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ABSTRACT

We propose a probabilistic framework for domain adaptation that blends both
generative and discriminative modeling in a principled way. Under this framework,
generative and discriminative models correspond to specific choices of the prior
over parameters. This provides us a very general way to interpolate between
generative and discriminative extremes through different choices of priors. By
maximizing both the marginal and the conditional log-likelihoods, models derived
from this framework can use both labeled instances from the source domain as well
as unlabeled instances from both source and target domains. Under this framework,
we show that the popular reconstruction loss of autoencoder corresponds to an
upper bound of the negative marginal log-likelihoods of unlabeled instances, where
marginal distributions are given by proper kernel density estimations. This provides
a way to interpret the empirical success of autoencoders in domain adaptation and
semi-supervised learning. We instantiate our framework using neural networks,
and build a concrete model, DAuto. Empirically, we demonstrate the effectiveness
of DAuto on text, image and speech datasets, showing that it outperforms related
competitors when domain adaptation is possible.

1 INTRODUCTION

Making accurate predictions relies heavily on the existence of labeled data for the desired tasks.
However, generating labeled data for new learning tasks is often time-consuming. As a result, this
poses an obstacle for applying machine learning methods to broader application domains. Domain
adaptation focuses on the situation where we only have access to labeled data from source domain,
which is assumed to be different from the target domain we want to apply our model to. The goal
of domain adaptation algorithms under this setting is to generalize better in the target domain by
exploiting labeled data in the source domain and unlabeled data in the target domain.

In this paper we propose a probabilistic framework for domain adaptation that combines both
generative and discriminative modeling in a principled way. We start from a very simple yet general
generative model, and show that a special choice on the prior distribution of model parameters
leads to the usual discriminative modeling. Due to its generative nature, the framework provides
us a principled way to use unlabeled instances from both the source and the target domains. Under
this framework, if we use non-parametric kernel density estimators for the marginal distribution
over instances, we can show that the popular reconstruction loss of autoencoders corresponds to
an upper bound of the negative marginal log-likelihoods of unlabeled instances. This provides a
novel probabilistic interpretation on why unsupervised training with general autoencoders may help
with discriminative tasks, though interpretations exist for specific variants of autoencoders, e.g.,
denoising autoencoders (Vincent et al., 2008) and contractive autoencoders (Rifai et al., 2011). Our
interpretation may also be used to explain the recent success of autoencoders in semi-supervised
learning (Rasmus et al., 2015).

We instantiate our framework with flexible neural networks, which are powerful function approxima-
tors, leading to a concrete model, DAuto. DAuto is designed to achieve the following three objectives
simultaneously in a unified model: 1). It learns representations that are informative for the main
learning task in the source domain. 2). It learns domain-invariant features that are indistinguishable
between the source and the target domains. 3). It learns robust representations under reconstruction
loss for instances in both domains. To demonstrate the effectiveness of DAuto, we first conduct a
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synthetic experiment using the MNIST dataset, showing its superior performance when adaptation is
possible. We further compare DAuto with state-of-the-art models on the Amazon benchmark dataset.
As another contribution, we extend DAuto so that it can also be applied in time-series modeling. We
evaluate it on a speech recognition task, showing its effectiveness in improving recognition accuracies
when trained from utterances with different accents. In the end, we also provide qualitative analysis
in the case where domain adaptation is hard and all the methods we test fail.

2 RELATED WORK

Recently, due to the availability of rich data and powerful computational resources, non-linear
representations and hypothesis classes for domain adaptation have been increasingly explored (Glorot
et al., 2011; Baktashmotlagh et al., 2013; Chen et al., 2012; Ajakan et al., 2014; Ganin et al., 2016).
This line of works focuses on building common and robust feature representations among multiple
domains using either supervised neural networks (Glorot et al., 2011), or unsupervised pretraining
using denoising auto-encoders (Vincent et al., 2008; 2010). Other works focus on learning feature
transformations such that the feature distributions in the source and target domains are close to each
other (Ben-David et al., 2007; 2010; Ajakan et al., 2014; Ganin et al., 2016). In practice it was
observed that unsupervised pretraining using stacked denoising auto-encoders (mSDA) (Vincent
et al., 2008; Chen et al., 2012) often improves the generalization accuracy (Ganin et al., 2016). One
of the limitations of mSDA is that it needs to explicitly form the covariance matrix of input features
and then solves a linear system, which can be computationally expensive to solve exactly in high
dimensional settings, but approximate scheme exists.

Domain adversarial neural networks (DANN) is a discriminative model to learn domain-invariant
features (Ganin et al., 2016). It can be formulated as a minimax problem where the feature transforma-
tion component tries to learn a representation to confuse a following domain classification component.
DANN also enjoys a nice theoretical justification to learn a feature map to decrease the A-distance
measure (Ben-David et al., 2007) between source and target domains. Other distance measures
between distributions can also be applied. Tzeng et al. (2014) and Long et al. (2015) propose similar
models where the maximum mean discrepancy (MMD) (Gretton et al., 2012) between two domains
are minimized. Tzeng et al. (2017) also proposed a variant of DANN, known as ADDA, where the
encoders for source and target domains are not shared. Instead of joint training objective classifier
and domain discriminator, ADDA runs in two stages. At the first stage, source encoder and classifier
are trained in a supervised way on the source domain. At the second stage, both source encoder
and source classifier are fixed, and both domain discriminator and target encoder are trained using
only unsupervised samples from both domains. Very recently, Bousmalis et al. (2016) propose a
model where orthogonal representations that are shared between domains and unique to each domain
are learned simultaneously. They achieve this goal by incorporating both similarity and difference
penalties for features into the objective function. Finally, domain adaptation can also be viewed as a
semi-supervised learning problem by ignoring the domain shift, where source instances are treated as
labeled data and target instances are unlabeled data (Dai et al., 2007; Rasmus et al., 2015).

DAuto improves over mSDA (Chen et al., 2012) when the dimension of feature vectors is high and as
a result the covariance matrix cannot be explicitly formed. As we will see later, DAuto can also be
naturally extended to modeling in time-series domain. On the other hand, compared with DANN,
DAuto has a clear probabilistic generative model interpretation and provides us a principled way to
use unlabeled data from both the source and target domains during training.

3 A PRINCIPLED HYBRID MODEL FOR DOMAIN ADAPTATION

Generative models provide a principled way to use both labeled data from source domain and
unlabeled data from both domains. In this section we start with a general probabilistic framework for
domain adaptation using a principled hybrid of both generative and discriminative models. We then
provide a concrete instantiation of our framework, and show that it leads to popular reconstruction-
based domain adaptation models. Our derivation can also be used to explain the prevalence and
success of autoencoders in both domain adaptation and semi-supervised learning (Rasmus et al.,
2015; Bousmalis et al., 2016). We end this section by proposing the DAuto model that follows
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our probabilistic framework and combines the minimax adversarial loss as a regularizer for domain
adaptation.

3.1 A PROBABILISTIC FRAMEWORK FOR DOMAIN ADAPTATION

Let x ∈ Rd be an input instance and y be its target variable: y ∈ {0, 1} in the classification setting or
y ∈ R in the regression setting. A fully generative model can be specified as follows:

p(x, y;φ, ψ) = p(x;φ)p(y | x;ψ)p(φ, ψ) (1)

where φ is the model parameter that governs the generation process of x; ψ is the model parameter for
the conditional distribution y | x, and p(φ, ψ) is the prior distribution over both model parameters. At
first glance, one might find the above generative model unsuitable under the domain adaptation setting
since it implicitly assumes that the marginal distribution p(x;φ) is shared among all instances
from both domains. The key point that makes the above framework still valid under domain
adaptation lies in the possible richness of the generation process parametrized by φ: although the
marginal distribution may be different in the input space Rd, we can still find proper transformation
f : Rd → RD such that the induced marginal distributions (by f ) over both domains are similar in
RD (Fig. 1). In fact, this is a necessary and implicit assumption that underlies the recent success of
regularization based discriminative models (Tzeng et al., 2014; Long et al., 2015; Ganin et al., 2016).
To better understand this, we illustrate the generative process for x in Fig. 1.

Using the above joint model, if we assume that the prior distribution p(φ, ψ) factorizes as p(φ, ψ) =
p(φ)p(ψ), then we will have:

max
φ,ψ

p(x;φ)p(y | x;ψ)p(φ)p(ψ) = max
ψ

p(y | x;ψ)p(ψ) ·max
φ

p(x;φ)p(φ) (2)

Note that in this case only the first term in R.H.S. in (2) is concerned with the prediction, which means
unsupervised learning on p(x;φ)p(φ) does not help generalization on prediction. In other words, the
independence assumption between φ and ψ equivalently reduces our joint model over both x and y
into discriminative models that only contain parameters ψ if we only care about prediction accuracy.
We emphasize that in this reduction, the assumption p(φ, ψ) = p(ψ)p(φ) is crucial, otherwise the
optimal ψ∗ will still depend on φ, i.e., ψ∗ = ψ∗(φ). On the other extreme, if we have φ = ψ, then
this corresponds to having a prior p(φ, ψ) = p0(φ, ψ)δ(φ− ψ) that constrains φ and ψ to be shared
in both generative processes:

max
φ,ψ

p(x;φ)p(y | x;ψ)p0(φ, ψ)δ(φ− ψ) = max
φ

p(x;φ)p(y | x;φ)p0(φ) (3)

where p0 is a base distribution and δ(·) denotes the Kronecker delta function. It can be seen that
when φ = ψ, the formulation exactly reduces to the usual MAP inference scheme in a generative
model over both x and y, given parameter φ.

The above discussion shows that the formulation given in (1) is general enough to incorporate both
discriminative and generative modelings as two extreme cases, and depending on the choice of
the prior distribution over φ and ψ, we can easily recover both. In a nutshell, when φ and ψ are
independent, we recover the discriminative modeling; otherwise if φ and ψ are exactly the same,
we recover the generative modeling. However in practice the sweet spot often lies in a mix of both
models (Ng & Jordan, 2002): discriminative training usually wins at predictive accuracy, while
generative modeling provides a principled way to use unlabeled data. To achieve the best of both
worlds, now let us consider the case where φ and ψ have a common subspace, i.e., some model
parameters are shared in both the generation process of x and y | x. Clearly under this case the
factorization assumption of the prior distribution does not hold anymore, and we cannot hope to
recover a discriminative model by simply optimizing ψ. To make our discussion concrete, think if
we have p(x;φ) = g(f(x; ζ);φ\ζ) and p(y | x;ψ) = h(f(x; ζ), y;ψ\ζ), where ζ are the shared
parameters of both φ and ψ. Domain adaptation is possible under this setting whenever f(·; ζ) forms
a rich class of transformations so that unlabeled instances from both domains have similar induced
marginal distribution. This is a necessary condition for domain adaptation to succeed under our
framework. As a generative model, it also allows algorithms to use unlabeled instances from both
domains to optimize the marginal likelihood function p(x;φ), which also helps the predictive task
p(y | x;ψ) due to the shared component ζ.
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3.2 AN INSTANTIATION USING KERNEL DENSITY ESTIMATION

Now we use our probabilistic framework and instantiate it with proper choices of both the marginal
distributions as well as the conditional distributions. On one hand, we would like to make as few
assumptions as possible about the generation process of x; on the other hand, the model should be
rich enough such that even though instances from source and target domains may have different
distributions in Rd, the model contains flexible transformation under which the induced distributions
are similar enough in both domains. Taking both considerations into account, we propose to use
nonparametric kernel density estimator (KDE) to model p(x;φ). Specifically, let K(·) be the chosen
kernel and {xi}ni=1 be a set of unlabeled instances. Our KDE for p(x;φ) is given by:

p(x;φ) ∝ 1

nw

n∑
i=1

K

(
x− g(f(xi; ζ);φ\ζ)

w

)
(4)

where w > 0 is the bandwidth and f : Rd → RD and g : RD → Rd are two feature transformations.
Our definition of KDE differs from the original one (Wassermann, 2006) by the additional parametric
transformations g ◦ f applied to x, and when g ◦ f = I , the identity map, our definition reduces to
the original one. Note that when applied to the source and target domains separately, the original
KDE does not give similar density estimations if their empirical distributions are far from each other,
which is exactly the case under domain adaptation.

Rd

XTXS

RD

XS XT

f g
Rd

pS(x)

pT (x)

Figure 1: Density estimator with additional transformations f and g. Input instances XS and XT are
from source and target domains, respectively. f transforms both XS and XT to RD so that they are
close in RD; g transforms them back so that they have close density estimations in Rd.

For the conditional distribution y | x, depending on whether y ∈ R or y ∈ {0, 1}, typical choices
include linear regression or logistic regression. While both these two models are linear and limited,
we can first augment them with rich nonlinear transformation f applied to the input instance.

Note that the transformation f , along with its parameters, are shared between both p(x;φ) and
p(y | x;ψ). Finally, our model is completed by specifying the prior distribution as follows:

p(φ, ψ) = p0(φ, ψ)δ(φ(ζ)− ψ(ζ))
The δ(·) constrains the common parameter ζ to be shared by both p(x;φ) and p(y | x;ψ). The base
distribution p0(φ, ψ) can be chosen as a flat (possibly improper) prior, which corresponds to the usual
MLE criterion; or other forms of distributions that effectively introduce regularizations on both φ and
ψ.

3.3 LEARNING BY MAXIMIZING JOINT LIKELIHOOD

One of the advantages a generative model lends us is a principled way of using unlabeled data from
both domains. Let {(xi, yi)}mi=1 be labeled data from source domain and {xj}nj=1 be unlabeled data
from both domains. Instead of just maximizing the conditional likelihood using labeled data, we can
jointly maximize both the conditional likelihood and the marginal likelihood:

ψ∗, φ∗ = argmin
ψ,φ

−
n∑
j=1

log p(xj ;φ)−
m∑
i=1

log p(yi | xi;ψ) (5)

It is clear that the negative conditional log-likelihood function is exactly the cross-entropy loss
between the true label yi and its predicted counterpart. For the negative marginal likelihood, if we
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choose a Gaussian kernel and plug in our KDE estimator given in (4), we have:

− log p(xj ;φ) ∝ − log

 1

nw

n∑
j′=1

exp

(
−||xj − g(f(xj′ ; ζ);φ\ζ)||

2
2

2w2

)
≤ − log

1

nw
exp

(
−||xj − g(f(xj ; ζ);φ\ζ)||

2
2

2w2

)
= λ · ||xj − g(f(xj ; ζ);φ\ζ)||22 + c (6)

where λ > 0 only depends on the bandwidth and c is a constant that does not depend on xj . The
upper bound becomes tight as w → 0. Note that in the above derivation we omit the prior distribution
p(φ, ψ) = p0(φ, ψ)δ(φ(ζ)− ψ(ζ)) by assuming that p0 is a flat constant distribution. If other design
choice is made, e.g., a Gaussian over φ(ψ), then there will be a corresponding `2 regularization term
for the model parameters φ(ψ). Putting all together, maximizing a combination of conditional and
marginal likelihoods correspond to the following unconstrained minimization problem:

minimizeψ,φ −
m∑
i=1

log p(yi | xi;ψ) + λ

n∑
j=1

||xj − g(f(xj ; ζ);φ\ζ)||22 (7)

Remark. The maximum of joint likelihood estimator is also the maximum-a-posteriori estimator,
leading to a fully probabilistic interpretation of (7). The second term in the objective function has
an interesting interpretation: it essentially measures the reconstruction error after a transformation
by g ◦ f . Based on (6), if we interpret f as an encoder and g as the corresponding decoder, then
minimizing the reconstruction loss from an autoencoder exactly corresponds to maximizing a lower
bound of the marginal probability distribution p(x), where p(x) is given by our kernel density
estimation. Furthermore, the squared `2 measure in the reconstruction error is not restricted: for
example, if instead of a Gaussian kernel we chose the Laplacian kernel, then we would have an `1
measure of the reconstruction loss in (7). This interpretation may also be used to explain the practical
success of autoencoders in semi-supervised learning (Rasmus et al., 2015).
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p(y | x; )

Figure 2: Model architecture of DAuto and its computation flow during learning phase. DAuto
contains three components: the autoencoder (f and g), the domain classifier (h̃) and the label
predictor (h). The autoencoder instantiates the marginal distribution p(x); the encoder f and the label
predictor instantiates the conditional probability p(y | x). The domain classifier works as a regularizer.
The model contains three different objectives: the domain classification loss, reconstruction loss as
well as the label prediction loss. In the inference phase, only f and h will be used.

3.4 A CONCRETE MODEL (DAUTO)

We use neural networks as flexible function approximators for our desired transformations f and g.
Specifically, we use fully-connected neural networks to parametrize f and g and softmax function to
parametrize h. If y ∈ R, we can simply change the softmax function to be an affine function as the
output. For the simplicity of discussion, assume we only use a one-layer fully connected network to
represent f and g: f(x) = σ(W1x) and g(z) = σ(W2z), where W1 ∈ RD×d, W2 ∈ Rd×D and σ(·)
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is an element-wise nonlinear activation function, e.g., the rectify linear unit. For ease of notation, we
also omit the translation terms from above affine transformations. Let h(z) = softmax(Whz) be the
softmax layer to compute the conditional probability of class assignment.

Although our model has the capacity to learn the shared transformation f under which unlabeled data
from both domains have similar marginal distributions, the objective function discussed so far does
not necessarily induce such a transformation. For the purpose of domain adaptation, it is necessary to
add a regularizer that enforces this constraint. One popular and effective choice is the A-distance
introduced by (Kifer et al., 2004; Ben-David et al., 2007; 2010). It can be shown that the A-distance
can be approximated by the binary classification error of the domain classifier that discriminates
instances from the source or the target domain (Ben-David et al., 2007). The intuition here is: given a
fixed class of binary labeling functions, if there exists a function that is easy to tell instances in the
source domain from those in the target domain, then the distance between these two domains is large.
On the other hand, if the set of labeling functions are confused by such task, then we can think the
distance between these two domains is small. Following DANN, here we take the same approach:
let h̃ = softmax(Wdz) be the domain classifier where z = σ(W1x) is the shared representation
constructed by encoder f . The regularizer takes the form as a convex surrogate loss for the binary 0-1
error. A common choice is the cross-entropy loss. Putting all together, the optimization problem of
our joint model is given by:

min
W1,W2,Wh

max
Wd

m∑
i=1

Ly(xi, yi;W1,Wh) + λ

n∑
j=1

Lr(xj ;W1,W2)− µ
n∑
j=1

Ld(xj ;W1,Wd) (8)

where Ly(·, ·) is the prediction loss, Lr(·) is the reconstruction loss and Ld(·) is the domain classifi-
cation loss. We illustrate the model architecture in Fig. 2. As we show above, the cross-entropy loss
for the learning task and the reconstruction loss are essentially the negative joint log-likelihoods of
both labeled instances and unlabeled instances. The domain classification loss works as a regularizer
to incorporate our prior knowledge that the encoder f should form an invariant transformation. As
a result, DAuto is designed to achieve the following three objectives simultaneously in a unified
framework: 1). It learns representations that are informative for the main learning task in the source
domain. 2). It learns robust representations under reconstruction loss. 3). It learns domain-invariant
features that are indistinguishable between the source and the target domains.

4 EXPERIMENTS

We first evaluate DAuto on synthetic experiments with MNIST, and then compare it with state-of-the-
art models, including mSDA, the Ladder network, DANN and ADDA. We report experimental results
on the Amazon benchmark dataset, three digit datasets (MNIST, SVHN and USPS) and a large-scale
time-series dataset for speech recognition.

4.1 DATASETS AND EXPERIMENTAL SETUP

Synthetic experiment with MNIST. The experiment contains 4 tasks: each task is a binary classifi-
cation problem on judging whether the given image is a specific number or not. We choose 4 digits
for these tasks: 3, 7, 8 and 9, because 9 and 7 are similar in many handwritten images while 3 and
9 (7 and 8) are quite different. Clearly domain adaptation is not always possible. We would like to
verify that DAuto succeeds when two domains are close to each other, and also show a failure case
when domains are sufficiently different. To do so, for each task on recognizing digit i ∈ {3, 7, 8, 9},
we sample 1000 images from the training set, of which 500 are digit i and the others are digits not in
{3, 7, 8, 9}; we sample∼1,500 images from the original test set, of which∼750 images are digit i and
the others are digits not in {3, 7, 8, 9}. There are 16 pairs of experiments altogether for each possible
pair of i, j ∈ {3, 7, 8, 9} as source and target domains. We design a well-controlled experiment to
compare DAuto with a standard multilayer perceptron (MLP) and DANN: all algorithms share the
same network structure. Also, we apply the same training procedure to all algorithms so that the
difference in performance can only be explained by the additional domain regularizer as well as the
reconstruction loss in DAuto.

Multi-class Classification. DAuto can be easily applied in multi-class classification as well. To
see this, we test our model on MNIST, USPS and SVHN, all of which contain images of 10 digits.
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MNIST contains 60,000/10,000 train/test instances; USPS contains 7,291/2,007 train/test instances,
and SVHN contains 73,257/26,032 train/test instances. Before training, we preprocess all the
instances into gray scale single-channel images of size 16x16, so that they can be used by the
same network. Again, we perform a controlled experiment to ensure a fair comparison between the
evaluated models. The network structures are exactly the same for all the approaches: 2 hidden layers
with 1024, 512 units, following by a softmax output layer with 10 units. The domain discriminators
in all the models are chosen to be logistic regression. During training, both batch size (400) and
dropout rate (0.3) are also fixed to be same among all the experiments. Hence again, the difference in
performance can only be explained by the different objective functions of different models.

Sentiment Analysis. The Amazon dataset consists of reviews of products on Amazon (Blitzer et al.,
2007). The task is to predict the polarity of a text review, i.e., whether the review for a specific
product is positive or negative. The dataset contains text reviews for the following four categories:
books (B), DVDs (D), electronics (E), and kitchen appliances (K). Each of the product contains 2000
text reviews as training data, and 4465 (B), 3586 (D), 5681 (E), 5945 (K) reviews as test data. Each
text review is described by a feature vector of 5000 dimensions, where each dimension correspond
to a word in the dictionary. The dataset is a benchmark data that has been frequently used for the
purpose of sentiment analysis (Blitzer et al., 2006; 2007; Chen et al., 2012; Ajakan et al., 2014;
Ganin & Lempitsky, 2015; Long et al., 2016). For each source-target pair, we train the corresponding
models completely on labeled source instances with access to unlabeled target instances. We use the
classification accuracy in the target domain as our main metric.

Speech recognition. DAuto can be naturally extended to time-series modeling. In this experiment
we apply DAuto to speech recognition, where a recurrent neural network is trained to ingest speech
spectrograms and generate text transcripts. The model we use is a variant of DeepSpeech 2 (Amodei
et al., 2015), which is composed of 1 convolution layer followed by 3 stacked bidirectional LSTM
layers, and one fully connected layer before a softmax layer. At each time step, the input to the
network is a log spectrogram feature, and the output is a character or blank. The network is trained
end-to-end using the connectionist temporal classification (CTC) loss (Graves et al., 2006), which is
the negative log-likelihood of training utterances. To extend DAuto in sequential models, besides
the global CTC loss, we regularize it at each time step with both the reconstruction loss from the
autoencoder as well as the adversarial loss from the domain classifier. We evaluate DAuto and
compare it with other algorithms for an adaptation task across three different accented datasets, of
which one is recorded from native English speakers, and the other two are recorded from speakers
with Mandarin and Indian accents, respectively. Each dataset contains ∼33 hours of labeled audio
data from ∼25,000 user utterances, and we randomly sample 80 percent of them as training set and
the rest are used as test set.

We compare DAuto with the following methods: 1. No-Adapt. This is the baseline model which
ignores the possible shifts between domains. In order to make the comparison as fair as possible, in all
our experiments DAuto shares the same prediction model with No-Adapt. 2. mSDA. mSDA pretrains
all the unlabeled instances from both the source and the target domains to build a feature map for
the input space. The constructed representations from mSDA are used to train a SVM classifier as
suggested in the original paper (Chen et al., 2012). In all the experiments, we set the corruption level
to be 0.5 in training mSDA, and stack the same number of layers of autoencoders as in DAuto. 3.
Ladder Network (Ladder). The Ladder network (Rasmus et al., 2015) is a novel structure aiming
for semi-supervised learning. It is a hierarchical denoising autoencoder where reconstruction errors
between each pair of hidden layers are incorporated into the objective function. 4. DANN and 5.
ADDA. Again, we use exactly the same inference structure for DANN and ADDA as in No-Adapt,
Ladder, and DAuto. For all the experiments, we use early-stop to avoid overfitting. We implement all
the models and ensure that all the preprocessing for data are the same for all the algorithms, so that
the differences in experimental results can only be explained by the differences in models themselves.
We defer detailed description about models used in each experiment to the supplementary material.

4.2 RESULTS AND ANALYSIS

MNIST. We list the classification accuracies on 16 pairs of tasks using No-Adapt, DANN and
DAuto in Table 1. Besides the 12 pairs of tasks under the domain adaptation setting, we also show 4
additional tasks where both the training and test sets are from the same domain. The scores from
these 4 tasks can be used as empirical upper bounds to compare with the performance of domain
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Table 1: Classification accuracies on 16 tasks between No-Adapt, DANN and DAuto. S → T means
that S is the source domain and T is the target domain. Improvements over baselines are highlighted.

Task No-Adapt DANN DAuto Task No-Adapt DANN DAuto
9→ 9 0.967 0.967 0.965 7→ 9 0.777 0.807 0.837
9→ 7 0.883 0.911 0.917 7→ 7 0.977 0.979 0.979
9→ 8 0.595 0.599 0.655 7→ 8 0.519 0.524 0.540
9→ 3 0.532 0.539 0.686 7→ 3 0.523 0.514 0.553

8→ 9 0.535 0.547 0.640 3→ 9 0.535 0.643 0.734
8→ 7 0.591 0.650 0.705 3→ 7 0.738 0.795 0.806
8→ 8 0.965 0.963 0.957 3→ 8 0.612 0.671 0.737
8→ 3 0.697 0.656 0.698 3→ 3 0.973 0.976 0.973
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(a) No-Adapt: 7 → 3.

200 100 0 100 200 300 400 500
100

50

0

50

100

150

200

train-digit-9

test-digit-3
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(c) No-Adapt: 3 → 7.
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(d) No-Adapt: 9 → 9.
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(f) DAuto: 9 → 3.
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Figure 3: 2 dimensional PCA embeddings of learned representations with and without DAuto
adaptation. All the representations are extracted from the last hidden layer of the networks. Blue and
green dots represent instances from the labeled training set and unlabeled target set, respectively.

adaptation algorithms. DAuto significantly improves over the No-Adapt baseline in 10 out of the
total 12 possible pairs, showing that it indeeds has the desired capability for domain adaptation.

On the other hand, we would also like to highlight that not all domain adaptation tasks are successful:
the prediction accuracies of all the three algorithms on task 7→ 8 and 7→ 3 are only marginally
above random guesses (0.5). When the digits are similar, we observe very successful domain transfer
using DAuto even the algorithm does not see any instances from the target category during training.
To qualitatively study both the successful and failure cases, we project both representations with and
without DAuto adaptation onto 2 dimensional space using PCA, shown in Fig. 3. Several interesting
observations can be made from Fig. 3: when domain adaptation is successful (Fig. 3g, 3f), the
principal directions of learned representations from both domains are well-aligned with each other;
on the other hand, when adaptation fails (Fig. 3e), representations do not share the same principal
directions. As a special case, when the source and target domains share the same distribution (Fig. 3h),
DAuto still works and will not degrade.

Multi-class Classification. The results on multi-class classification of digits are shown in Table 2,
where we highlight the successful domain adaptations using green colors and failure cases using
red colors. The datasets in row correspond to the source domains and those in columns correspond
to the target domains. DANN, ADDA and DAuto all contain one failure case (USPS→SVHN,
USPS→SVHN and MNIST→USPS), which may be explained by the intrinsic difference between
the SVHN datasets and the other two. However, on those three datasets, whenever both DANN
and DAuto succeed in domain adaptation, DAuto usually outperforms DANN by around 2 percent
accuracy. On the other hand, ADDA achieves far better result on MNIST→USPS than both DANN
and DAuto, while it also performs worse than DAuto on SVHN→MNIST and USPS→MNIST. Note
that in this experiment all the methods share exactly the same experimental protocol, hence the
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Figure 4: Test set performances of MLP, Ladder, mSDA, DANN and DAuto with increasing training
set sizes: from 0.2 to 1.0. DAuto achieves the best accuracy on 12 out of 16 tasks.

Table 2: Classification accuracy on the digits experiment from No-Adapt, DANN, ADDA and DAuto.
Improvements over baseline method are highlighted in green, and decreases in performance are
shown in red. Table best viewed in color.

No Adapt DANN

SVHN MNIST USPS SVHN MNIST USPS

SVHN 0.8553 0.5459 0.5277 0.8596 0.5690 0.5426
MNIST 0.2054 0.9883 0.6442 0.2241 0.9880 0.6500
USPS 0.1628 0.3396 0.9507 0.1585 0.3562 0.9517

ADDA DAuto

SVHN MNIST USPS SVHN MNIST USPS

SVHN 0.8707 0.5542 0.5561 0.8626 0.5864 0.5655
MNIST 0.2091 0.9894 0.6856 0.2086 0.9869 0.6428
USPS 0.1602 0.3570 0.9512 0.1717 0.3762 0.9537

difference can only be explained by their different objective functions and model designs. In other
words, the adaptation can benefit from the reconstruction error from autoencoders, which works as an
unsupervised regularizer.

Amazon. To show the effectiveness of different domain adaptation algorithms when labeled instances
are scarce, we evaluate the five algorithms on the 16 tasks by gradually increasing the size of the
labeled training instances, but still use the whole test dataset to measure the performance. More
specifically, we use 0.2, 0.5, 0.8 and 1.0 fraction of the available labeled instances from source
domain during training. A successful domain adaptation algorithm should be able to take advantage
of the unlabeled instances from the target domain to help generalization even when the amount of
labeled instances available is small. We plot the results in Fig. 4: all the domain adaptation algorithms
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Table 3: CTC loss on 9 tasks from LSTM (No-Adapt), DANN and DAuto. A lower loss indicates a
better speech model. Improvements over baseline method are highlighted in green, and decreases in
performance are shown in red. Table best viewed in color.

LSTM (No Adapt) DANN DAuto
US CN IN US CN IN US CN IN

US 263.7 160.4 408.9 189.3 112.4 428.9 185.9 97.9 486.1
CN 226.6 110.9 375.4 186.8 66.4 453.0 160.7 45.7 494.8
IN 389.7 245.5 376.5 498.4 429.1 244.7 493.0 470.3 241.3

are able to use the unlabeled instances from the target domain to help generalization. However, the
differences between the baseline MLP and DAuto are getting smaller with the increase of the size
of training data. This phenomenon supports our probabilistic framework showing that DAuto can
effectively use the unlabeled data. We report the detailed numeric scores achieved by each algorithm
and their statistical significance test in the supplementary material. In summary, DAuto outperforms
all the other competitors on 12 out of the 16 tasks, which is consistently better than its competitors.

Speech Recognition. To avoid possible external error during the decoding process, which is usually
not stable on noisy data, we directly report the CTC loss obtained from different algorithms. We have
3× 3 pairs of domain adaptation tasks, where each source/target domain ranges from speech with
{IN, CN, US} accents. We show the results in Table 3. Again, we observe decreases in performance
when applying domain adaptation algorithms: the transfer between speech with Indian accents and
the other two fails. However, when two domains are similar (US vs CN) where adaptation is possible,
DAuto consistently outperforms DANN. We want to bring readers’ attention that both DANN and
DAuto improve over baseline method when training with unlabeled instances from the same domain
(diagonal of the table). This means both DANN and DAuto have the effect of semi-supervised
learning algorithms: when the source and the target domains are indeed same, both DANN and
DAuto benefit from using unlabeled instances. From the generative interpretation of our probabilistic
framework, DAuto achieves this goal by maximizing the marginal probability of unlabeled instances,
and due to the shared component, this further helps training the discriminative model.

5 CONCLUSION

We propose a probabilistic framework that incorporates both generative and discriminative modeling
in a principled way, which also helps us to interpolate between generative and discriminative extremes
through a specific choice of prior distribution where a subset of model parameters is shared. The
instantiated model, DAuto, allows us to use unlabeled instances from both domains in a principled way.
This instantiation also shows that the empirical success of autoencoders in semi-supervised learning
and domain adaptation can be explained as maximizing the marginal log-likelihoods of unlabeled
data, where kernel density estimators are used to model the marginal distributions. This provides
the first probabilistic justification for joint training with autoencoders in practice. Experimentally
we show that DAuto can be successfully applied to domain adaptation problems, and has a natural
extension to time series as well.
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A MORE DETAILS ABOUT EXPERIMENTS

A.1 MNIST SYNTHETIC EXPERIMENTS

The networks we used in this experiment contains 3 hidden layers, each contain 500, 200 and 100
hidden units, respectively. The input layer contains 28× 28 = 784 units, and the output layer is a
single unit parametrized by a logistic regression model. Except the output layer, all the hidden layers
use ReLU as the nonlinear activation function. The same network structure is used for both DANN and
DAuto. During training, we use AdaDelta as the optimization algorithm for all the models. For DAuto,
both hyperparameters λ and µ are chosen from the following range: λ, µ ∈ {10−8, 10−7, . . . , 102},
where we further partition the target domain set as development set and the held-out test set, combined
with early stopping for model selection. For all the experiments, we fix the learning rate to be 1.0.

A.2 AMAZON BENCHMARK DATASET

MLP, Ladder, DANN and DAuto all share the same network structure: the input layer contains 5,000
units, followed by a fully-connected hidden layer with 500 units and the output layer, which is a
logistic regression model. Correspondingly, mSDA pretrains a two-layer stacked auto-encoder, hence
the feature representation pretrained by mSDA in this experiment has 10,000 dimensions. Ladder
and DAuto also use unlabeled instances to pretrain model parameters in an purely unsupervised way.
Again, for all the neural network based models, we use ReLU as the nonlinear activation function
and use AdaDelta as the optimization algorithm during training. For DAuto, both hyperparameters
λ, µ ∈ {10−4, . . . , 102}. Again, we fix the learning rate to be 1.0.

We report the classification accuracies on the test data of the 16 pairs of tasks to have a thorough
comparisons among the 5 models in Table 4. DAuto outperforms all the other competitors on 12 out
of 16 tasks, whereas DANN achieves the best test set accuracy on D → D; Ladder scores highest on
D → E and D → K; mSDA performs the best on E → B and E → D. We emphasize that DAuto
performs consistently better than all the other competitors. Note that the only difference between
DANN and DAuto is the autoencoder regularizer that forces the feature learning part to learn robust
features, we conclude that DAuto successfully helps to build robust representations.

Table 4: Sentiment classification (positive/negative) accuracies on 16 tasks of 5 models: MLP, Ladder,
mSDA, DANN and DAuto. S → T means that S is the source domain and T is the target domain.

Task MLP mSDA Ladder DANN DAuto
B→B 0.823 0.812 0.817 0.828 0.834
B→D 0.770 0.785 0.764 0.773 0.776
B→E 0.728 0.734 0.735 0.734 0.749
B→K 0.762 0.770 0.775 0.769 0.782
D→B 0.768 0.769 0.757 0.765 0.776
D→D 0.830 0.820 0.832 0.834 0.834
D→E 0.753 0.768 0.784 0.776 0.784
D→K 0.776 0.793 0.802 0.789 0.795

E→B 0.693 0.726 0.683 0.693 0.707
E→D 0.696 0.741 0.715 0.694 0.724
E→E 0.850 0.857 0.854 0.847 0.864
E→K 0.845 0.858 0.848 0.843 0.863
K→B 0.687 0.715 0.694 0.710 0.723
K→D 0.711 0.738 0.731 0.727 0.748
K→E 0.838 0.825 0.843 0.838 0.849
K→K 0.869 0.867 0.874 0.873 0.882

To check whether the accuracy differences between those five methods are significant or not, we
perform a paired t-test and report the two-sided p-value under the null hypothesis that two related
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paired samples have identical means. We show the p-value matrix in Table 5 where for each pair of
methods, we report the mean p-value among the 16 tasks.

Table 5: p-value matrix between different domain adaptation algorithms. Each entry in the matrix
corresponds to the mean p-value under a paired t-test on 16 domain adaptation tasks.

MLP mSDA Ladder DANN DAuto
MLP - 0.147 0.181 0.460 0.025

mSDA 0.147 - 0.136 0.154 0.175
Ladder 0.181 0.136 - 0.273 0.225
DANN 0.460 0.154 0.273 - 0.072
DAuto 0.025 0.175 0.225 0.072 -

From Fig. 4, we can also observe that given a small fraction of data, there are large gaps between
DAuto and the MLP baseline on most of the tasks. Interestingly, these gaps become smaller on
certain tasks, e.g., kitchen->electronics, books->kitchen. Besides, we observe a gap consistently as
the fraction of training data increases. This convinces our conjecture that DAuto is more effective
than the MLP baseline in learning informative representations from low-resource data, and has the
semi-supervised learning effect due to its generative nature.

A.3 SPEECH RECOGNITION WITH ACCENTS

The model structure of the recurrent network we used for this experiment is as follows: at each
time step, the input feature is a log spectrogram feature of 161 dimensions. This is followed by a
1D convolution layer with 1024 kernels, and 3 stacked bidirectional LSTM layers, each of which
contains 1024 hidden units. The output of the last bidirectional LSTM layer is connected to a fully-
connected softmax layer with 29 outputs, which represents 26 characters and three special characters:
space, apostrophe and blank. We use the publicly available CTC loss implementation https:
//github.com/baidu-research/warp-ctc and our experiments are performed under the
public codebase: https://github.com/baidu-research/ba-dls-deepspeech.
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