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ABSTRACT

We introduce a new graph Laplacian which is only available during training time
and show how existing feedforward networks can learn to predict its eigenvectors.
This is particularly useful for the problem of image segmentation, as it allows con-
verting existing semantic segmentation networks (a basic multi-class classification
problem) into instance segmentation networks (a more complex structured pre-
diction problem). We show some convenient theoretical properties of this graph
Laplacian, propose several rounding schemes (with error bounds) of the eigenvec-
tors, and present preliminary results showing an insignificant change in error after
converting from semantic to instance segmentation on the PASCAL VOC dataset.

1 INTRODUCTION

In this paper, we consider the problem of object instance segmentation in images. Unlike semantic
image segmentation, which can be formulated as a multi-class classification problem and predicted
using the single pass of a CNN with dense outputs (e.g. FCN (Long et al., 2015)), instance seg-
mentation is a more complex structured prediction problem. Current state-of-the-art approaches to
instance segmentation use a sequence of learned and hand-tuned components, including proposing
multiple object regions, performing a series of binary classifications, refining the object region and
fixing object overlap issues in post-processing (He et al., 2017). This is significantly more complex
and ad-hoc than solutions to the semantic classification problem, which are able to learn end-to-end.
Instead, we show how to retrain any existing semantic segmentation network with dense outputs for
instance segmentation by using spectral techniques.

For much of the early 2000s, spectral clustering was considered the state-of-the-art approach to
image segmentation (von Luxburg, 2007). The approach can be broken into three parts:

1. Choose a pixel similarity function s : X × X → R, where X is the pixel space.
2. Form the graph Laplacian L by performing pairwise comparisons between all pixels within

some local neighborhood of size m and compute its top eigenvectors.
3. Cluster the eigenvector rows with k-means.

A major factor in the performance of spectral clustering is the choice of similarity function s, which
must capture whether two pixels belong to the same segment. A naı̈ve approach to incorporating
the representational power of deep learning into spectral clustering would be to model k as a deep
network, which would require a large number of nm outputs.

Instead of choosing or learning a similarity function, we instead consider the oracle kernel
s(xi, xj) = 1 if samples xi and xj belong to the same segment, else s(xi, xj) = 0. Note this
is equivalent to having a set of training images with instance labels, and does not require semantic
labels. We then train a deep network to predict the top eigenvectors of a particular graph Lapla-
cian induced by s, effectively replacing steps 1 and 2 above with a deep network. The embedding
provided by these eigenvectors naturally allows for variable number of instances, while the learner
remains a simple, single feedforward network where we only change the final output layer. This is
a powerful representational tool for instance segmentation.
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The remainder of this paper is organized as follows. We begin in Section 2.1 with the introduction
of a new graph Laplacian for the oracle kernel setting and prove some convenient properties. In
Section 2.2, we explain how to train a learner to predict the eigenvectors by using the spectral loss.
Then in Section 2.3 we discuss rounding algorithms and theoretical guarantees (i.e. a new step 3,
above). Lastly, we demonstrate that deep spectral clustering is able to retrain an FCN-8 semantic
segmentation network for instance segmentation with insignificant change in error on the PASCAL
VOC dataset.

2 DEEP SPECTRAL CLUSTERING

Given an image X = (x1, . . . , xn) with n pixels, our objective is to partition the pixels such that
pixels in the same partition belong to the same object (potentially including a “background” ob-
ject). Our approach is class-agnostic (i.e. does not require semantic labels), and has the potential to
generalize to new classes.

2.1 GRAPH LAPLACIAN

Graph Laplacian matrices are the key to spectral graph theory, and we leverage their properties to
perform image segmentation. Several variations have been proposed for spectral clustering, and here
we propose a new graph Laplacian for the oracle kernel setting.
Theorem 2.1. Consider the graph Laplacian L = AD, where A is the adjacency matrix formed by
the oracle kernel s and D is the diagonal degree matrix. Then the following properties hold:

1. L is symmetric and positive semi-definite.

2. L has k positive, real valued eigenvalues λ1, . . . , λk which correspond to the squared car-
dinality of the k clusters. The other eigenvalues are 0.

3. L has the partial spectral decomposition L = VoΛV ᵀ
o , where the columns of Vo ∈ Rn×k

are a set of orthonormal eigenvectors of L and Λ = diag(λ1, . . . , λk) is a diagonal matrix
of the corresponding non-zero eigenvalues.

4. Let V = VoΛ
1/4 be orthogonal eigenvectors normalized according to their eigenvalues and

vi denote the i’th row of V . Then vᵀi vj = 1 if xi and xj belong to the same cluster, else 0.

In particular, we will leverage properties 3 and 4 for training the network and rounding the results.

2.2 OBJECTIVE FUNCTION

Let ‖·‖ be any unitarily invariant norm and f : Rn → Rn×d be our learner, which maps every pixel
into a d-dimensional space. In the case of semantic segmentation, d is the number of object classes.
By the Eckart-Young-Mirksy theorem, the optimal solution to

minimize
f

`(f(X), A) = ‖f(X)f(X)ᵀ −A‖

is f∗(X) = V , the normalized eigenvectors of L (Eckart & Young, 1936; Mirsky, 1960). Thus,
we train f using `, which we term the spectral loss. In practice, we compute an unbiased estimator
of the spectral loss by randomly sampling pixels, otherwise the matrices would have n2 entries.
Note that the solution is invariant under rotation, which does not restrict the learner to an arbitrarily
chosen hot-one encoding.

2.3 ROUNDING

The top-d predicted eigenvectors f(X) = V̂ of an image provide a pixel representation such that
the dot product between v̂i and v̂j measures the similarity between pixels xi and xj . Thus, in the
final step of deep spectral clustering, we cluster in the inner-product space of v̂1, . . . , v̂n. This is
analogous to the Euclidean space clustering step of traditional spectral clustering algorithms. For
now, we choose to run KwikCluster, as it is linear-time in n and provides straightforward theoretical
guarantees (Ailon et al., 2008). We will explore other rounding schemes prior to the workshop.
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Semantic Instance
Accuracy Precision Recall Accuracy Precision Recall

FCN-8 0.859 0.864 0.915 - - -
Deep Spectral - - - 0.852 0.848 0.919

Table 1: Deep spectral clustering, using the same FCN-8 network architecture, achieves almost
identical performance on the more difficult instance segmentation task. We measure performance
using pairwise accuracy, precision and recall, which do not require computing or thresholding IoU
scores and only depend on the pixel partition.

(a) Image (b) True segmentation (c) FCN-8 (d) Deep Spectral

Figure 1: Segmentation results on a validation image.

Theorem 2.2. Let V̂ = f(X) be the predicted eigenvectors, Vr denote the KwikCluster rounded
eigenvectors (i.e. a hot-one encoding of every pixel) and V ∗

r the optimal rounding algorithm. Then
the final loss is bounded by

`(VrV
ᵀ
r , A) ≤ `(V̂ V̂ ᵀ, A) + 5`(V̂ V̂ ᵀ, V ∗

r V
∗T
r )

≤ 6`(V̂ V̂ ᵀ, A)

where `(V̂ V̂ ᵀ, A) is the validation loss of the network. It is theoretically possible, though practically
difficult, to decrease the constant factors 5 and 6 to 2.5 and 3.5, respectively, by solving a large linear
programming variation of KwikCluster (Ailon et al., 2008).

3 EXPERIMENTAL ANALYSIS

We use an FCN-8 network for f and replace the softmax layer with a unit normalization layer,
such that ‖v̂i‖ = 1 (Long et al., 2015). For fair comparison, we choose d = 21 such that our
network has exactly the same number of parameters as the original FCN-8 architecture. We use the
Frobenius norm ‖·‖2F as our unitarily invariant matrix norm and increase the learning rate to 1e−5
to accommodate changing the loss function from cross-entropy to spectral.

Our results, in Table 1 and Fig. 1, demonstrate that deep spectral clustering is able to retrain a
semantic segmentation network for instance segmentation with an insignificant change in error.

4 CONCLUSIONS

We introduced the spectral loss function, which enables training existing dense output CNN’s for
the more complex variable output problem. Preliminary results are promising and we intend to
additionally evaluate on more complex instance segmentation datasets (e.g. CityScapes and MS-
COCO) with more baselines and metrics. The KwikCluster rounding scheme is fast and provides
clear theoretical guarantees, though we believe it is possible to do much better in practice by solving
for an locally optimal orthogonal projection.
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