The evaluation procedure is identical to |[Mnih et al.| (2015)),
30 no-op evaluation, where the agent performs a random number (up to 30) of “do nothing” actions
in the beginning of an episode.

Table|I| shows the summary of results in human normalized score, which is defined as (Van Hasselt

et al. (2016)):
SCOT€agent — SCOT€random

x 100%, (8)
SCOT€human — SCOT€random

where human score and random score are taken from Wang et al.| (2015)). As illustrated in Table
DBS-DQN significantly outperforms DQN in terms of both the mean and the median of the human
normalized score. To better characterize the effectiveness of DBS-DQN, its improvement over DQN
is shown in Figure[3] where the improvement is defined as the relative human normalized score:

SCOr€agent — SCOT€haseline

x 100%, €))

maX{Scorehuman; Scorebaseline}’ — SCOI'€random
with DQN serving as the baseline. In all, DBS-DQN exceeds the performace of DQN in 33 out of
49 Atari games. Full scores of comparison is referred to Appendix [G] Figure ] shows the learning
curves for each algorithm. The results provide emprical evidence that the DBS operator trades-off
well exploration and exploitation in value function optimization.

6 RELATED WORK

In reinforcement learning, avoiding the exploration-exploitation dilemma is a vital task. The Boltz-
mann softmax operator is a popular way to balance exploration and exploitation by exponentially
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Figure 4: Learning curves in Atari games.

weighting its current estimation (Kaelbling et al.[(1996)). To address the problem, a line of research
focuses on the exploration strategy where the agent should exploit current best action on the one
hand, but it needs to explore whether there are better possibilities on the other hand. (Singh et al.
(2000)) studied the convergence of on-policy algorithm, i.e., Sarsa. They show that the strategy
needs to be greedy in the limit, which guarantees that the optimal action can be selected. Although
they considered a dynamic parameter of /5 in the Boltzmann softmax operator, it depends on the
state, which is impractical in complex problems as Atari games. The other line studies the use
of alternative operators in value function estimation. To better trade-off between exploration and
exploitation, |Asadi & Littman| (2016) proposed the “Mellowmax” operator, where the degree of
exploration and exploitation is controlled by its parameter. However, although the “Mellowmax”
operator can approximate maximization in the limit, it converges to a sub-optimal policy rather than
the optimal policy. [Haarnoja et al.|(2017) utilized the log-sum-exp operator, which enables better
exploration and learns deep energy-based policies.

It is worth noting that meta learning cannot be applied to solve the problem since the Boltzmann
softmax operator with a fixed parameter would inevitably lead to error in value iteration, so there is
no optimal value of .

7 CONCLUSION

We provide a new theoretical technique to analyze the error bound of the value iteration algorithm
with the Boltzmann softmax operator. Then, we develop the DBS value iteration algorithm based
on our proposed dynamic Boltzmann softmax (DBS) operator which enables convergence to the op-
timal value function and present convergence rate analysis. We show that the DBS operator can be
applied in a model-free reinforcement learning algorithm, Q-learning. Experimental results demon-
strate the effectiveness of the DBS operator and show that it can be extended to complex problems as
Atari games. For future work, it is worth studying the sample complexity of our proposed DBS Q-
learning algorithm. It is also a promising direction to apply the DBS operator to other state-of-the-art
DQN-based algorithms, such as Rainbow (Hessel et al.| (2017)).
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A PROPERTY OF THE BOLTZMANN SOFTMAX OPERATOR

Proposition 1 For 8 > 0 and X,Y € R", the Boltzmann softmax operator satisfies the following
property:
2log(n)

|boltzp(X) — boltzg(Y)| < || X — Y||eo + 5

(10)
where || - || is the {oo-norm in R™.

Proof 1 Let Ly denote a log-sum-exp function, i.e., Lg(X) = % log(Y_7, eP)

|boltz(X) — boltz(Y)| = [(bolizg(X) — Lg(X)) — (boltzs(Y) — Ls(Y)) + (Ls(X) — L(Y))|

< |boltzg(X) — Lp(X)| + |boltzg(Y) — Lg(Y)| + [Ls(X) —Lﬁ(Y()lll)

From MacKay & Mac Kay|(2003), we have |boltzg(X) — Lg(X)| < %

Substitute the above inequality into Equation ([[1), we have

|boltzg(X) — boltzg(Y)| < 2102 ; log Z Py %1og(Z evt) "
_ 2log(n ) 1 Z:’ ePi
=5 gl e

Let A; = |x; — y;| and assume ", eP% > 3" | ePVi without loss of generality. Then, we have

ZT}: eBi 1 Zﬁ: eByit+A:)

ﬁ) < *‘IOg(lln—ﬁy,

D iy €9V 5 Dy €9V
S eBitl|Aille)

%’ log(

< =|lo - (13)
B‘ g Zi:l eﬁyi
< Al
= |z — ylle
So we have
2log(n)
|boltz3(X) — bolizg(Y)| < + |z — ylloo (14)

B

B ERROR BOUND OF THE BOLTZMANN SOFTMAX OPERATOR

Theorem 1 (Error bound of value iteration with Boltzmann softmax operator) Ler V; be the
value function computed by the Boltzmann softmax operator at the t-th iteration and Viy denote the

—V*loo £4YIVo — Voo + %&)w

Proof 2 Let Tg and T, denote the dynamic programming operators for the Boltzmann softmax
operator boltzg and the max operator respectively, so

(TsV)(s) = boltzs(Q(s, ")), (TmV)(s) = max(Q(s, ")) (15)
Thus,
1(TaV1) = (T Va)lloo < [[(TV1) = (T5V2)loo + (T8 V2) — (T V2) oo (16)
(A) (B)

10
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For the term (A), we have
[(T5V1) = (T5, Va)lloo = max [boltz5(Q1(s, ) — boltzs(Qa(s, -))|
2log(|4])
B

< maxmaxy 37 p(s'|s. @) [Va (') — Va(s)]

< maxmax |@Q; — Q2| +
2log(|A|) (17)
4 2ol
B
2log(|A])

For the term (B), we have
(TsV1) = (T V1)l oo = max[boltzs(Qu(s, ) — max(Qu(s, -))|
< max [[boltz5(Q1(s, ) — Ls(Q1(s, )| + | Ls(Qu(s, ) — max(Q(s, )]
_ 2log(lA)
- B
(18)
Thus,
4log(|Al)
B

As for the max operator, T, is a contraction mapping, then from Banach fixed-point theorem we
have T,,V* =V*

l]ft T d;note the dynamic programming operator for a sequence of Boltzmann softmax operators,
then we have

(TaV1) = (T Va)lloo < AI[Vi = Valloo + (19)

Ve = V7 lloo = 1T5Vo = T0 V0

_ . 4log(|A

SvWﬁl%—ﬁZW|m+%§D
<..

Hog(|A]) < 20
Svtll%—V*HooJrTth_’“

k=1

410g(JA (1 — 7)

=YNVo — V¥l +

C CONVERGENCE OF DBS VALUE ITERATION

Theorem 2 (Convergence of value iteration with the DBS operator) For a sequence of dynamic
Boltzmann softmax operator {B;}, if B — oo, Vi converges to V*, where V; and V* denote the
value function after t iterations and the optimal value function.

Proof 3 Let T3, and T,, denote the dynamic programming operators for dynamic Boltz-
mann softmax operator boltzg, and the max operator respectively, so (TzV)(s) =
boltz, (Q(s, ), (TmV)(s) = max(Q(s, -)). Thus, we have

(4) (B)

By similar techniques as in Theorem|[6] we have

4log(|A[)

(75, V1) = (T V2)lloo < AI[V1 = Valloo + )

(22)

11
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As the max operator T, is a contraction mapping, then from Banach fixed-point theorem we have
TR V*=V*

Let T} denote the dynamic programming operator for a sequence of dynamic Boltzmann softmax
operators, so T = T3, Tp, ... Tp,, then we have

Ve = Vloo = 1T Vo = TV loo
= H(%t%l)% - (Tm---Tm)V*HOO
4log(|A])

S MTpese Ta)Vo = (T TV oo + —3
t (23)

<..

<A |Vo = V*|oo + 4log(|A]) Z

t
k=1

Since limy_y o0 = 3 =0, we have that Ve, > 0,3K > 0, such thatVk > K, |,3 | < €1. Thus,

t _ K(e1) 4_ t _
th _ N . Z Atk
= P i k=K (e1)+1 B
t—k t—k
: Y +ea Y
minf = k=K (e1)+1 (24)
1 =Bl (1 — Kl N 1(1 — At K ey
~ minf 1—7 ‘1 1—7
1 ,yt—K(el)
“1—~" ming * 61)
Ift > losllel 1;2;1)1“1“5) + K(er)and e; < ex(1 — ), then Y4 _, ;3 L e

So we obtain that Vey > 0,3T > 0, such that ¥Vt > T, | 22:1 %| < €3.

f k

Thus, hmt_)oozk 1 Bk =0.

Taking the limit of Equation (23)), we have that

. o * . t
B [[Ver = Voo < lim [5']|V3 = V]| + 4log( 'A';

=0 (25)

t
— k

D CONVERGENCE BOUND

Theorem 3 (Convergence rate of value iteration with the DBS operator) For any power

series By = tP(p > 0), we have that for any ¢ € (0,min{0.25,||R||7'}), after
log(1) +log (1) 1 N\ .
max{O( Toa(D) ),O(((l_,y)e)P)} steps, the error ||V; — V*|| <e.
Y

Proof 4

t t— o3} 1 e} -1

LA T T
Z kp =7 [Z ke kp ]
k=1 k=1 k=t+1 26)

=~ Li,(vy™") =y oy hpt+1)]
——— N—_—— —

Polylogarithm Lerch transcendent

BylFerreira & Lopez|(2004), we have

5 t,yf(t+1) 1 1 .
aution ~ =
aetton@0) Y S T Gy T )+ @n

12
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From Theorem[2lwe have

% " 41og(|A
Vi = VIl <A1V - V¥ + 5(4)

L=+ 1P

log(1)+log(25 ) +log(I| R||)+log(4) (sloqu\))% —1y
log(%) ’ (1=7)e

4log(|A

=)+ 17 = by

Thus, for any € > 0, after at most t = max{
steps, we have ||Vy — V*|| < e

E CONVERGENCE OF DBS Q-LEARNING

Theorem 4 (Convergence of DBS Q-learning) The Q-learning algorithm with dynamic Boltzmann
softmax policy given by

Qrr1(st,ar) = (1 — (e, ar)) Qe (e, ar) + au(se, ar)[re + yboltzg, (Qt(st+1,+))] (29)
converges to the optimal Q* (s, a) values if

1. The state and action spaces are finite.
2.3 au(s,a) =ccand Y, ai(s,a) < oo
3. limy o0 Bt = 0

4. Var(r(s,a)) is bounded.

Proof 5 Let As(s,a) = Qi(s,a) — Q*(s,a) and Fy(s,a) = ry +yboltzg, (Qi(st41,-)) — @ (s, a)
Thus, from 29) we have Ay 1(s,a) = (1 — ay(s,a))Ai(s,a) + (s, a)Fy(s, a), which has the

same form as the process defined in Lemma 2.
Next, we verify Fi(s, a) meets the required properties.
Fiy(s,a) = re + yboltzg, (Qi(si41,7)) — Q" (s, a)
= (re + ymax Qe(se41, ace1) — Q7 (s, 0)) + v(boltzp, (Qe(st+1, ) — Max Qu(se+1, arr1))
a at41

2 Gy(s,a) + Hy(s,a)
(30)

For Gy, it is indeed the F; function as that in Q-learning with static exploration parameters, which
satisfies

G (s, )| Pel | < A A¢ GD

For H;, we have

E[H,(s,a)]| = 7] Y p(s'|s, a) boltzp, (Qu(s", ) — max Qy(s", )|

< 7| max[boltzs, (Qi(s', -)) — max Q.(s",a’)]|
e Qu(s )|
a’

) = Lo, (Qu(s, ) + (L5, (Qu(s', ) — max Qu(s',a)|
) = Lo, (Qu(s', )] + L, (Qu(s', ) — max Qu(s', a')])

)
< ymax |boltzp, (Qu(s', )
— yn%gz;x ‘(bOltZﬂt (Qi(s',)
< ~ymax ([boltzg, (Qt(S/a )

log(|A
< 7log(l4]) +’ymax\ log Z Qs —max Qy(s', )|

o Bt oA
- 2vlog(4])
Bt
(32)
Let hy = %j“ﬁm, so we have
[[E[F (s, a)]|Pillw < V|| A¢|w + he, (33)

where h; converges to 0

13
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F IMPLEMENTATION DETAILS

The network architecture is the same as in (Mnih et al.[(2015)). The input to the network is a raw
pixel image, which is pre-processed into a size of 84 x 84 x 4. Table [2] summarizes the network
architecture.

LAYER | TYPE | CONFIGURATION | ACTIVATION FUNCTION
1st convolutional #filters=32, size=8 x 8, stride=4 | ReLU
2nd convolutional #filters=64, size=4 x 4, stride=2 | ReLU
3rd convolutional #filters=64, size=3 x 3, stride=1 | ReLU
4th fully-connected | #units=512 ReLU

output | fully-connected | #units=#actions —

Table 2: Network architecture.

14
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G ATARI SCORES

GAMES DQN | DBS-DQN
Alien 20.18 25.84
Amidar 56.73 67.26
Assault 780.99 851.52
Asterix 50.03 56.69
Asteroids 1.38 1.68
Atlantis 1651.23 | 23211.93
Bank Heist 59.66 81.08
Battle Zone 79.08 103.46
Beam Rider 49.89 55.04
Bowling 19.84 27.72
Boxing 732.5 730.25
Breakout 1332.64 1336.32
Centipede 25.86 37.16
Chopper Command 80.81 12.0
Crazy Climber 399.15 419.03
Demon Attack 659.59 473.09
Double Dunk 545.45 432.58
Enduro 84.72 108.93
Fishing Derby 163.77 196.0
Freeway 104.05 103.95
Frostbite 17.15 40.37
Gopher 395.37 556.44
Gravitar 9.44 7.89
H.ER.O. 65.14 64.75
Ice Hockey 76.86 75.8
James Bond 270.09 295.29
Kangaroo 241.6 425.36
Krull 639.28 574.89
Kung-Fu Master 114.78 129.87
Montezumas Revenge 0.0 8.42
Ms. Pac-Man 41.81 37.45
Name This Game 102.76 110.91
Pong 113.88 116.19
Private Eye 0.18 2.98
Q*Bert 97.46 80.44
River Raid 38.27 41.63
Road Runner 504.66 573.03
Robotank 636.08 409.02
Seaquest 13.8 14.97
Space Invaders 101.55 76.54
Star Gunner 559.34 391.4
Tennis 232.26 166.45
Time Pilot 78.38 163.0
Tutankham 36.3 170.04
Up and Down 84.74 181.62
Venture 13.73 8.67
Video Pinball 12792.59 | 45791.36
Wizard Of Wor 51.05 54.68
Zaxxon 58.32 62.15

Figure 5: Human normalized scores across all games, starting with 30 no-op actions.
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