
Under review as a conference paper at ICLR 2017

MULTIAGENT SYSTEM FOR LAYER FREE NETWORK

Hiroki Kurotaki, Kotaro Nakayama & Yutaka Matsuo
The University of Tokyo
7 Chome-3-1 Hongo, Bunkyo, Tokyo
{kurotaki, nakayama, matsuo}@weblab.t.u-tokyo.ac.jp

ABSTRACT

We propose a multiagent system that have feedforward networks as its subset while
free from layer structure with matrix-vector scheme. Deep networks are often
compared to the brain neocortex or visual perception system. One of the largest
difference from human brain is the use of matrix-vector multiplication based on
layer architecture. It would help understanding the way human brain works if we
manage to develop good deep network model without the layer architecture while
preserving their performance. The brain neocortex works as an aggregation of
the local level interactions between neurons, which is rather similar to multiagent
system consists of autonomous partially observing agents than units aligned in
column vectors and manipulated by global level algorithm. Therefore we suppose
that it is an effective approach for developing more biologically plausible model
while preserving compatibility with deep networks to alternate units with multiple
agents. Our method also has advantage in scalability and memory efficiency. We
reimplemented Stacked Denoising Autoencoder(SDAE) as a concrete instance
with our multiagent system and verified its equivalence with the standard SDAE
from both theoritical and empirical perspectives. Additionary, we also proposed a
variant of our multiagent SDAE named "Sparse Connect SDAE", and showed its
computational advantage with the MNIST dataset.

1 INTRODUCTION

Figure 1: Comparison of network structures with adjacency indications. Left: standard feedforward
neural network with layer structure. The two solid rectangles represent the weight matrices. The
connection is restricted by layer structure. Center: layer-free version of standard feedforward
network. We need a whole n × n matrix indicated by the outer solid square to store parameters
even when most of them become almost zero as a result of learning. Right: an example of network
which is a subset of our proposed multiagent system. Matrices (solid rectangle) are no longer
used. The network is free from the layer restriction while requiring fewer number of parameters.
Communication between the nodes is prohibited unless they are connected with an edge, which leads
to scalability, memory efficiency and biological plausibility.

Deep networks are used in many tasks, especially in image recognition, signal processing, NLP and
robot manipulation. Almost all deep network models utilize structure with layers. One of the primary
reasons to use those layer structure is to utilize parallel computation techniques and hardware level
technologies such as GPU or dedicated tensor processors.

1



Under review as a conference paper at ICLR 2017

Layers can be viewed as a restriction on the connection pattern of the units that they must be aligned
in a row to form a vector. Though layers are related to vector-matrix processing technologies
and necessary to make use of them, it is not evident that this vector-matrix restriction is the most
appropriate model to capture the latent representation of the data.

Vector-matrix approach requires dense matrices to store weight parameters even after sparse represen-
tations and weights are learned, which requires inefficient use of memory.

There are several methods to reduce the cost by downsize the model such as distillation(Hinton et al.
(2014)), and limiting the model space with binarizing(Courbariaux et al. (2015)) and hashing Han
et al. (2015), but they still needs dense matrix filled with many zeros.

In this paper we propose a framework of multiagent calculation network that has feedforward
matrix-vector network as a subset but free from the notion of layer to solve these problems.

Our multiagent network consists of many agents that replaces each unit in standard deep networks.
The agents act autonomously and calculations are executed as an accumulation of many local
level communication among the agents. This local calculation scheme is contrary to the previous
feedforward network implementation that all computations in the units in the same layer is done
simultaneously (Figure 1).

Specifically, we reimplemented Stacked Denoising Autoencoder(SDAE) (Vincent et al. (2008)) as
one of the variations in our framework. SDAE is one of the earliest successful deep network model
and free from spatiality assumption in CNNs and RNNs. SDAE is related to the Ladder Network
(Rasmus et al. (2015)) in that both employ reconstruction and denoising mechanism. We suppose
starting from the model strictly derived from SDAE and gradually extending the model is one good
approach to develop useful algorithms to construct deep multiagent networks. We show that the
standard vector-matrix SDAE can be interpreted and reconstructed as a specific case of our multiagent
network in the sense that both SDAE compute the exact same result in the end but with different
implementations and processes.

Once we establish the basic multiagent SDAE, we aim to extend the SDAE and examine its behavior.
One of the minimum and simplest modification to the proposed multiagent SDAE is to keep the
node’s locations and possible edge connections as they are, but randomly truncate the edges. We
call this testing model "Sparse connect SDAE" or "SCSDAE" in the latter section. This model is an
example of the potential of our model to handle sparse weight parameters more efficient than the
standard networks composed of dense weight matrices.

Our contributions are the following.

1. We propose new multiagent-based neural network system framework that free from restric-
tions of layer scheme with matrix-vector while getting more biologically plausible.

2. We prove that SDAE can be reinterpreted as a special case of our multiagent system.

3. We also propose Sparse Connect SDAE, a primitive extension of our multiagent system.

4. We demonstrate the performance of the proposed models on XOR toy dataset and the
permutation-invariant MNIST task.

2 RELATED WORKS

Foerster et al. (2016) and Sukhbaatar et al. (2016) model multiagent environment as a deep network,
but their unit of agent is a whole network which models an individual actor and not a feature inside
the network. The motivation and architecture of our proposal multiagent framework is different
from theirs and we suppose our method could be a complementary method between the different
granularities of agents.

There are several approaches to design biologically plausible model (Sussillo & Abbott (2009); Risi
& Stanley (2014); Mi et al. (2014)). Cao et al. (2014) convert regular CNN into spiking neural
networks (SNN). Osogami & Otsuka (2015) build a variation of Boltzman Machine that follows the
properties of Spike-timing dependent plasticity (STDP), which makes it more close to biological
neural networks. Lee et al. (2014) proposes a modification of autoencoder that uses a novel credit
assignment method called "target propagation" in place of back-propagation and achieved state

2



Under review as a conference paper at ICLR 2017

of the art performance. It can be a solution to remove inherent biologiacal implausibility of back
propagation.

Our SCSDAE is a variation of SDAE and can be viewed as a technique for truncating edges and
reduce the computational cost. There are several techniques to downsize networks and enables us
to load them on mobile devices for realtime processing. One example is distillation (Hinton et al.
(2014)). It needs huge networks as a superviser network and it cannot be used as a mean to full
scratch to new domain. MADE (Mathieu et al. (2015)) uses binary masking matrix to represent
hard zero and thus conditional distribution. Limiting weight connection to binary (Courbariaux et al.
(2015)) is another approach and its applicability is actively studied. Han et al. (2015) combines
pruning, quantization and Huffman coding together.

3 REIMPLEMENTATION OF DEEP NETWORK AS A MULTIAGENT SYSTEM

In this section we describe our algorithm. First we show how we can reinterpret some common
properties of multiagent systems to form a deep network. Next we define our multiagent system in
general form. Then we prove the standard SDAE is indeed a special case of our multiagent system in
the sense that both calculate the exact same computational result in the same order. Finally we show
an example of our SDAE’s variations.

3.1 THE PROPERTIES OUR MULTIAGENT SYSTEM SHOULD SUFFICE

We extracted some common aspects of those multiagent system from the view of deep network
development as follows:

1. The system consists of several number of autonomous units (as agents) and the environment.

2. All units are autonomous and only act when stimulated by messages from the other units
and the environment.

3. Units process calculation only with local information they hold.

3.2 DEFINITION OF MULTIAGENT NETWORK

In this section we define the multiagent system that has the properties we stated above.

• A system is consists of several units and one environment.

• Units are consists of nodes and edges.

• Edges connect between two nodes.

• Nodes has some variables and can memorize actual computed values of them.

The variables includes not only the input data and feature variables themselves, but parameters of
adjacent edge’s weights and intermediate variables that are needed to calculate feature variable’s
activation values. These additional variables can also be updated.

Nodes can transfer informations with other nodes connected with edges by message passing. These
information may involve the value of variable computed by the units, the errors accumulated through
epoch in the units, and any other things. Sometimes nodes may receive data input from the envi-
ronment as a message, and may send value back to environment to let them compute global cost
function.

The environment can manipulate unit from outside (via message passing) and change their relation-
ships. For example,

• The environment can generate new unit.

• The environment can connect between nodes.

• The environment can change the state of the unit.

• The environment can send units input data.

3



Under review as a conference paper at ICLR 2017

These special manipulation may seems to break locality and autonomy, but its global manipulation is
limited to changing the overall network structure. In the calculation process, the algorithm still run
by agents local algorithm themselves rather than step-by-step instructions from the environment. The
environment input some data to input units, and then, all it can do is to wait at the output units to get
the result and it isn’t aware of the internal behavior of each units and the order of execution.

Algorithm 2 is the general form of our proposed multiagent system. The notation is matched with the
multiagent MLP in later sections. Note that the order of calculation is not yet specialized to match to
standard MLP, and thus free from the constants related to global structure such as Nx and Nz .

3.3 THE EQUIVALENCE BETWEEN THE MULTIAGENT AND STANDARD VERSIONS OF SDAE

We show how to reconstruct Stacked Denoising Autoencoder((Vincent et al. (2008))) with the
proposed multiagent system.We concurrently prove that our multiagent version of SDAE and the
standard SDAE have indeed the same algorithm and do the same calculation. In our case, we suppose
that the two criteria below are sufficient for our objective

• the equivalence of the value computed

• the equivalence of the order of computation

given the same input and the same random sampling. (e.g. initial parameters, order of input data,
noise variables, etc.)

We begin our proof with a simple model and reuse it for prove of more complex models. Our first
target model is the simple multi layer perceptron(MLP) with only one hidden layer and no pretraining.
We then go on to the autoencoder and Denoising Autoencoder, which is a kind of extension of MLP.
Finally we show the equivalence of the two SDAEs.

For bravity, we limit the choice of activation function for each unit to sigmoid, and we use unit-wise
mean square error (MSE) for cost function. We also use simple SGD without minibatch. There are
several methods that empirically known to perform well. (e.g. Adam (Kingma & Ba (2014)) for
optimization, cross entropy for cost function, ReLU and softmax for activation function.) However
we prioritize to establish the basic architecture of deep multiagent network, and choose these simpler
methods. We can also extend the algorithm to apply minibatch updating easily.

3.3.1 EQUIVALENCE WITH MLP

Now we prove the equivalence of our proposed multiagent version of MLP and standard implementa-
tion.

Suppose there is a MLP consists of an input layer, a hidden layer and an output layer. Let Nx, Ny, Nz

be the number of input, hidden and output layer’s dimension respectively. Simillary, let xi(i =
1 · · ·Nx), yj(j = 1 · · ·Ny), zk(k = 1 · · ·Nz) be the activated output value (hereafter simply "output
value" ) at each unit in each layer respectively. The weight value between these variables are wij , wjk,
thus the forward propagation from input to hidden is calculated by yj ← σ(w0j +

∑Nx

i=1 wijxi) and
from hidden to output is zk ← σ(w

′

0k +
∑Ny

j=1 wjkyj). Here Θ = {wij , w
′

jk | i = 0 · · ·Nx, j =

0 · · ·Ny, k = 1 · · ·Nz} represents the weight parameters and σ is the sigmoid function. We also
define dataset D = {(x(1)data, t

(1)
data), · · · , (x(D)

data, t
(D)
data)} as an array of pairs of input data x(d)data =

{x(d)1data
, · · · , x(d)Nxdata

} and label data t(d)data = {t(d)1data
, · · · , t(d)Nzdata

}, where d = 1 · · ·D. Hereafter
we might drop the data index (d) for readability.

We define our objective function as L =
∑D

d=1 L
(d) , where L(d) = 1

Nz

∑Nz

k=1(tk − zk)2 and η be a
learning rate. Algorithm 1 is the standard version algorithm to optimize this objective.

Next we construct a multiagent network that is equivalent to Algorithm 1 by specializing the general
Algorithm 2. We first generate units uxi

, uyj
, uzk(i = 1 · · ·Nx, j = 1 · · ·Ny, k = 1 · · ·Nz) from

the environment. We also denote the set of units Ux = {uxi
| i = 1 · · ·Nx}, and similary Uy, Uz for

set of all uyj
, uzk respectively. Each unit and the environment possess the unique varibles as listed in

Table 1.

4



Under review as a conference paper at ICLR 2017

Algorithm 1 Standard MLP

Initialize wij , w
′

jk for all (i, j), (j, k)
while criteria is not satisfied do

for d = 1 · · ·D do
for k = 1 · · ·Nz do
tk ← t

(d)
kdata

end for
for i = 1 · · ·Nx do
xi ← x

(d)
idata

end for
for j = 1 · · ·Ny do
yj ← σ(w0j +

∑Nx

i=1 wijxi)
end for
for k = 1 · · ·Nz do
zk ← σ(w

′

0k +
∑Ny

j=1 wjkyj)

δk ← 2
Nz

(zk − tk)zk(1− zk)
for j = 1 · · ·Ny do
w

′

jk ← w
′

jk − ηδkyj
end for

end for
for j = 1 · · ·Ny do
δj ← yj(1− yj)

∑Nz

k=1 w
′

jkδk
for i = 1 · · ·Nx do
wij ← wij − ηδjxi

end for
end for
L(d) ← 1

Nz

∑Nz

k=1(tk − zk)2

end for
L←

∑D
d=1 L

(d)

end while

Algorithm 2 General form of our multiagent al-
gorithm (the environment)

Initialize uxi
, uyj

, uzk for all i, j, k
while criteria is not satisfied do

for all d ∈ {1 · · ·D} do
for all uzk ∈ Uz do

Input t(d)kdata
to uzk

end for
for all uxi ∈ Ux do

Input x(d)idata
to ux

end for
L(d) ←

∑
k(tk − zk)2

end for
L←

∑
d L

(d)

end while

Algorithm 3 Multiagent MLP (the environment)

Initialize uxi
, uyj

, uzk for all i, j, k
while criteria is not satisfied do

for d = 1 · · ·D do
for k = 1 · · ·Nz do

Input t(d)kdata
to uz

end for
for i = 1 · · ·Nx do

Input x(d)idata
to ux

end for
L(d) ← 1

Nz

∑Nz

k=1(tk − zk)2

end for
L←

∑D
d=1 L

(d)

end while

Table 1: Varibles each unit (and the environment) possess in multiagent MLP

Unit Variable

uxi(i = 1 · · ·Nx) xi
uyj (j = 1 · · ·Ny) yj , δj , wij(i = 1 · · ·Nx), η

uzk(k = 1 · · ·Nz) zk, tk, δk, w
′

jk(j = 1 · · ·Ny), η

The environment L,L(d)

The unit uxi
corresponds to xi and receive xidata

from the environment. The unit uzk corresponds to
both zk, tk and is input tkdata

. Each uxi
receive input data, assign the data into the variable owned by

itself, then send that value as message to uyj
(algorithm 6).

uyj corresponds to yj and stores wij(i = 0 · · ·Nx) to calculate yj . The unit must wait until receive
message from all uxi(i = 1 · · ·M). Then the unit can calculate yj (algorithm 4). The calculated
value of yj is sent again to uzk , so similary zk can also become able to be calculated.

We also need to introduce a state variable for SDAE. We will discuss it at the end of this section.

Finally, the environment inputs data in the following order: uz1 → · · · → uzNz
→ ux1 → · · · →

uxNx
(Algorithm 3). These inputs stimulate units and the units invoke their message handling

algorithm individually. The information required to calculate the cost function L(d) is eventually
acumulated in the units uyk

. The environment would read out these and calculate the objective L(d).

5



Under review as a conference paper at ICLR 2017

Algorithm 4 The handler of uyj when receiving a
message

if The sender is uxi then
if Received messages from all uxi(i =
1 · · ·Nx) then
yj ← σ(w0j +

∑Nx

i=1 wijxi)
for k = 1 · · ·Nz do

Send uzk the value of yj
end for

end if
else if The sender is uzk then

if Received messages from all uzk(z =
1 · · ·Nz) then
δj ← yj(1− yj)

∑Nz

k=1 w
′

jkδk
for i = 1 · · ·Nx do
wij ← wij − ηδjxi

end for
end if

end if

Algorithm 5 The handler of uzk when receiving
data from the environment
tk ← tdkdata

Algorithm 6 The handler of uxi when receiving
data from the environment
xi ← xdidata

for j = 1 · · ·Ny do
Send uyj

the value of xi via message
end for

Algorithm 7 The handler of uzkwhen receiving
a message

if Received messages from all uyi
(j =

1 · · ·Ny) and the environment then
zk ← σ(w

′

0k +
∑Ny

j=1 w
′

jkyj
δk ← 2

Nz
(zk − tk)zk(1− zk)

for j = 1 · · ·Ny do
w

′

jk ← w
′

jk − ηδkyj
end for
for j = 1 · · ·Ny do

Send uyj the value of w
′

jkδzk
end for

end if

Comparing both algorithms, we can verify that the all update statement and order for all variables are
strictly matched between the proposed multiagent SDAE and the standard version.

3.3.2 EQUIVALENCE WITH AUTOENCODER

Now we advance to the autoencoder algorithm which is a special case of MLP. In autoencoders, The
input and output dimension is the same (Nx = Nz). The cost function and difference at output units
are changed to L(d) ← 1

Nz

∑Nz

k=1(xk − zk)2 and δk ← 2
Nz

(zk − xk)zk(1− zk) respectively. In the
corresponding multiagent version, the environment don’t need to send tidata

to uzi . Instead uxi send
the input value xi to uzi right before messaging to uy1

.

uzi don’t take any action in response to receiving message from uxi
, just as same as from the

environment. With the modifications above, the two versions become equivalent.

3.3.3 EQUIVALENCE WITH DENOISING AUTOENCODER

Denoising Autoencoder (hereafter "DAE") is an extension of autoencoder and used as a building
block of SDAE. In DAE, when calculating y of the hidden layer, we don’t directly use raw value of x.
Instead, we add noise to x to make x̃, then y uses x̃. Note that the reconstruction layer z still use the
original x value.

To reinterpret this DAE by our multiagent system, we can assign x̃i to uxi
along with xi. When

the data is input, we can calculate x̃ right after the assignment to xi. Each xi(i = 1 · · ·Nx) send
corresponding yj(j = 1 · · ·Ny) the noised value x̃i instead of xi. Then the two algorithm become
equivalent again.

6



Under review as a conference paper at ICLR 2017

3.3.4 EQUIVALENCE WITH STANDARD SDAE

We finally reimplement the whole SDAE algorithm by our multiagent system and show its equivalence
with the standard version again. The learning process of SDAE can be divided into pretraining and
fine-tuning and we can explain the two phase separately.

pretraining phase In the pretraining phase of SDAE, let xi, yi, zi be the input, hidden, the as-
sociated reconstruction layer value of DA, respectively. To stack a learning DA, yj is considered
as a new input units from the view of the new DA. Let z

′

j be the reconstruction unit’s value of yj
itself, and y

′

k be the new stacked hidden layer units. We make a full connection between each layers.
Thus the equations relating to these variables change to y

′

k ← σ(w0 +
∑Ny

j=1 wjkyj) and z
′

j ←

σ(w0 +
∑N

y
′

k=1 wkjy
′

k). The new objective function after the stacking is Lj = 1
Ny

∑Ny

j=1(z
′

j − yj)2.
Note that by stacking a new DAE layer, we are making a new task of objective function from the
previous objective.

Now we describe the change needed on our multiagent system. We need to introduce the notion
of state for the units associated with the hidden layers in the standard version. When the objective
function changed, the network structure and the state of the units must be changed in response too.

The hidden units can take the the two states, "state A (On learning)" and "state B (Learned, stable)".
The units are initiated to "state A" and the behavior in this state doesn’t change from the previous
sections. But the units in "state B" doesn’t send messages to the units for reconstruction zi and
instead send the same messages to the "state A" units in the stacked layer.

Additionary, we need to append a reconstruction unit for each hidden unit changed to "state B". These
pairs of the "state B" unit and appended reconstruction unit act as same as the pairs of input and
reconstruction units we stated in DAE section except that they send message not after the data is
input, but after the feature yj is calculated.

Once the pretraining for one block of DAE ends, all the hidden units in that DAE change to "state B".
Then they form a new DAE starting from "state B" hidden units through the new stacked "state A"
units then the associated reconstruction units appended. This DAE can be optimized in the same way
of the single multiagent DAE we have described with only one exception that the data is not sent
from the environment, but instaed the feature value yj in the previous DAE is calculated in the same
order (j = 1 · · ·Ny)

fine-tuning phase In order to use SDAE for supervised learning task, we pretrain some predefined
number of hidden layers by layerwise pretraining, and at the end stack the layer for supervised
purpose (typically a softmax layer for classification). This is another form of the change of the
objective function and the multiagent system can deal with it too by changing network and unit’s
state.

Specifically, when the all pretraining phase ends, connect the output units for supervised learning
onto the topmost hidden units, and all feature unit changes its state to the newly introduced "state C
(On fine-tuning)". The "state C" is almost the same as "state A", but the only differences are the two:

• They don’t send message to reconstruction units.
• They always send backpropagation message to the previous units.

This backpropagation message must be sent in ascending order as well as the previous message
passing.

Here we reinterpreted the standard pretraining and fine-tuning algorithm with our proposed multiagent
system. These two cover the all learning phase of SDAE, therefore we have successfully reinterpreted
the whole SDAE and showed its equivalence of the standard SDAE.

3.4 SPARSE CONNECT SDAE

Now we obtain new multiagent SDAE, and theoritically showed its equivalence to standard SDAE.
Next we want to extend this model and experiment its behavior. One of the minimal and simplest

7



Under review as a conference paper at ICLR 2017

modification to this model is to truncate the edges randomly. We call this model "Sparse connect
SDAE" or "SCSDAE" for the latter section.

Since our goal here is to check the basic behavior when we truncate edges, we take one of the simplest
rule that we basically connect all edges between nodes (if the distance meets criteria) but drop them
for certain threshold probability. Once the connection is established, we fix them and will not modify
online. For example, connection rate 1.0 (100%) means it is the same network as SDAE and 0.3
means 30% of edges in SDAE remain intact and the others are dropped.

We can expect the time spent in learning is proportional to the connection rate. This is an obvious
strong point against the standard matrix-vector based network. In matrix-vector based networks, we
must fix the size of weight matrices and keep them at their original size even if most weights are
learned to be soft zero. In our multiagent model however, we only need to calculate for existing
edges. We will see whether this expectation holds in the next experiments section.

4 EXPERIMENTS

We implemented the proposed multiagent network and measure its performance. We verified empirical
equivalence between the multiagent SDAE and standard SDAE. We also measure performance of
Sparse connect SDAE, which we described in 3.4. We change its connection rate and see how the
performance and learning time changes.

4.1 DATASET

We use two datasets for experiment, one is an artificial XOR function toy dataset made by us for this
experiment, and the other is the MNIST handwritten digit dataset. Since the result and conclusion
is almost same, we only report for the MNIST dataset. The details of the datasets are described in
Appendix A.

4.2 MODEL SETTINGS

We use the sigmoid function as activation functions of all units. We use the unit-wise MSRE as
mentioned in the section 3 for both reconstruction errors in pretraining phase and classification
in finetune phase. In pretraining, we simply take the mean through the all reconstruction units to
check if the training works. For finetuning, we again take the sum of MSRE as cost function, and as
classification error, we take the label associated with the unit that has the most activated value and
discretely compare that value to measure the error rate. The SDAE algorithm includes random noise
addition and is not fully deterministic. So we run each experiment settings for 3 times and take the
average through the runs for all metrics we show. We set learning rate for pretraining and finetuning
to 0.001 and 0.1, respectively. Corruption rate of SDAE is fixed to 0.3.

4.3 COMPARISON BETWEEN MULTIAGENT AND NORMAL SDAE

We compared the test error rate through epochs between multiagnt and normal SDAE. Figure 2 show
the mean classification error rate through 3 simulations with the MNIST dataset. We can see the
two graphs form almost the same shape, which suggests the multiagent implementation of SDAE is
empirically equivalent to normal SDAE. This is a verification of the theoritical proof we showed in
section 3.

In order to check this equivalence more precisely, we evaluate the difference of maximum weight
update between multiagent and normal SDAE (Table 2). We gave an input data to both networks and
measure the largest change of weight change update for each edge group shown in Table 2. To make
the problem simple and clear, for this experiment we used only one hidden layer and no pretraining,
so the model is similiar to a naive MLP. From the Table 2, we can see that the decimal order of largest
difference is 3 digits small as that of information error with 32bit floating point numbers. We suppose
this difference is small enough to be well ignored.

8



Under review as a conference paper at ICLR 2017

Figure 3: Mean calculation time for connectivity
rate averaged over 3 experiments for each connec-
tivity. The horizontal axis indicates connectivity
rate of each model and the vertical shows time
spent in training.

Figure 4: Mean error rate for connectivity rate
averaged over 3 experiments for each connectivity.
The horizontal axis indicates connectivity rate of
each model and the vertical for error rate in test
dataset.

Figure 2: Mean classification error rate (left: stan-
dard SDAE, right: multiagent SDAE). The ver-
tical coordinate indicates their error rate and the
horizontal for epoch count. Both SDAE result in
almost the same shape.

Table 2: Difference of the largest weight change
for one input between multiagnet and normal
SDAE

Group of edges Largest difference

input to hidden 1.08× 10−19

hidden bias 0.0
hidden to output 8.7× 10−19

output bias 0.0

4.4 SPARSE CONNENCT SDA

We gradually changed the connectivity rate of our proposed SCSDAE and compare its performance.
In this experiment, we measure the performance by the two aspect, the error rate and the calculation
time, because we expect that the less number of edge mean the less calculation in time in our model
as we described in chapter 3.

Figure 3 shows the meausred calculation time and Figure 4 for the error rate. In both figures the
horizontal coordinate indicates the number of iterated epochs and the vertical is for time and error
rate, respectively. From Figure 3, we can verify that the calculation time decreases linearly as we
expected.

Figure 4 shows the error rate on test set after the given number of epochs passed. Contrary to our
intuition, it can be said that in some cases despite of the decrease in connection probability, error rate
do not deteriorate. The reason is not obvious, but we suppose that the more connection established, the
more it became difficult and time requiring to the model to converge enough to show the potential of
the model class. It can be also possible that the forced sparsity gave the model unexpected advantage
to obtain sparse coding efficiently.

5 CONCLUSION

We proposed a fundamental framework to reinterpret deep networks as multiagent systems. Specif-
ically, we reimplemented a model equivalent to Stacked Denoising Autoencoder(SDAE) but the
inside implementation is given with the multiagent system. We verified this equivalence from both
theoritical and empirical aspects. We also tested the behaviour when we actually let the model drop

9



Under review as a conference paper at ICLR 2017

some edges permanently and demostrated the reduction of computation time as the connection rate
decreases.

Our contribution is to propose new multiagent based neural network system that free existing deep
network from restriction of layer scheme. Our system involves the standard SDAE as its subset
and has large potential of extension. Our model could be extended to more biologically plausible
variation. Our experiment with the proposed Sparse Connect SDAE demostrate the advantage of
non-matrix calculation and permanent drop of edges.

The next step is to sophisticate the model so that the agents are more strictly independent from the
environment. Then we will be able to use this system as a framework for extending more flexible
deep network. For example, we can make arbitrary connection of units. We can also consider mixing
of units with different activation function, dropout strategy, learning rate.

REFERENCES

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking Deep Convolutional Neural Networks for
Energy-Efficient Object Recognition. International Journal of Computer Vision, 113(1):54–66,
2014.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training Deep Neural
Networks with binary weights during propagations. arXiv preprint arXiv:1511.00363, 2015.

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to Com-
municate with Deep Multi-Agent Reinforcement Learning. arXiv preprint arXiv:1605.06676,
2016.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. In ICLR, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. In
NIPS 2014 Deep Learning Workshop, 2014.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, Antoine Biard, and Yoshua Bengio. Difference
Target Propagation. arXiv preprint arXiv:1412.7525, 2014.

Mathieu Germain Mathieu, Karol Gregor Karol, Iain Murray Iain, Hugo Larochelle Hugo, Mathieu
Germain, Karol Gregor, Google Deepmind, Karol Gregor, Gmail Com, Iain Murray, and Hugo
Larochelle. MADE: Masked Autoencoder for Distribution Estimation. In ICML, 2015.

Yuanyuan Mi, C. C. Alan Fung, K. Y. Michael Wong, and Si Wu. Spike Frequency Adaptation
Implements Anticipative Tracking in Continuous Attractor Neural Networks. In NIPS, 2014.

Takayuki Osogami and Makoto Otsuka. Seven neurons memorizing sequences of alphabetical images
via spike-timing dependent plasticity. Scientific Reports, 5, 14149, 2015.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, Tapani Raiko, Mikko Honkala,
Mathias Berglund, and Tapani Raiko. Semi-supervised Learning with Ladder Networks. arXiv
preprint arXiv:1507.02672, 2015.

Sebastian Risi and Kenneth O. Stanley. Guided Self-organization in Indirectly Encoded and Evolving
Topographic Maps. In GECCO, 2014.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning Multiagent Communication with
Backpropagation. arXiv preprint arXiv:1605.07736, 2016.

David Sussillo and L. F. Abbott. Generating Coherent Patterns of Activity from Chaotic Neural
Networks. Neuron, 63(4):544–557, 2009.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In ICML, 2008.

10



Under review as a conference paper at ICLR 2017

APPENDIX

A. DATASETS

XOR function toy dataset consists of random ordering of four points representing the
four region of XOR function on 2D coordinate, which are set of tuple (x1, x2, y) =
[(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1,−1)]. The value ’1’ represents boolean value ’true’
and ’-1’ for ’false’. x1 and x2 mean boolean value input to the XOR function and y is the output.

MNIST handwritten digit dataset is a famous image recognision task. The input is a 28x28 image
patch of digit classified to 10 classes(0-9). It contains 60000 train images and 10000 test images.
Since our goal is not to pursue the state of the art performance of this dataset, but verify the common
property of our proposed model with more realistic problem rather than the XOR toy sample, so we
did no preprocessing on the dataset. We directly input image pixel value as a 784 row vector and
didn’t use the prior that the image is 2D data with spatiality which is importatnt in convolutional
network. This setting is called "permutation invariant" version of the MNIST task.

B. EXPERIMENTS DETAILS

For the XOR task, we set the number of hidden units to [3, 4, 5]. For MNIST, we used [100, 100,
100] network for all experiments. The learning rate was fixed to 0.001 at pretraining time and 0.1 at
finetuning. We trained 30 epochs of pretrainings for each MLP layer and 50 epochs of finetuning.
We used a single core of Intel(R) E5-2630 @ 2.40GHz to measure the performance invariant to
paralization method. The effect of paralization is a question for future research.

11


	Introduction
	Related works
	Reimplementation of deep network as a multiagent system
	The properties our multiagent system should suffice
	Definition of multiagent network
	The equivalence between the multiagent and standard versions of SDAE
	Equivalence with MLP
	Equivalence with autoencoder
	Equivalence with Denoising Autoencoder
	Equivalence with standard SDAE

	Sparse connect SDAE

	Experiments
	Dataset
	Model settings
	Comparison between multiagent and normal SDAE
	Sparse connenct SDA

	Conclusion

