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ABSTRACT

This work aims to provide comprehensive landscape analysis of empirical risk
in deep neural networks (DNN5), including the convergence behavior of its gra-
dient, its stationary points and the empirical risk itself to their corresponding
population counterparts, which reveals how various network parameters deter-
mine the convergence performance. In particular, for an /-layer linear neural
network consisting of d; neurons in the i-th layer, we prove the gradient of its
empirical risk uniformly converges to the one of its population risk, at the rate of

O(r?'/ly/max; d;slog(d/1)/n). Here d is the total weight dimension, s is the
number of nonzero entries of all the weights and the magnitude of weights per
layer is upper bounded by r. Moreover, we prove the one-to-one correspondence
of the non-degenerate stationary points between the empirical and population risks
and provide convergence guarantee for each pair. We also establish the uniform
convergence of the empirical risk to its population counterpart and further derive
the stability and generalization bounds for the empirical risk. In addition, we ana-
lyze these properties for deep nonlinear neural networks with sigmoid activation
functions. We prove similar results for convergence behavior of their empirical risk
gradients, non-degenerate stationary points as well as the empirical risk itself.

To our best knowledge, this work is the first one theoretically characterizing the
uniform convergence of the gradient and stationary points of the empirical risk
of DNN models, which benefits the theoretical understanding on how the neural
network depth [, the layer width d;, the network size d, the sparsity in weight and
the parameter magnitude r determine the neural network landscape.

1 INTRODUCTION

Deep learning has achieved remarkable success in many fields, such as computer vision (Hinton
et al., 2006; Szegedy et al., 2015; He et al., 2016), natural language processing (Collobert & Weston,
2008; Bakshi & Stephanopoulos, 1993), and speech recognition (Hinton et al., 2012; Graves et al.,
2013). However, theoretical understanding on the properties of deep learning models still lags
behind their practical achievements (Shalev-Shwartz et al., 2017; Kawaguchi, 2016) due to their
high non-convexity and internal complexity. In practice, parameters of deep learning models are
learned by minimizing the empirical risk via (stochastic-)gradient descent. Therefore, some recent
works (Bartlett & Maass, 2003; Neyshabur et al., 2015) analyzed the convergence of the empirical
risk to the population risk, which are however still far from fully understanding the landscape of the
empirical risk in deep learning models. Beyond the convergence properties of the empirical risk itself,
the convergence and distribution properties of its gradient and stationary points are also essential
in landscape analysis. A comprehensive landscape analysis can reveal important information on
the optimization behavior and practical performance of deep neural networks, and will be helpful
to designing better network architectures. Thus, in this work we aim to provide comprehensive
landscape analysis by looking into the gradients and stationary points of the empirical risk.

Formally, we consider a DNN model f(w;z,y) : R% x R% — R parameterized by w € R?
consisting of [ layers (I > 2) that is trained by minimizing the commonly used squared loss function
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over sample pairs {(x,y)} C R% x R% from an unknown distribution D, where y is the target
output for the sample x. Ideally, the model can find its optimal parameter w* by minimizing the
population risk through (stochastic-)gradient descent by backpropagation:

Hgn J(w) = E(z,y)~D flw;z,y),

where f(w;z,y) = 3|[v") — y||3 is the squared loss associated to the sample (, y) ~ D in which
v is the output of the I-th layer. In practice, as the sample distribution D is usually unknown and
only finite training samples {(w(i), Y@i)) }?:1 i.i.d. drawn from D are provided, the network model is

usually trained by minimizing the empirical risk:

. 3 A 1 -
min J, (w) £ ~ ;f(w,m@,y@)- (1)
Understanding the convergence behavior of J,, (w) to J (w) is critical to statistical machine learning
algorithms. In this work, we aim to go further and characterize the landscape of the empirical risk
jn(w) of deep learning models by analyzing the convergence behavior of its gradient and stationary
points to their corresponding population counterparts. We provide analysis for both multi-layer linear
and nonlinear neural networks. In particular, we obtain following new results.

e We establish the uniform convergence of empirical gradient ijn(w) to its popu-
lation counterpart V,,J(w). Specifically, when the sample size n is not less than
O (max(I*r?/(e?slog(d/1)), slog(d/1)/1)), with probability at least 1 — & the conver-
gence rate is O(r?'\/ly/max; d;slog(d/1)/n), where there are s nonzero entries in the
parameter w, the output dimension of the i-th layer is d; and the magnitude of the weight
parameter of each layer is upper bounded by 7. This result implies that as long as the training
sample size n is sufficiently large, any stationary point of jn(w) is also a stationary point
of J(w) and vise versa, although both J,, (w) and J (w) are very complex.

* We then prove the exact correspondence of non-degenerate stationary points between J, (w)
and J(w). Indeed, the corresponding non-degenerate stationary points also uniformly
converge to each other at the same convergence rate as the one revealed above with an extra
factor 2/¢. Here ¢ > 0 accounts for the geometric topology of non-degenerate stationary
points (see Definition 1).

Based on the above two new results, we also derive the uniform convergence of the empirical risk
J,,(w) to its population risk J (w), which helps understand the generalization error of deep learning
models and stability of their empirical risk. These analyses reveal the role of the depth [ of a neural
network model in determining its convergence behavior and performance. Also, the results tell that the
width factor v/max; d;, the nonzero entry number s of weights, and the total network size d are also
critical to the convergence and performance. In addition, controlling magnitudes of the parameters
(weights) in DNNs are demonstrated to be important for performance. To our best knowledge, this
work is the first one theoretically characterizing the uniform convergence of empirical gradient and
stationary points in both deep linear and nonlinear neural networks.

2 RELATED WORK

To date, only a few theories have been developed for understanding DNNs which can be roughly
divided into following three categories. The first category aims to analyze training error of DNNs.
Baum (1988) pointed out that zero training error can be obtained when the last layer of a neural
network has more units than training samples. Later, Soudry & Carmon (2016) proved that for DNNs
with leaky rectified linear units (ReLU) and a single output, the training error achieves zero at any of
their local minima as long as the product of the number of units in the last two layers is larger than
the training sample size.

The second category of analysis works (Dauphin et al., 2014; Choromanska et al., 2015a; Kawaguchi,
2016; Tian, 2017) focus on analyzing loss surfaces of DNNS, e.g., how the stationary points are
distributed. Those results are helpful to understanding performance difference of large- and small-size
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networks (Choromanska et al., 2015b). Among them, Dauphin et al. (2014) experimentally verified
that a large number of saddle points indeed exist for DNNs. With strong assumptions, Choromanska
et al. (2015a) connected the loss function of a deep ReLU network with the spherical spin-class
model and described locations of the local minima. Later, Kawaguchi (2016) proved the existence
of degenerate saddle points for deep linear neural networks with squared loss function. They also
showed that any local minimum is also a global minimum. By utilizing techniques from dynamical
system analysis, Tian (2017) gave guarantees that for two-layer bias-free networks with ReL.Us,
the gradient descent algorithm with certain symmetric weight initialization can converge to the
ground-truth weights globally, if the inputs follow Gaussian distribution. Recently, Nguyen & Hein
(2017) proved that for a fully connected network with squared loss and analytic activation functions,
almost all the local minima are globally optimal if one hidden layer has more units than training
samples and the network structure after this layer is pyramidal. Besides, some recent works, e.g.,
(Zhang et al., 2016; 2017), tried to alleviate analysis difficulties by relaxing the involved highly
nonconvex functions into ones easier.

In addition, some existing works (Bartlett & Maass, 2003; Neyshabur et al., 2015) analyze the
generalization performance of a DNN model. Based on the Vapnik—Chervonenkis (VC) theory,
Bartlett & Maass (2003) proved that for a feedforward neural network with one-dimensional output,
the best convergence rate of the empirical risk to its population risk on the sample distribution can
be bounded by its fat-shattering dimension. Recently, Neyshabur et al. (2015) adopted Rademacher
complexity to analyze learning capacity of a fully-connected neural network model with ReLU
activation functions and bounded inputs.

However, although gradient descent with backpropagation is the most common optimization technique
for DNNs, none of existing works analyzes convergence properties of gradient and stationary points
of the DNN empirical risk. For single-layer optimization problems, some previous works analyze
their empirical risk but essentially differ from our analysis method. For example, Negahban et al.
(2009) proved that for a regularized convex program, the minimum of the empirical risk uniformly
converges to the true minimum of the population risk under certain conditions. Gonen & Shalev-
Shwartz (2017) proved that for nonconvex problems without degenerated saddle points, the difference
between empirical risk and population risk can be bounded. Unfortunately, the loss of DNNs is
highly nonconvex and has degenerated saddle points (Fyodorov & Williams, 2007; Dauphin et al.,
2014; Kawaguchi, 2016), thus their analysis results are not applicable. Mei et al. (2017) analyzed
the convergence behavior of the empirical risk for nonconvex problems, but they only considered
the single-layer nonconvex problems and their analysis demands strong sub-Gaussian and sub-
exponential assumptions on the gradient and Hessian of the empirical risk respectively. Their analysis
also assumes a linearity property on gradient which is difficult to hold or verify. In contrast, our
analysis requires much milder assumptions. Besides, we prove that for deep networks which are
highly nonconvex, the non-degenerate stationary points of empirical risk can uniformly converge
to their corresponding stationary points of population risk at the rate of O(1/s/n) which is faster

than the rate O(1/d/n) for single-layer optimization problems in (Mei et al., 2017). Also, Mei et al.
(2017) did not analyze the convergence rate of the empirical risk, stability or generalization error of
DNNss as this work.

3 PRELIMINARIES

Throughout the paper, we denote matrices by boldface capital letters, e.g. A. Vectors are denoted by
boldface lowercase letters, e.g. a, and scalars are denoted by lowercase letters, e.g. a. We define the

r-radius ball as B?(r) 2 {z € R?|||z|2 < r}. To explain the results, we also need the vectorization
operation vec(-). It is defined as vec(A) = (A(:,1);--- ; A(:,t)) € R that vectorizes A € R*?

along its columns. We use d = Z;=1dj d;_, to denote the total dimension of weight parameters,
where d; denotes the output dimension of the j-th layer.

In this work, we consider both linear and nonlinear DNNs. Suppose both networks consist of [ layers.
We use ©/) and v to respectively denote the input and output of the j-th layer, Vj = 1,..., 1.

Deep linear neural networks: The function of the j-th layer is formulated as

w2 WWylU-D c R p0) £ 400) e R, Vi=1,---,1,
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where v(?) = x is the input and W) € R4 *2i-1 is the weight matrix of the j-th layer.

Deep nonlinear neural networks: We adopt the sigmoid function as the non-linear activation
function. The function within the j-th layer can be written as

u 2 W=D eRd oD 2 b)) = (o) o)) €RY, Wi =1, 1,

where ugj) denotes the i-th entry of /) and o (-) is the sigmoid function, i.e., o(a) = 1/(1 + e~).

Following the common practice, both DNN models adopt the squared loss function defined as
flwiz,y) = 3|vV — y||3, where w = (w(1);--- ;w()) € R? contains all the weight pa-
rameters and w(j) = vec (W) € R%%-1. Then the empirical risk J,(w) is J,(w) =

LS fwimey, ye) = 5 Sy ||v8; — Y53, where ”Eg is the network’s output of ;).

4 RESULTS FOR DEEP LINEAR NEURAL NETWORKS

We first analyze linear neural network models and present following new results: (1) the uniform
convergence of the empirical risk gradient to its population counterpart and (2) the convergence
properties of non-degenerate stationary points of the empirical risk. As a corollary, we also derive
the uniform convergence of the empirical risk to the population one, which further gives stability
and generalization bounds. In the next section, we extend the analysis to non-linear neural network
models.

We assume the input datum z is 72-sub-Gaussian and has bounded magnitude, as formally stated in
Assumption 1.

Assumption 1. The input datum = € R% has zero mean and is 2-sub-Gaussian, i.e.,
1
Blexp (A, 2)] < exp (372IAI3)  ¥A € R
Besides, the magnitude x is bounded as ||x||2 < r,, where r,, is a positive universal constant.

Note that any random vector z consisting of independent entries with bounded magnitude is sub-
Gaussian and satisfies Assumption 1 (Vershynin, 2012). Moreover, for such a random z, we have
T = ||2]leo < ||Z]l2 < rz. Such an assumption on bounded magnitude generally holds for natural
data, e.g., images and speech signals. Besides, we assume the weight parameters w;y of each layer
are bounded as w € Q = {w|w(;) € B%%-1(r;), Vj = 1,--- 1} where r; is a constant. For
notational simplicity, we let 7 = max; ;. Such an assumption is common (Xu & Mannor, 2012).
Here we assume the entry value of y falls in [0, 1]. For any bounded target output y, we can always
scale it to satisfy such a requirement.

The results presented for linear neural networks here can be generalized to deep ReLU neural networks
by applying the results from Choromanska et al. (2015a) and Kawaguchi (2016), which transform
deep ReLU neural networks into deep linear neural networks under proper assumptions.

4.1 UNIFORM CONVERGENCE OF EMPIRICAL RISK GRADIENT

We first analyze the convergence of gradients for the DNN empirical and population risks. To our
best knowledge, these results are the first ones giving guarantees on gradient convergence, which help
better understand the landscape of DNNs and their optimization behavior. The results are stated blow.

Theorem 1. Suppose Assumption 1 on the input datum x holds and the activation functions in a
deep neural network are linear. Then the empirical gradient uniformly converges to the population
gradient in Euclidean norm. Specifically, there exist two universal constants cy and cg such that

ifn > cy max(I3r?rl /(cyslog(d/)e?m4 log(1/¢)), slog(d/l)/(IT%)) where ¢, = \/maxo<i<; d;,

then

A log(dn/l) 4+ log(12
sup “an(w) - VJ(w)H <6y cgwg /rcq\/s og(dn/l) +log(12/¢)
weN 2 n
holds with probability at least 1 — €, where s denotes the number of nonzero entries of all weight
parameters and Wy = max (TrQl_l, 1"2[_1, rl_l).
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From Theorem 1, one can observe that with an increasingly larger sample size n, the difference
between empirical risk and population risk gradients decreases monotonically at the rate of O(1/y/n)
(up to a log factor). Theorem 1 also characterizes how the depth [ contributes to obtaining small
difference between the empirical and population risk gradients. Specifically, a deeper neural network
needs more training samples to mitigate the difference. Also, due to the factor d, training a network
of larger size using gradient descent also requires more training samples. We observe a factor of
vmax; d; (i.e. ¢,), which prefers a DNN architecture of balanced layer sizes (without extremely wide
layers). This result also matches the trend and empirical performance in deep learning applications
advocating deep but thin networks (He et al., 2016; Szegedy et al., 2015).

By observing Theorem 1, imposing certain regularizations on the weight parameters is useful. For
example, reducing the number of nonzero entries s encourages sparsity regularization like ||w]|;.
The results also suggest not choosing large-magnitude weights w in order for a smaller factor r by
adopting regularization like ||w||3.

Theorem 1 also reveals the point derived from optimizing that the empirical and population risks have
similar properties when the sample size n is sufficiently large. For example, an €/2-stationary point w
of J,, (w) is also an e-stationary point of .J (w) with probability 1 —¢ if n > ¢, (Twy/€)?lcgslog(d/1)
with c. being a constant. Here e-stationary point for a function F' means the point w satisfying
|V F||2 < €. Understanding such properties is useful, since in practice one usually computes an

e-stationary point of jn,(w). These results guarantee the computed point is at most a 2e-stationary
point of J(w) and is thus close to the optimum.

4.2 UNIFORM CONVERGENCE OF STATIONARY POINTS

We then proceed to analyze the distribution and convergence properties of stationary points of the
DNN empirical risk. Here we consider non-degenerate stationary points which are geometrically
isolated and thus unique in local regions. Since degenerate stationary points are not unique in a local
region, we cannot expect to establish one-to-one corresponding relationship (see below) between
them in empirical risk and population risk.

Definition 1. (Non-degenerate stationary points) (Gromoll & Meyer, 1969) If a stationary point w
is said to be a non-degenerate stationary point of J(w), then it satisfies

inf [\ (V2 (w))] > ¢,
where \; (V2J (w)) denotes the i-th eigenvalue of the Hessian V> J (w) and ( is a positive constant.

Non-degenerate stationary points include local minima/maxima and non-degenerate saddle points,
while degenerate stationary points refer to degenerate saddle points. Then we introduce the index of
non-degenerate stationary points which can characterize their geometric properties.

Definition 2. (Index of non-degenerate stationary points) (Dubrovin et al., 2012) The index of
a symmetric non-degenerate matrix is the number of its negative eigenvalues, and the index of a
non-degenerate stationary point w of a smooth function F is simply the index of its Hessian V> F (w).

Suppose that J(w) has m non-degenerate stationary points that are denoted as {w(l)7
w® ... wl™}. We prove following convergence behavior of these stationary points.

Theorem 2. Suppose Assumption 1 on the input datum x holds and the activation functions in a deep
neural network are linear. Then if n. > cp, max(I3r?ri /(cyslog(d/1)e?t4log(1/e)), slog(d/1)/¢?)
where ¢y, is a constant, for k € {1,--- ,m}, there exists a non-degenerate stationary point w,(f) of
J, (w) which corresponds to the non-degenerate stationary point w*) of J (w) with probability at

least 1 — e. In addition, w,(Lk ) and w®) have the same non-degenerate index and they satisfy

ot — ) < 222 logy[ LB/ 4 0802/8) -y

’
n

with probability at least 1 — ¢, where the parameters cq, wq, and cq are given in Theorem 1.

Theorem 2 guarantees the one-to-one correspondence between the non-degenerate stationary points
of the empirical risk J,,(w) and the popular risk J(w). The distances of the corresponding pairs
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become smaller as n increases. In addition, the corresponding pairs have the same non-degenerate
index. This implies that the corresponding stationary points have the same geometric properties,
such as whether they are saddle points. Accordingly, we can develop more efficient algorithms,
e.g. escaping saddle points (Ge et al., 2015), since Dauphin et al. (2014) empirically proved that
saddle points are usually surrounded by high error plateaus. Also when n is sufficiently large, the
properties of stationary points of .J,,(w) are similar to the points of the population risk J (w) in
the sense that they have exactly matching local minima/maxima and non-degenerate saddle points.
By comparing Theorems 1 and 2, we find that the requirement for sample number in Theorem 2
is more restrict, since establishing exact one-to-one correspondence between the non-degenerate
stationary points of jn(w) and J(w) and bounding their uniform convergence rate to each other
are more challenging. From Theorems 1 and 2, we also notice that the uniform convergence rate of
non-degenerate stationary points has an extra factor 1/{. This is because bounding stationary points
needs to access not only the gradient itself but also the Hessian matrix. See more details in proof.

Kawaguchi (2016) pointed out that degenerate stationary points indeed exist for DNNs. However,
since degenerate stationary points are not isolated, such as forming flat regions, it is hard to establish
the unique correspondence for them as for non-degenerate ones. Fortunately, by Theorem 1, the
gradients at these points of J,, (w) and J(w) are close. This implies that a degenerate stationary
point of J(w) will also give a near-zero gradient for J,, (w), i.e., it is also a stationary point for
Jp(w).

In the proof, we consider the essential multi-layer architecture of the deep linear network, and do not
transform it into a linear regression model and directly apply existing results (see Loh & Wainwright
(2015) and Negahban et al. (2011)). This is because we care more about deep ReLU networks which
cannot be reduced in this way. Our proof technique is more suitable for analyzing the multi-layer
neural networks which paves a way for analyzing deep ReLLU networks. Also such an analysis
technique can reveal the role of network parameters (dimension, norm, etc.) of each weight matrix
in the results which may benefit the design of networks. Besides, the obtained results are more
consistent with those for deep nonlinear networks (see Sec. 5).

4.3 UNIFORM CONVERGENCE, STABILITY AND GENERALIZATION OF EMPIRICAL RISK

Based on the above results, we can derive the uniform convergence of empirical risk to population
risk easily. In this subsection, we first give the uniform convergence rate of empirical risk for deep
linear neural networks in Theorem 3, and then use this result to derive the stability and generalization
bounds for DNNSs in Corollary 1.

Theorem 3. Suppose Assumption 1 on the input datum x holds and the activation functions in a
deep neural network are linear. Then there exist two universal constants cy: and cy such that if
n > cpomax(I3rd /(dislog(d/l)e?t4log(1/¢)), slog(d/l) /(12dy)), then

sup j"(,w) - J(w) < €f A ;7 max <\/d717'7’2l,7"l> \/slog(dn/l) +10g(8/5) 2)

weN n

holds with probability at least 1 — €. Here l is the number of layers in the neural network, n is the
sample size and d; is the dimension of the final layer.

From Theorem 3, when n. — 400, we have |J,, (w) — J(w)| — 0. According to the definition of
uniform convergence (Vapnik & Vapnik, 1998; Shalev-Shwartz et al., 2010), under the distribution
D, the empirical risk of a deep linear neural network converges to its population risk uniformly at
the rate of O(1/+/n). Theorem 3 also explains the roles of the depth [, the network size d, and the
number of nonzero weight parameters s in a DNN model.

Based on VC-dimension techniques, Bartlett & Maass (2003) proved that for a feedforward neural
network with polynomial activation functions and one-dimensional output, with probability at least

1 — ¢ the convergence bound satisfies |.J,,(w) — inf; J(w)| < (9(\/(fylog2 (n) +log(1/e))/n).
Here 7 is the shattered parameter and can be as large as the VC-dimension of the network model, i.e.
at the order of O(Idlog(d)+12d) (Bartlett & Maass, 2003). Note that Bartlett & Maass (2003) did not
reveal the role of the magnitude of weight in their results. In contrast, our uniform convergence bound

is SUP,,c0 | (w) —J (w)] < O(+y/(slog(dn/l) +log(1/))/n). So our convergence rate is tighter.
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Neyshabur et al. (2015) proved that the Rademacher complexity of a fully-connected neural network
model with ReLU activation functions and one-dimensional output is O (r!/,/n) (see Corollary 2
in (Neyshabur et al., 2015)). Then by applying Rademacher complexity based argument (Shalev-
Shwartz & Ben-David, 2014a), we have | supf(jn(w) — J(w))| < O((r + y/log(1/e)) /+/n) with
probability at least 1 — ¢ where the loss function is the training error g = 1,1, in which v is
the output of the I-th layer in the network model f(w;x, y). The convergence rate in our theorem
is O(r?\/(slog(d/l) + log(1/¢))/n) and has the same convergence speed O(1//n) w.r.t. sample
number n. Note that our convergence rate involves 2! since we use squared loss instead of the
training error in (Neyshabur et al., 2015). The extra parameters s and d are involved since we consider
the parameter space rather than the function hypothesis f in (Neyshabur et al., 2015), which helps
people more transparently understand the roles of the network parameters. Besides, the Rademacher
complexity cannot be applied to analyzing convergence properties of the empirical risk gradient and
stationary points as our techniques.

Based on Theorem 3, we proceed to analyze the stability property of the empirical risk and the
convergence rate of the generalization error in expectation. Let S = {(x (1), ¥(1)), - » (T(n), Yn)) }
denote the sample set in which the samples are i.i.d. drawn from D. When the optimal solution
w" to problem (1) is computed by deterministic algorithms, the generalization error is defined as
€g = J,(w™) — J(w"). But one usually employs randomized algorithms, e.g. stochastic gradient
descent (SGD), for computing w™. In this case, stability and generalization error in expectation
defined in Definition 3 are more applicable.

Definition 3. (Stability and generalization in expectation) (Vapnik & Vapnik, 1998; Shalev-Shwartz
et al., 2010; Gonen & Shalev-Shwartz, 2017) Assume a randomized algorithm A is employed,
((®(1), Y1), (&), Y(py)) ~ D and w™ = argmin,, Jy,(w) is the empirical risk minimizer

(ERM). For every j € [n], suppose wi = argmin,, ﬁ Zi# Jilw; gy, y@y). We say that the

ERM is on average stable with stability rate € under distribution D if |Eg.p. a (@, y/;)~D
AL (@)Y

1 S | £ (wl; (), Y () — fi(w), ij))] ‘ < €. The ERM is said to have generalization

error with convergence rate €y, under distribution D if we have ’ESND}A <J(w”) — jn (w”)) ‘ <
€L’ .

Stability measures the sensibility of the empirical risk to the input and generalization error measures
the effectiveness of ERM on new data. Generalization error in expectation is especially important for
applying DNNs considering their internal randomness, e.g. from SGD optimization. Now we present
the results on stability and generalization performance of deep linear neural networks.

Corollary 1. Suppose Assumption 1 on the input datum x holds and the activation functions in a
deep neural network are linear. Then with probability at least 1 — ¢, both the stability rate and the
generalization error rate of ERM of a deep linear neural network are at least €y :

1 - * n > n
E5~D7A,(m2j>,yzj))~’DE Z (ff = 1f5) ‘ <e; and ‘ESND,A (J(w ) — Jp(w )) ’ < ey,
1

gherizj;j and f; respectively denote fj(w'l; w’(j), ij)) and f;(w™; w’(j), ij)), and ey is defined in
qn. (2).

According to Corollary 1, both the stability rate and the convergence rate of generalization error are
O(ey). This result indicates that deep learning empirical risk is stable and its output is robust to small
perturbation over the training data. When n is sufficiently large, small generalization error of DNNs
is guaranteed.

5 RESULTS FOR DEEP NONLINEAR NEURAL NETWORKS

In the above section, we analyze the empirical risk optimization landscape for deep linear neural
network models. In this section, we extend our analysis to deep nonlinear neural networks which
adopt the sigmoid activation function. Our analysis techniques are also applicable to other third-order
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differentiable activation functions, e.g., tanh function with different convergence rate. Here we
assume the input data are i.i.d. Gaussian variables.

Assumption 2. The input datum x is a vector of i.i.d. Gaussian variables from N (0, 72).

Since for any input, the sigmoid function always maps it to the range [0, 1]. Thus, we do not require
the input « to have bounded magnitude. Such an assumption is common. For instance, Tian (2017)
and Soudry & Hoffer (2017) both assumed that the entries in the input vector are from Gaussian
distribution. We also assume w € €2 as in (Xu & Mannor, 2012). Here we also assume that the entry
value of the target output y falls in [0, 1]. Similar to the analysis of deep linear neural networks, here
we also aim to characterize the empirical risk gradient, stationary points and empirical risk for deep
nonlinear neural networks.

5.1 UNIFORM CONVERGENCE OF GRADIENT AND STATIONARY POINTS

Here we analyze convergence properties of gradients of the empirical risk for deep nonlinear neural
networks.

Theorem 4. Assume the input sample x obeys Assumption 2 and the activation functions in a deep
neural network are sigmoid functions. Then the empirical gradient uniformly converges to the
population gradient in Euclidean norm. Specifically, there are two universal constants c, and ¢,
such that if n > cycqal®r? /(slog(d)T?e? log(1/e)) where cq=maxo<;<; d;, then with probability
atleast1 — ¢

512

512 slog(dn/l) + log(4/e)
729 Y

I(T+2)(le, +1) cdcr\/ )

n

sup Han(w) - VJ(w)H <q 2 T\/
weN 2

where ¢, = max(r? /16, (7'2/16)171), and s denotes the nonzero entry number of all weights.

Similar to deep linear neural networks, the layer number [, width d;, number of nonzero parameter
entries s, network size d and magnitude of weights are all critical to the convergence rate. Also,
since there is a factor max; d; in the convergence rate, it is better to avoid choosing an extremely
wide layer. Interestingly, when analyzing the representation ability of deep learning, Eldan & Shamir
(2016) also suggested non-extreme-wide layers, though the conclusion was derived from a different
perspective. By comparing Theorems 1 and 4, one can observe that there is a factor (1/16)'~! in the
convergence rate in Theorem 4. This is because the convergence rate accesses the Lipschitz constant
and when we bound it, sigmoid activation function brings the factor 1/16 for each layer.

Now we analyze the non-degenerate stationary points of the empirical risk for deep nonlinear neural
networks. Here we also assume that the population risk has m non-degenerate stationary points
denoted by {w™ w® ... wl™}

Theorem 5. Assume the input sample x obeys Assumption 2 and the activation functions in a
deep neural network are sigmoid functions. Then if n > cs max (cql®r?/(slog(d)r%e* log(1/¢)),

slog(d/l)/¢?) where c, is a constant, for k € {1,--- ,m}, there exists a non-degenerate stationary
point wi of J,,(w) which corresponds to the non-degenerate stationary point w'*) of J(w) with
probability at least 1 — . Moreover, wﬁlk) and w™®) have the same non-degenerate index and they

obey

27 /512

1 log(4
waf) - w(k)H2 < T @cyl(l +2) (le, + 1) cdcr\/s og(dn/l) + log(4/¢)

n

5 (k:17... ’m)
with probability at least 1 — ¢, where ¢, cq and c, are the same parameters in Theorem 4.

According to Theorem 5, there is one-to-one correspondence between the non-degenerate stationary
points of J,, (w) and J (w). Also the corresponding pair has the same non-degenerate index, implying
they have exactly matching local minima/maxima and non-degenerate saddle points. When n is
sufficiently large, the non-degenerate stationary point 'wg“) inJ, (w) is very close to its corresponding
non-degenerate stationary point w(*) in J(w). As for the degenerate stationary points, Theorem 4
guarantees the gradients at these points of J(w) and J, (w) are very close to each other.
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5.2 UNIFORM CONVERGENCE, STABILITY AND GENERALIZATION OF EMPIRICAL RISK
Here we first give the uniform convergence analysis of the empirical risk and then analyze its stability
and generalization.

Theorem 6. Assume the input sample x obeys Assumption 2 and the activation functions in a deep
neural network are the sigmoid functions. If n > 181?12 /(slog(d)72c* log(1/€)), then

sup |J, (w) — J(w)‘ <en £ T\/zcycd (1+c(1— 1))\/Slog(nd/l) +log(4/¢) (3)

weN n

holds with probability at least 1 —¢, where c,, cq and c, are given in Theorem 4.

From Theorem 6, we obtain that under the distribution D, the empirical risk of a deep nonlinear
neural network converges at the rate of O(1/4/n) (up to a log factor). Theorem 6 also gives similar
results as Theorem 3, including the inclination of regularization penalty on weight and suggestion on
non-extreme-wide layers. Similar to linear networks, our risk convergence rate is also tighter than the
convergence rate on the networks with polynomial activation functions and one-dimensional output in

(Bartlett & Maass, 2003) since ours is at the order of O(1/(I — 1)(slog(dn/l) + log(1/¢))/n), while

the later is O(\/(’y log?(n) + log(1/¢))/n) where 7 is at the order of O(Idlog(d) + I2d) (Bartlett
& Maass, 2003).

We then establish the stability property and the generalization error of the empirical risk for nonlinear
neural networks. By Theorem 6, we can obtain the following results.

Corollary 2. Assume the input sample x obeys Assumption 2 and the activation functions in a deep
neural network are sigmoid functions. Then with probability at least 1 — €, we have

1 )
’Dﬁ; fi = f3) ‘ <e, and ‘ESNDVA (J(w”) — Jn(w")) ’ < e,

Es~
S~D,A,(x(;),9(;))

where €, is defined in Eqn. (3). The notations [} and f; here are the same in Corollary 1.

By Corollary 2, we know that both the stability convergence rate and the convergence rate of
generalization error are O(1//n). This result accords with Theorems 8 and 9 in (Shalev-Shwartz
etal., 2010) which implies O(1/+/n) is the bottleneck of the stability and generalization convergence
rate for generic learning algorithms. From this result, we have that if n is sufficiently large, the
empirical risk can be expected to be very stable. This also dispels misgivings of the random selection
of training samples in practice. Such a result indicates that the deep nonlinear neural network can
offer good performance on testing data if it achieves small training error.

6 PROOF ROADMAP

Here we briefly introduce our proof roadmap. Due to space limitation, all the proofs of Theorems 1
~ 6 and Corollaries 1 and 2 as well as technical lemmas are deferred to the supplementary material.

The proofs of Theorems 1 and 4 are similar but essentially differ in some techniques
for bounding probability due to their different assumptions.  For explanation simplic-

ity, we define four events: E = {supg,cq|Vn(w) - VJ(w)l|s > t}, B =
{swpyeo 57 i(VF(w @)=V (wr, @) 2 > t/3} BEx = {supy; ev, e
152V (Wi, x()) — EVf(wr,, @)z > t/3}, and E; = {supycq |EVf(wg,, )
—EV f(w,x)||2 > t/3}, where wy,, = [w,_;w; ;---;wj, ] is constructed by selecting wj, €
R%:di-1 from d;d;_1¢/d-net \; such that ||w — wy,, |l2 < €. Note that in Theorems 1 and 4, t is
respectively set to €, and ;. Then we have P(E) < P(E;) + P(E;) + P(Es3). So we only need to
separately bound P(E;), P(E;) and P(E3). For P(E;) and P(E3), we use the gradient Lipschitz
constant and the properties of e-net to prove P(E;) < /2 and P(E5) = 0, while bounding P(E>)
needs more efforts. Here based on the assumptions, we prove that P(E>) has sub-exponential tail
associated to the sample number n and the networks parameters, and it satisfies P(E2) < /2 with
proper conditions. Finally, combining the bounds of the three terms, we obtain the desired results.
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To prove Theorems 2 and 5, we first prove the uniform convergence of the empirical Hessian
to its population Hessian. Then, we define such aset D = {w € Q : |[VJ(w)||, < € and
inf; |)\,» (V2T (w))’ > (}. In this way, D can be decomposed into countably components, with
each component containing either exactly one or zero non-degenerate stationary point. For each
component, the uniform convergence of gradient and the results in differential topology guarantee
that if J(w) has no stationary points, then J,, (w) also has no stationary points and vise versa.
Similarly, for each component, the uniform convergence of Hessian and the results in differential
topology guarantee that if J (w) has a unique non-degenerate stationary point, then .J,, (w) also has a
unique non-degenerate stationary point with the same index. After establishing exact correspondence
between the non-degenerate stationary points of empirical risk and population risk, we use the
uniform convergence of gradient and Hessian to bound the distance between the corresponding pairs.

We adopt a similar strategy to prove Theorems 3 and 6. Specifically, we divide the event
SUDgpeq|In(w)— VI (w)| > tinto Ey, E; and E3 which have the same forms as their counterparts
in the proofs of Theorem 1 with the gradient replaced by the loss function. To prove P(E;) < £/2
and P(E3) = 0, we can use the Lipschitz constant of the loss function and the e-net properties. The
remaining is to prove P(E5). We also prove that it has sub-exponential tail associated to the sample
number n and the networks parameters and it obeys P(Es) < £/2 with proper conditions. Then we
utilize the uniform convergence of .J,, (w) to prove the stability and generalization bounds of .J,, (w)
(i.e. Corollaries 1 and 2).

7 CONCLUSION

In this work, we provided theoretical analysis on the landscape of empirical risk optimization for
deep linear/nonlinear neural networks with (stochastic-)gradient descent, including the properties
of the gradient and stationary points of empirical risk as well as the uniform convergence, stability,
and generalization of the empirical risk itself. To our best knowledge, most of the results are new to
deep learning community. These results also reveal that the depth [, the nonzero entry number s of
all weights, the network size d and the width of a network are critical to the convergence rates. We
also prove that the weight parameter magnitude is important to the convergence rate. Indeed, small
magnitude of the weights is suggested. All the results are consistent with the widely used network
architectures in practice.
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SUPPLEMENTARY MATERIAL OF EMPIRICAL RISK LANDSCAPE ANALYSIS FOR
UNDERSTANDING DEEP NEURAL NETWORKS

A STRUCTURE OF THIS DOCUMENT

This document gives some other necessary notations and preliminaries for our analysis in Sec. B.
Then we prove Theorems 1~ 3 and Corollary 1 for deep linear neural networks in Sec. C. Then we
present the proofs of Theorems 4 ~ 6 and Corollary 2 for deep nonlinear neural networks in Sec. D.

In both Sec. C and D, we first present the technical lemmas for proving our final results and
subsequently present the proofs of these lemmas. Then we utilize these technical lemmas to prove
our desired results. Finally, we give the proofs of other auxiliary lemmas.

B NOTATIONS AND PRELIMINARY TOOLS

Beyond the notations introduced in the manuscript, we need some other notations used in this
document. Then we introduce several lemmas that will be used later.

B.1 NOTATIONS

Throughout this document, we use (-, -) to denote the inner product. A ® C' denotes the Kronecker
product between A and C'. Note that A and C in A ® C can be matrices or vectors. For a matrix

A eR™ ™2 weuse [[Allp =1/ A?j to denote its Frobenius norm, where A;; is the (i, j)-th

entry of A. We use || Allop = max; |\;(A)| to denote the operation norm of a matrix A € R"™*™1,

where \;(A) denotes the i-th eigenvalue of the matrix A. For a 3-way tensor A € R™1*"2%"3 g
operation norm is computed as

3
[Allop = sup (A%, A) = 3~ AuAid; A,
A<t 5
where A, ;. denotes the (i, j, k)-th entry of LA. Also we denote the vectorization of W) (the weight
matrix of the j-th layer) as

w(j) = vec (W(j)) e R%di—1,
We denote I, as the identity matrix of size k x k.
For notational simplicity, we further define e £ v(*) — y as the output error vector. Then the squared

loss is defined as f(w;x,y) = 3|e|3, where w = (w(y); -+ ;w()) € R? contains all the weight
parameters.

B.2 TECHNICAL LEMMAS

We first introduce Lemmas 1 and 2 which are respectively used for bounding the ¢2-norm of a vector
and the operation norm of a matrix. Then we introduce Lemmas 3 and 4 which discuss the topology
of functions. In Lemma 5, we give the relationship between the stability and generalization of
empirical risk.

Lemma 1. (Vershynin, 2012) For any vector x € R, its f5-norm can be bounded as

1
J2lls < —— sup (x.2).
— € xeX.
where Ac = {1, ..., A, } be an e-covering net of B4(1).

Lemma 2. (Vershynin, 2012) For any symmetric matrix X € R jts operator norm can be
bounded as

1
X|lop < A X))
1Xllop < =5 sup [\, XX

where A, = {1, ..., Ag,, } be an e-covering net of B4(1).

13
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Lemma 3. (Mei et al., 2017) Let D C R be a compact set with a C? boundary 0D, and f,g :
A — R be C? functions defined on an open set A, with D C A. Assume that for all w € 0D
and all t € [0,1], tVf(w) + (1 — t)Vg(w) # 0. Finally, assume that the Hessian V? f(w) is
non-degenerate and has index equal to r for all w € D. Then the following properties hold:

(1) If g has no critical point in D, then f has no critical point in D.

(2) If g has a unique critical point w in D that is non-degenerate with an index of r, then f also has
a unique critical point w' in D with the index equal to r.

Lemma 4. (Mei et al., 2017) Suppose that F(w) : © — R is a C? function where w € ©. Assume

that {wV), ..., w(™} is its non-degenerate critical points and let D = {w € © : |[VF(w)||, <

€ and inf; ‘)\i (VQF ('w)) | > (}. Then D can be decomposed into (at most) countably components,

with each component containing either exactly one critical point, or no critical point. Concretely,

there exist disjoint open sets { Dy, }ken, with Dy, possibly empty for k > m + 1, such that

D = Uzolek .

Furthermore, w*) € Dy, for 1 < k < m and each D;, k > m + 1 contains no stationary points.

Lemma 5. (Shalev-Shwartz & Ben-David, 2014b; Gonen & Shalev-Shwartz, 2017) Assume that
D is a sample distribution and randomized algorithm A is employed for optimization. Suppose

that ((wzl),'yzl)% (@) Y(y)) ~ D and w™ = argmin,, J, (w). For every j € {1,-- ,n},

suppose wi. = argmin,,, —— >izg fi(wi i), yi)). For arbitrary distribution D, we have

1 . * n r n
ESNQA,(E;J,),?,,Z],))NDE Z (f; = fi)| = [Es~p. a (J(w ) — Jp(w )) ‘
Jj=1

where f and f; respectively denote fj(wi; :B’(j),ygj)) and fj(w™; a:’(jyygj)).

C PROOFS FOR DEEP LINEAR NEURAL NETWORKS

In this section, we first present the technical lemmas in Sec. C.1 and then we give the proofs of
these lemmas in Sec. C.2. Next, we utilize these lemmas to prove the results in Theorems 1~ 3 and
Corollary 1 in Sec. C.3. Finally, we give the proofs of other lemmas in Sec. C.4.

C.1 TECHNICAL LEMMAS

Here we present the technical lemmas for proving our desired results. For brevity, we also define
B;., as follows:

B 2WEWED . . wl) e RdXdir (s >4); By, 21, (s <t). 4)

Lemma 6. Assume that the activation functions in the deep neural network f(w,x) are linear
functions. Then the gradient of f(w,x) with respect to w;y can be written as

Vw(j)f(w,sc) = ((Bj—1:1-’13) ® BZT:].H) e, (j=1,---.1),

where ® denotes the Kronecke product. Then we can compute the Hessian matrix as follows:

vw(l) (V“’mf(w’x)) Vwm (un)f(w»i”))
Vif(w,x) = Ve (Voo f(w,2)) o Vg, (Vg f(w,2))
v“’(l) (Vw;l)f(w’ :I:)) e Vw(z) (V’w.u)f(w7w))

where Qg = Vg, (Vwmf(w, w)) is defined as

(B 1:541) © (Bs—1aze” Bl 1)+ (Bs—raza” Bl 1) ® (B[ 1 Biut1) , if s<t,
Q=< (Bs—raza’B,_1.1) ® (Bl:s+1TBl:s+1> ; if s=t,
(Bi, 1ex" B |.1)®Bs 1441+ (Bs—1nza B )@ (B, | Biit1), ifs>t.
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Lemma 7. Suppose Assumption I on the input data x holds and the activation functions in deep
neural network are linear functions. Then for any t > 0, the objective f(w,x) obeys

2 t

' 53
w?max (dle2ﬂ'4,T2) wrT

P<1Z(f(w’x(i)>_E(f(w7x(i)))) >t> < 2exp|—cpnmin

n<
i=1

where cy is a positive constant and wy = r'.

Lemma 8. Suppose Assumption 1 on the input data x holds and the activation functions in deep

neural network are linear functions. Then for any t > 0 and arbitrary unit vector A € S, the
gradient V f(w, x) obeys

1}»(}1 S (A Vo f (w0, 2(0)) —EVa f(w, ) >t>

i=1

t2 t
< 3exp | —cyn min
= 2P < g (l max (wyT2,wy T4 wer?)’ | /lw, max (1, 72) )) ’

where cy is a constant; wy = c,r** =Y and wy = c,r* =Y in which ¢, = \/maxo<i<; d;.
Lemma 9. Suppose Assumption I on the input data x holds and the activation functions in deep
neural network are linear functions. Then for any t > 0 and arbitrary unit vector A € S, the
Hessian V? f(w, x) obeys

P (i > (N (Vo f(w,2) —EVE, f(w,@)A)) > t)

i=1

12 t
<5 —Cp i s ;
= I EXP ( R (7'212 max (wWg, w72, wp)’ /Wyl max (7, 72) ))

where w, = =1 gnd wh = r20-2),

Lemma 10. Suppose the activation functions in deep neural network are linear functions. Then for
any w € B4(r) and x € B4 (1), we have
[V f(w,x)|, <\/ag, where ay= clririt=2,
in which c, is a constant. Further, for any w € B%(r) and © € B%(r,), we also have
HVQf(w,w)HOP < ‘sz(w,:c)HF <lyay, where ap £ corirt=2

in which ¢y is a constant. With the same condition, we can bound the operation norm of V3 f (w, x).

That is, there exists a universal constant o, such that ||V3 f(w, x) || op < ay,.

Lemma 11. Suppose Assumption 1 on the input data x holds and the activation functions in deep neu-

ral network are linear functions. Then there exist two universal constant cq and cy, such that the sam-

ple Hessian converges uniformly to the population Hessian in operator norm. Specifically, there exit
2 2

. X : apr 2
t;lvo universal constants cp, and cy, such that if n > cp, max(T%%isgslog(d/l) ,slog(d/l)/(1m%)),
then

+log(20/¢)

R dl l
sup HVQJ”(w)—VQJ(w)H Sc;,,lleh\/ og(nl)
weN op

holds with probability at least 1 — ¢, where wy, = max(7r2(l’1), r20=2), rlfz).

C.2 PROOFS OF TECHNICAL LEMMAS

To prove the above lemmas, we first introduce some useful results.

Lemma 12. (Rudelson & Vershynin, 2013) Assume that x = (x1;x2; -+ ;Tk) € RF is a random
vector with independent components x; which have zero mean and are independent 7?-sub-Gaussian
variables. Here max; 72 < 72. Let A be an k x k matrix. Then we have

Eexp | A Z Ajjriz; — E( Z Aijxiz) < exp (272)\2\\A||2F), A < 1/(27||All2).

§,juiA] i,jrii

15



Published as a conference paper at ICLR 2018

Lemma 13. Assume that x = (x1;@2;- - ;Tk) € R is a random vector with independent compo-
nents x; which have zero mean and are independent 72-sub-Gaussian variables. Here max; 77 < 72
Let a be an n-dimensional vector. Then we have

k ! N
1

Eexp (A aia? ~E (> aw?] || <Eexp [1283%7* (Y a?| ), N< 53—

exp( <i_1af’31 (i—1awl>>> eXP( ' i:lal ||7T2maxiai

Lemma 14. For B;; defined in Eqn. (4), we have the following properties:
||Bs:tH0p S ||Bs:tHF S Wy and ||Bl:1||0p S ||Bl:1||F S We,

s—t+1 l

where w, = r < max (7’, rl) and wy = 1°.

Lemma 13 is useful for bounding probability. The two inequalities in Lemma 14 can be obtained by
using ||w;)|l2 <7 (Vj=1,---,1). We defer the proofs of Lemmas 13 and 14 to Sec. C.4.2.

C.2.1 PROOF OF LEMMA 6

Proof. When the activation functions are linear functions, we can easily compute the gradient of
f(w,x) with respect to w;:

vw(j)f(wv :13) = ((ijlllw) ® Bl?j+1) €, (] =1, ’l)v
where ® denotes the Kronecker product. Now we consider the computation of the Hessian matrix.
For brevity, let Qs = ((Bs_lzla:) ® BlT:SJrl). Then we can compute V2, f(w,x) as follows:

w(s)
0 f(w,x) ?f(w,z) 0(Qse) Ivec(Qse)
V2 flw,x) = ! = ’ = -
) aw(j;)aw(s) 0'w(7;)8w(5) ng;) awg;)

7avec (Q5B1;3+1W(t)BS_1:1$)
= T

aw(s)
_a ((Bsfl:lw)T ® (QsBl:erl)) vec (W(S))
N 8wg;)

(Bs-112)" @ (((Bs-1:12) @ Bli11) Biist1)
(Bs—112)" ® ((Bs-112) ® (Bl 411 Biist1))
(Bs—112)" @ (Bs—11%)) ® (Bl 1 Blist1)
((Bs—112)(Bs-112)") ® (Bilyy1Bst1) »

where @ holds since B;_1.1« is a vector and for any vector , we have (x ® A)B =« ® (AB).

@ holds because for any four matrices Z; ~ Z3 of proper sizes, we have (Z @ Z3) ® Z3 =

Z1 ® (Z2 ® Z3). ® holds because for any two matrices z1, zo of proper sizes, we have z; zg =
T_ T

21 ® 2y =25 ® 2.

e le

lle

Then, we consider the case s > t:

Pfwx)  Pflwax) 0(Qse) OJvec(Qse)

v'w(t) (vw(s)f(wa SC)) =

_8w(7;)8w(s) B awg)aw(s) 8w5) 8wg;)
_avec (QsBl:t+1W(t)Bt71:1w) n Ovec (((Bsflzlx) ® Bl?s—i—l) 6)
B awg;) 8wa) '

5V€C<QsBl:t+1W(t)Bt,71:1fB>

ng)

ovec(((Bs—112)®B/, ,)e)

T
awu)

Notice, here we just think that Q in the is a constant matrix and is not

related to W), Similarly, we also take e in as a constant vector. Since
we have
Ovec (QsBl:t+1W(t)Bt—1:1ﬁc)

T
aw(t)

= (Bs—l:lmwTBtT—m) ® (BszsHBl:zH-l) )

16
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we only need to consider

Ovec (((Bs_lzla:) ® BZS+1) e) :avec ((Bs_l;lil,') X (B?:s_,'_le))

T T
aw(t) 8w(t)

Ovec ((Bs—l:lw) (Bszs+1e)T)

= T
8w(t)

78V€C (Bs—l:t+1W(t) (Bt_1;1$6TBl;s+1))
N ow]

0 (Bt—lzlmeTBl:s+1)T & Bs—l:t+lvec (W(t))
N ow]

T
= (Bt—1:133€TBl:s+1) ® Bs_1:441.

Therefore, for s > ¢, by combining the above two terms, we can obtain

Vg (Ve f(w,2)) = (Blyy1ex" Bl 1) @B, 1411+ (Bs—1awx” B{_1.)® (Bl 1 Bit1) -
Then, by similar method, we can compute the Hessian for the case s < t as follows:

Vi (Vo f (w, ) = (B 1:541) @ (Bs—1aze! By 1)+ (Bs—iaza’ B{_1,1) © (Bioy1Brut) -

The proof is completed. O

C.2.2 PROOF OF LEMMA 7

Proof. We first prove that v, which is defined in Eqn. (5), is sub-Gaussian.
v =wh.. wllg = B, z. 5)

Then by the convexity in A of exp(At) and Lemma 14, we can obtain

E <exp (<)\, v — ]E('u(l))>)) =E (exp ((\, Biaxz — EBjx)))
<E (exp ((B/1 A, z)))

T %[22
<exp (31:12)‘”27' ) (6)

® waT2|IN||2
Sexp( il ||2>,

where @ uses the conclusion that || By.1|jop < || B.1||r < wy in Lemma 14. This means that v® is

centered and is wj%7'2—sub—Gaussian. Accordingly, we can obtain that the k-th entry of v is also
O]

%

21, 72-sub-Gaussian, where z;, is a universal positive constant. Note that maxy, z;, < wj%. Letw

17
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denotes the output of the ¢-th sample x(;). By Lemma 13, we have that for s > 0,

1 ! ! 13 - ! 1 nst
P (n > (1013 - Ele”13) > 2) =P <sz (13 - E1"13) > 5

i=1 =1

e ( Enj(||v£”|3—1@|v§”||§)>

i
o (-5 TT2 (c (i - 5104)
S

t 1
o )Hexp 128d182 ™) sl <

)
wiT
9 . 12 t
exp | —¢nmin | ——, — .
= OXPp dl(.u;T‘1 w]2c7'2

Note that @ holds because of Chebyshev’s inequality. @ holds since x ;) are independent. @ is

established by applying Lemma 13. We have ® by optimizing s. Since v(") is sub-Gaussian, we have
LS (00 pyTy®) < 1t S (o To® _ EyTy®) < 7t
P(n;<y v,” —Ey' v, )>§ <P s;(y v,” —Ey' v, )>7
t n
<exp <"§> Eexp ( Zl (yT,v(l) EyTv (l)))
- l
5 ) HEexp (s (yT'u( ) EyT ( )>)
i=1
n

( nst
<exp | ——/

@ £\ — wit?s? ||y
o (~251) P (27512
i=1

.2

@
<exp|—g 3573 |
( Sw;ﬂnyn%)

where @ holds because of Eqn. (6) and we have @ since we optimize s.

Since the loss function f(w,x) is defined as f(w, x) = ||v() — y||2, we have

f(w,2) ~ B(f (w, 2)) = [[o® — y|3-E(lo® ~y|3) = (o 3-E[o®8) + (370" ~Ey o)

Therefore, we have

oo (25 o))

1 ¢ ! !
P (nz (o118 - Elof”3) >
i=1

<5 , t2 12 t
exp [ —cpnmin , , .
=4exp ! dlw}*T‘l w? T2 w)%TZ

where ¢y is a constant. Note that ||y||3 is the label of @, then it can also be bounded. The proof is
completed. O

C.2.3 PROOF OF LEMMA 8

Proof. For brevity, let Q; denote V., f(w, ). Then, by Lemma 6 we have

Vg, f(w) = ((Bj—1aw) © BY, 1) e £ (B;_1a2)@ (B 1e) 2 (Bjo1a ® Bl ) (@ ?7 ;

18
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where @ holds since B;_1.1x is a vector, and @ holds because for any four matrices Z; ~ Z, of
proper sizes, wehave(ZlZg) (Z2Z4) = (Z1®Z5)(Z3®2Z,). Note that e = v(l)—y Bpiz—y.
Then we know that the i-th entry Q' has the form Q = 3_ zH Xy + oY) T, + 77 (Step 1

blow will give the detailed analysis) where x,, denotes the p-th entry in . Note that zpq, y” and 7%
are constants and independent on .

We divide A € RE5=1%%-1 jnto X = (A1;-++ 3 A) where A; € R%idi-1, Let A’ denote the i-th
entry in A;. Accordingly, we have

l
E2 (\Vyf(w,z) —EVyf(w.z) =Y (A,Q; —EQ;) = Ey + E; + Ej,
j=1

where E1, E>, and E3 are defined as

t didim I djdj
_ iij _ _ i ij 2 w2
E= Z Z Z Ajzpy | (@pg —Bapzy), By = E E Az, (a:p ]Ea:p),
p,q:p#g \Jj=1 i=1 p \j=1 i=1
djd;_;

Z Z Z Ay | (zp — Ea,). (8)

Thus, we can further separate the event as:

1 t 1« t
P(E>t)< ( ZEl >+P<HZE§>3>+P<nZE§>3>.
k=1 k=1

Thus, to prove our conclusion, we can respectively establish the upper bounds of the three events.
To the end, for each input sample x(j), We divide its corresponding Q; — EQ; into E;, E5 and
E5. Then we bound the three events separately. Before that, we first give several equalities. Since
B;., = WOWG-D ... W) (j > s), by Lemma 14 we have

HB]s”%‘ < ,],,2(jfs+1) < 7,2([ 2) 9)

B, 117

These two inequalities can be obtained by using |[W )||% = [|w; 13 < r2.

Step 1. Divide Q; — EQ;: Note thate = v!) —y = Bjjz —y. Let H; = B;_1.; ® B[ ;. Then
we can further write Eqn. (7) as
Qj =Vu, f(w)=H;(x® (B.uz) -z®y)=H;((ls, ® Bi1) (z@z) —z®y), (10)

where Iz, € R X_do is the identity matrix. According to Eqn. (10), we can write the 7-th entry of
Q; as the form Q;- = Zp q 2 EpTq + Z vy Ja:p + % where x,, denotes the p-th entry in . Let

Z; = H; (14, ® By.1) € R4~ 1xdi Then, we know that the i-th entry Qi = Z(i,:)x’, where

r=xQr = |r1x;22%; -+, Tg x| € R%. In this way, we have 28 = Z;(i,(p — 1)do + q)
which further implies

> (25)? < el 25,03, (11)

P
where ¢, = /maxg<i<; d;.
We divide the i-th row H;(i,:) into H;(i,:) = [H};, HZ,, - - 7Hj‘.’lf] where HY, € R**%. Then

.. v Jv
we have y}/ = y” HY,. This yields

Do) <er Y (WTHE)? <y IyIBIHTIE = cqllylBIH; .05 (12)
p p

p

Let )\;- denote the i-th entry of A;. Then, by Eqn. (8), we can obtain

E (A, (Q; — g apq (Xpxy — Expay)+ E app E:c + E by — Ex,)
J P,q:p#q
- El + E2 + E37
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where a4 and b, are defined as

d | djdji_a

1 djdj
_ i ij _ i ij
Qpq = E E Aizpy and by = E E Ay
j=1 =1 j=1 i=1

Note that for any four matrices of proper sizes, we have (Q1 ® Q2)(Q3®Q4) = (Q1Q3)®(Q2Q4),
indicating Z; = (Bj_l;l ® BZ}H) (Igy ® Bpa) = Bj_11 ® (BljjoBl:l). This gives

@
cgllZj|1F < cqllBi—1all 3 Brjsi | B Butlld < cgr®r = ¢r?-D 200 (13)

Note that Eqn. (13) uses the conclusion in Eqn. (9). Therefore, we can have the following bound:

djd;_1 djdj_1 ® djdj_1
S D D @< D N1Zi6)IE = el ZjllE < w, (14)
=1 =1 p,q =1

where @ uses Eqn. (11). Then we can utilize Eqn. (14) and 2221 (Z?g{l”l ()\;)2> = 1 to bound

apq as follows:

U [fdidi—1 ? I fdidi— d;jd;—1
g UL 2 N | | S0 X )| X )] Sl
j=1 i=1 =1 i=1 i=1
which further gives
l djd]'71 djdj71 @
Doaa =13 2 ) (z)? | <l
Pyq j=1 =1 =1 pyq
where @ uses Eqn. (14).
Similarly, we can obtain
djd;—1 djdj_1
S W< D clylBIE 613 = ol yIBIEG IR < gl as)
i=1 i=1
So we can bound b, as
2
d;d;_4 d;jd;_; d;d;_1
T 3 B SRV IED o1 1 SREVE NI S0P )
j=1 i=1 Jj=1 =1 i=1

where W’ = ¢,||y||372(1). Accordingly, we can have

l djd]'71 djdj71 @
sy (o) (X Sue) L
p j=1 i=1 i=1 p

where @ uses (15).
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Step 2. Bound P(E; > t/3), P(E, > t/3) and P(E5 > t/3): Let EF, denotes the Ej,; which
corresponds to the k-th sample @ ;. Therefore, we can bound

1< t = snt
P (n ;Ef > 3) =P (s> | > db, (zfal —Eafal) | > 3

k=1 \p,q:p#q

@ nst X
<exp (—3) E exp SZ Z ak . (xhal — Balaxk)
k=1 \p,q:p#q
2 nst\ 1 k ko .k kK
<exp 5 H Eexp | s Z Apy (il:p g EiL‘piL'q)
k=1 P,q:pFq
® nst\ 1 1
<exp| —— exp | 2725> ak )2 s| <
=51 > ) s
= D,q@:pFq
nst\ 1~ 9 9
<exp —3 Hexp (27’ S lw)

@ . t2 t
exp | —¢nmin | —5, — ,
=P wit?’ lwr

where @ holds because of Chebyshev’s inequality. @ holds since x(;) are independent. @ is
established by applying Lemma 12. We have @ by optimizing s. Similarly, by Lemma 13 we can
bound P (1 37/ | E§ > L) as follows:

P (Tll ZE§ > ;) <exp <—7§t) HEeXp (s (Z a’;p ((w’;)2 —E( ’;)2)>>
k=1 I3

x
k=1

<exp (_nst) ﬁ exp (1287%s%Iw)  |s| < !

- 3 /)05 T lw

<e ¢"nmin £ t
xp | — _— .
- P (A)lT4 ’ v lw7'2

Finally, since x ;) are independent sub-Gaussian, we can use Hoeffding inequality and obtain
It 1< o . t 'nit?

Step 3. Bound P(E >t): By comparing the values of w and w’, we can obtain
P(E >t) <P liEj>E +P liEj>z +P liEj>E
-\ 173 n e 273 n e~ 373

t2 t
<3exp | —cy/m min , ,
( J (lmax (ngszgT4awg’T2) lwg max (T, 7'2)))

where wy = ¢,r?!=V and wy = ;2= in which ¢, = /maxo<;<; d;. The proof is completed.
O

C.2.4 PROOFS OF LEMMA 9
Proof. For brevity, let Q;, denote Va,,, (Vaw,,, f(w,)). Then, by Lemma 6 we have

(BlT:sHemTBtT—m) ® Bg_1:441 + (3(9—1:1$33TBtT_1;1) ® (BzT;s+1Bl:t+1) , ifs>t,
Qis={ (Bs—1awx’B,_1.1) ® (Bl:s+1TBl:s+1> ; if s = ¢,
(B 1.e11) @ (Bs—iaze™BY, ) + (Bs—razaBE ) @ (B, Briy1) , if s <t

21



Published as a conference paper at ICLR 2018

Then we know that the (i, k)-th entry Q;% has the form Qj% = >~ zi¥xpx, + > yifa, +r*

(explalned in the following Step 1. I) where x,, denotes the p-th entry in . Note that zpq, yp

and r** are constant and independent on x. For convenience, we let Q;; = H;, + G5, where
Gis = (Bs—1aza”BE ,.)) ® (B, 1 Bii11) and Hy, is defined as

(Bl 162" Bl |.)) ® Bo 1441, ifs >,
His =40, if s = t,
(Bl 1.641) ® (Bs—1awe™ Bl ), ifs <t
Let
1 & 1 &
= 2D (A (Viof(w,@) —EVL f(w,2) X), By = 3 > (A (His—E(His)) As)
Jj=1 j=1lt,s
1 n
= D Y An(Gr—E(GL) A
j=1t,s

Then we divide the event as two events:
PE>t)=P(E,+E;>t)<P(E, >t/2)+P(E; >1t/2).

Now we look each event separately. Similar to Qys, the (i, k)-th entry H;* has the form Hj* =

Y oa Foxpy + Yy a, + r*. We divide the unit vector X € R% as A = (Ay;--- ; A) where

A; € R4i4i-1_ For input vector z, let Zus (At, (Hys —E(Hys)) As) = Epy + Epa + Eps, where

Epn= Z ZZ(AP\’;)Z;Z (®pxg—Expzy), Eno :Z ZZ(M)‘E)ZTZ’]Z (z}—E;)

p,q@:pF#q \ t,8 i,k p t,s i,k
E); = Z Z Z (AIAR)y —Ex,), (16)
t,s i,k

where x,, denotes the p-th entry in « and )\;- denotes the i-th entry of A;. Let E’ . EZQ, and Eig

denote the E},, Ej,, and Eis of the j-th sample. Thus, considering n samples, we can further
separately divide the two events above as:

I~ _t 1<
J
P(Eh> ) ZE = | +P E;Eh2>6 5;
Similarly, we can define Eyq, E4 and Eg3.
P pl1 Nt pl1 Nt
R 6P S B P S B PO e
j=1 j=1
Thus, to prove our conclusion, we can respectively establish the upper bounds of P(Eh > %) and
P(E,>1).

Step 1: Bound P(E), > %)

To achieve our goal, for each input sample x(;), We divide its corresponding Zt s (H;s — EHy,)

as Epq, Eps and Ep3. Then we bound the three events separately. Before that, we first give two
equalities. Since Bj.; = wOWwE-1 ... ws) (j > s), by Lemma 14 we have

s 2
I1BjisllE < r?97 and || Brsa |3 | Be-vsir|F [ Bo-rallm < 02, (a7

These two inequalities can be obtained by using |[W ||Z = [lw; |3 < r2.
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I D1v1de H;, — IEHtS For t # s, we can write the (z k)-th entry H}* as the form H* =
Y g Foxp g+ 3 yira, + 1'%, Now we try to bound 27 and y*. We first consider the case s < t.

Note that e = v(!) — y = By.;x — y. Specifically, we have
H = (B1,£1l1:5+1) ® (BsflzlwaTBl::qu::FtH - Bs—1:1wyTBl::Ft+1) .

So the (i/,k’)-th entry in the matrix Bs_1. za’ B}, B}, 41 is [Bs_inza” Bl B, ] =
(Bs—11) (1", )®(Bra By ) (K, ) = 2" ((Bs—11)(',:))" (BiaBrg11)(K, )z, where A(7,:)
denotes the #'-th row of A. Let i} = mod(i,ds), kk = mod(k,d;_1), ¢/ = |i/ds] and

ki = |k/di—1]. In this case, the (i,k)-th entry H* = [B;_ st 1lkyin @ ((Bs—1:1) (i},
NT(BraBiit1) (k)T + [Bt_1:s+1]k;€/igzyT(Bl:t+1)(k,’w:)T(Bq 1:1) (2}, :)@. Therefore, we have

Z(Z;Z)2=[Bt—1:s+1]i;;¢;/ | (Bs—1:1) (i, )" (Bia Breg1) (K., 2) ||F

. 2 2
<[Bi-vistligin |(Bs—1:a) (@, )5 |(Bra Bres) (kg )l -

Therefore, we can further establish

1 . 2 2
Z Z k 2 < Z Bi—1:541] k” v 1(Bs—1:1) (15, )l | (But Buae1) (ks )l

i,k P,q

2
<Z By visilipin | (Bs—1:1) (i, )II5 11(Bra Braes) (k. )3

(18)
—ZH By1ov) (K )13 11Bo 1l | (Bia B ) (k)15
2
:HBtflzsquHF ||B571:1||§7’ ||Bl:1Bl:t+1||F
%“4(1_1) s
where @ uses Eqn. (17). Similarly, we can bound
i . 2
Z(ypk)2 :[Btflrerl]i;;i;’ yT(Bl:tJrl)(k;ca :)T(Bsflrl)(lga :)HF
P
2 2
<[Brvosiliyar 1915 1(Brasn) (ke 2)ll3 [ (Bo-ra) (@7, -
So it further yields
i . 2
D> <2Bt vttt 1913 1 (Breesn) (R )15 11 (Bs-1:0) (i, 0) 5
ik p (]9)

2 2 2 2 —
<lyll3 1 Bi-vist1llF | Biesalle | Bs—vaall < lyll; > 2w,

where @ uses Eqn. (17). Note that for the case s > ¢, Eqn. (18) and (19) also holds. Let )\; denote
the i-th entry of A;. Then, by Eqn. (16), we can obtain

Z«)‘ta (His—E(Hs))As)) = Z Gpq (mpmq_Ewp‘Eq)"'Z app (%%‘Emzz)) +Z by (xp—Eap)
t,s P,q:p#q P P
= Ep1 + Ep + Eps,

where a,, and b, are defined as

apg =D D Nz and by = Y (N,

t,s i,k t,s ik

Then according to Eqn. (18) and 37, | (Zlk()\g)\’;)Q) = 1, we can bound a,, as follows:

2

aZ, P I R <Y D D 7 | <wi? YD (A2 <wi.

t,s \ i,k t,s \ i,k i,k t,s \ i,k
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which further yields
Z g <12 Z Z(MAE)Q Z Z < wl? Z Z()\i)\f)Q < wi?
P,q t,s i,k ik D,q t,s i,k

Similarly, by using Eqn. (19), we have
) ) ) . @
by <Py Y ik | <27 [ Do (Aiak)? (5)° | <ot
t,s i,k t,s i,k i,k
Accordingly, we can have
Sier Y [Yoih?) (S e | ser
P t,s i,k iwk p

IL Bound P(E;,; > t/6), P(Eyy > t/6) and P(Es > t/6): Let EJ, denotes the E}, which
corresponds to the j-th sample @ ;). Therefore, we can bound

ZEm = | <P SZ Z al, (x)x] — Bala)) >%m

Eexp [ s Z Z a;q (azgmg — Ewi,:cfl)

J=1 \p,q:p#q

gexp n?)H]Eexp s Z aéq (mg,a:j E:cjacfl)

Jj=1 P,q:p#q

Jj=1

e .. 12 t
exp | —¢nmin [ ——, ——
=P wl?72’ Jwlr ’

where @ holds because of Chebyshev’s inequality. @ holds since x(;) are independent. @
is established because of Lemma 12. We have @ by optimizing s. Similarly, we can bound

( Z] | Efl 9 ) as follows:
1 & ) t nst\ 1 i j j
P| =Y Ejy> | <exp (—6> [[Eexp (8 (Z apy ((@})* - E($%)2)>>
= j=1 p

1
6 e T2\ /w

<exp (
, t2 t
<exp | —¢'nmin A flTQ

Finally, since x ;) are independent sub-Gaussian, we can use Hoeffding inequality and obtain

1 oot 1 "'nt?

t
s ) Hexp (128745 1Pw) |s| <
!

@\w
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Since for s = t,]P’( Z] 1E,jl1 7) = IP’(” ZJ 1EiL2 g) = P(%Z?ﬂEi?, > %) =0,
the above upper bounds also hold.

III: Bound IP’(Eh > %) By comparing the values of w and w’, we can obtain

t I~ _t I, _t I, _t
]P’(Eh>2) <P =D El>g |+P| =) B> | +P| =D B>
j=1 Jj=1 Jj=1

t? t
<3 —cynmi
- eXp( cnmn <12 max (w72, wr*,weT?)” /wl max (7, 7'2)))

where w, = r2(=2)

Step 2: Bound ]P’(Eg > %) To achieve our goal, for each input sample x(;), we also divide its
corresponding Zm(GtS —EG;) as Ey1, Epp and Ejp3. Then we bound the three events separately.
Before that, we first give several equalities.

L. Divide G;; — EG},: Dividing G5 — EG,s is more easy than dividing H;s — EH,, since the later
has more complex form. Since G;s = (Bs,l.lw:c Bt 1 1) (Bl S+1Bl t+1) we also can write

the (i, k)-th entry G% as the form Gif = 3~ zlw @, + > yiFx, + r'*. But here yj} = 0.

Then similar to the step in dividing H;; — EH,,, we can bound

2 2 2 2 _A(l-1)
apy < wgl® and E Upg < wgl® where wy, =71 .
P.q

II. Bound P(E,, > t/6), P(Eg > t/6) and P(E,3 > t/6): Since y;',"? =0,P(Ep; > t/6) = 0.
Similar to the above methods, we can bound

t? t
P 7§ Bl > < | —
> = Oxp ( an <w9127'2’ 1/wng)) ’

and

12 t
P g R —dn | ——, —= ).
Z > =P ( ar (wg1274’ \/wgl72)>

III: Bound P(E), > £) We can obtain P(E, > £) as follows:

I~ _t 1
IP’(E > > ZE +P E;E;2>6 +P E;EJ

t2 t
<2 —chnmi )
=5 xp < G2 i <w9l2 max (72, 74)" | fw,l max (7, 72)>)

Step 3: Bound P(E > ) Finally, we combine the above results and obtain

P(E > t) <P (Eh>2>—|—IP> (Eq>;)

t2 t
<5 —Cp i
=9 XP ( Ty T (7’212 max (wg,wy2,wp)’ /Wyl max (7, 7'2))>

where w, = 4=V and w;, = r2(-2). .

C.2.5 PROOF OF LEMMA 10

Proof. Before proving our conclusion, we first give an inequality:

2
lels = 1Bz — gl < | Brazls +2 |y" Biaz| + llyl; <02 2wf + 2rowgyllz + llyll;
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where wy = 7!, Notice, ® holds since by Lemma 14, we have || By.1|% < 2.

Then we consider V., f(w, ). Firstly, by Lemma 6 we can bound ||V, f(w, 2)||3 as follows:
2 2 2 2 2
IVewgy f(w, )13 = || (Bj-1a2) ® Biji1) ell, < [1Bj-valls I3 | Brjiall; llells
@ 2
<23, (2w + 2rawyllylls + lyl3)

where wy, = (=), @ holds since we have || By 1[5 | Bj—1.1]|% < 2=V by using [W @ |2, =
w3 < 2. Therefore, we can further obtain

l
2
190 (w0, 2)[8 = 3 [V, flaw, )3 < 12, (202 + 20wllylls + l2)

i=1

Notice, vy is the label of sample and the weight magnitude r is usually lager than 1. Then we have
ly|l2 < r!. Also, the values in input data are usually smaller than . Thus, we have

IV f(w, )3 < crlrgr’™ £ ay,

where ¢; is a constant. Then we use the inequality HVQf(w, x) Hop < Hsz(w, x) HF to bound
HV2f(w,a:)H0p. -2
We first consider Q,; = V., (Vg f(w,2)). By Lemma 6, if s < ¢, we have

Next we only need to give the upper bound of HV2 f(w,x) H P Letwp, =71

HQstH% = H (BtT71:s+1)®(Bs71:1$€TBlT:t+1) +(Bsfl:lwaBthq)®(Bl7:s+1Bl:t+l) wa
<2 (H (BL1.01) @ (Boorawe” Bl ) [ +]| (Bo-taza” BL ;) @ (Bf 11 Buos) Hi“)
<2 By vss1ll 7 1 Bsrallz 23 llell3 | Bursa |7
+2|Byvallp 3 )5 1 Bi-va 5 | Biesa |7 1Bresa |7
<232 (120 4 rawgllyl + ) + 20,7,
where @ holds since we use HBMHH?J ||Bt,1;5+1||% HBS,MHfF < w]%Q and HBS,MHfp HB;;5+1||%

< wzl. Note that when s > ¢, the above inequality also holds. Similarly, consider the values in input
data and the values in label, we have

2 4,41-2 &
[Qstllp < coryr™ ™™ = au,
where ¢,/ is a constant. Therefore, we can bound

l 1
SN Q% < tyan.

s=1t=1

Hsz(w,a: < Hsz(w,w)HFg

Mlop <

On the other hand, if the activation functions are linear functions, f(w, x) is fourth order differentiable
when [ > 2. This means that V, V3, f(w, ) exists. Also since for any input z € B%(r,) and
w € (), we can always find a universal constant «, such that

Ve, f(w.@)lop = sup (X, V3, fw,@)) = S [Vi,f(w, @) A Ak < ap < +ox.

<1 .
IAl2< byt

We complete the proofs. O
C.2.6 PROOF OF LEMMA 11

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ||w[2 < 7.
Assume that w ;) has s; non-zero entries. Then we have 22:1 s; = s. So here we separately assume

w! = {w],---,w! ,} is the d;d;_y¢/d-covering net of the ball B%9i-1(r) which corresponds
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to the weight w;) of the j-th layer. Let n¢’ be the €/I-covering number. By e-covering theory in
(Vershynin, 2012), we can have

; did;_, 3r 8 3rd;d;_, 3rd
J < el < 1 It bkl = -] .

Let w € () be an arbitrary vector. Since w = [w(l), S ,w(l)] Where w;) is the weight of the j-th
layer, we can always find a vector wij in w? such that |jw; 'wk ll2 < djdj_1¢/d. For brevity,
let j, € [n.’] denote the index of wfc'j in e-net w?. Then let wy,, = [w] ;- wlc s w] ).

This means that we can always find a vector wy,, such that [[w — wy ||2 < e. Now we use the
decomposition strategy to bound our goal:

‘Van(w) - v2J(w)HOp

ZVQ w,z(;)) — E(V? f(w, ))

op

:‘ rlzz V2 f(w,z ) — V(wk,, ) + % szf(wkw,w(,-)) —E(V?f(wg,,x))
i=1 i=1

E(V?f(w,,, ®)) - E(V*f(w,z))

op

Z V2f( ﬂﬂ(i)))

% > Vi (wk,, xa) — E(V?f(wy,, ©))
=1

op
E(V?f(wr,,2)) — E(V? f(w,z))

op

Here we also define four events Eq, F, E; and E5 as

Ey = {sup Hv?jn(w) - V2J(w)Hop > t} ,

we
1 n ) ) t
E, =< sup —Z (V f(’w,:li(z)) -V f('wkwaﬁc(z))) e
weQ | Vi op ?
t
E5 = sup ZV2 Wi, , T ) E(VQf(wkw,w)) > g 3
Jw€[ne],j=[l] op
t
E5 = < sup ||E( V2 f(w V2 }
s = { s [B(72 (wn 2)) ~ BV .2 >

Accordingly, we have
P(E) <P (E;)+P(E;) +P(E;).
So we can respectively bound P (E;), P (E2) and P (E3) to bound P (Eyp).

27

op



Published as a conference paper at ICLR 2018

Step 1. Bound P (E;): We first bound P (E) as follows:

n

1 Z (V2 f(w,m ;) — V2 f (W, T(:)))

t
> =
3

2

P(E,) =P <sup
E

i=1
®3 1 &
gg sup ||— Z (VQf(W,iU(z')) - V2f<wkwa93(i)))
weQ || T i=1 2
3
gtE(amHV%ﬂunwy—V?ﬂwmwwﬂb)
we
Ly (g2 y) — V2 S E(i
<3 [ sup L2 (V00 20) = V00 20 g oy,
t \wea |w — wg, || we
%30@6

where @ holds since by Markov inequality and @ holds because of Lemma 10.

Therefore, we can set

Then we can bound P(E ):

Step 2. Bound P (E): By Lemma 2, we know that for any matrix X € R%*¢, its operator norm
can be computed as

Xllop < A, XA
[ Xllop < 1_2€Asg£>€|< , XA
where A. = {\1,..., A, } be an e-covering net of B4(1).

Let Ay /4 be the i-covering net of B(1) but it has only s nonzero entries. So the size of its e-net is

<§>(Jﬁsswmﬂ%uwﬂ

Recall that we use j,, to denote the index of wij in e-net w! and we have j, € [n7], (nd <

exp (s;log (224))). Then we can bound PP (E») as follows:
. t)
-3
2

<>\, (711 Z V2 (W, (i) = E (V2 (wk,, w))> ’\>
! §<A,

n -
=1

P(E,) =P ( sup
JwG[nﬁ]JG[l]

% > VP f(wk,, ) —E(V? f(wy,, ©))
=1

t
> 2
1)

<P ( sup 2
Juw€lnd] FE[AEN 4

!
d
<exp (slog (12d)) exp Zsj log (?ﬂﬂ) sup ]P’(
=1 € JwEN] GENLAEA, /4

(O 1 20) 2 (71,2 )

g e slo 36rd” 10e cpym min c :
X Xp | —¢w
<exp 8\ P 367212 max (wg, wyT?, wh) " 6,/@yl max (1, 72)

where @ holds since by Lemma 9, we have

&

% Z (<)\7 (V2 f(w,x) — EV2 f(w, m)))\>)

. t>
<10 i z !

exp | —cpmmin , )
= p h 7212 max (wg, wgT2,wp) /Wyl max (1,72)
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where w, = (=1 and w), = 202,

Let d. = slog(36d?r/e)+log(20/¢). Thus, if we set

) )
Cp'T Cp'n

t > max \/367-%2 max (wg, wyT2,wp) de 6,/@gl max(7,72) d.

then we have
P(E;) <

Step 3. Bound P (E5): We first bound P (Es) as follows:

t
P (E;) =P (sg IE(V?f(wy,, 2)) — E(V2f(w,2))|, > )
<}P’(EsupHVfwk z) - V2 f(w, )|, > )
weN
1 n 2 I v 2 .
SIP sup |n 1=1 (V f(w7$(7)) \ f(wkw7w(7)))| sup Hw _ wkw||2 2 E
weD lw — wg, [, cQ 3

<P (ope > L
~ (ap6 fetl 3> )
where @ holds because of Lemma 10. We set ¢ enough small such that ai,e < t/3 always holds.

Then it yields P (E3) = 0.

Step 4. Final result: For brevity, let wy = 36721% max (wy, wyT?, wp) and wy = 6, /wyl max (7, 72).
To ensure P(Ey) < ¢, we just set e = 36r!/n and

2 2
¢ > max 6041,6’ Saye, \/wg(slog(%d r/e)+1og(20/¢)) ws(slog(36d°r/e)+log(20/¢))

Cp' ’ Cp'n

e 21607 [wo(slog(d?nl)+log(20/¢)) ws(slog(36d%n/1)+log(20/¢))
- ne chpm ’ Chm

2,2
Ctp’f

Thus, there exit two universal constants cp, and cp, such that if n > cp, max(w,

slog(d/l)/(I7?)), then

sup Hvzjn(w)—vz,](w)H gcthlwh\/leg(nl)+10g(2O/€)
weN op n

holds with probability at least 1 — e, where wy, = max(rr2(!=1 r2(=2) I=2) " The proof is
completed. O

C.3 PROOFS OF MAIN THEOREMS
C.3.1 PROOF OF THEOREM 1

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ||w[2 < 7.
Assume that w ;) has s; non-zero entries. Then we have lezl s; = 5. So here we separately assume
wi = {wl, - ,wfl ; } is the d;d;_1€/d-covering net of the ball B%4i-1(r) which corresponds

to the weight w;y of the j-th layer. Let n¢’ be the ¢/I-covering number. By e-covering theory in
(Vershynin, 2012), we can have

; djd;_ 3r v rd;dj 3rd
J< 7 A < Nl — 1 27
e = ( 8j ) (djdj—lﬁ/d> = (SJ o8 (djdj—lﬁ/d CPATOE e
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Let w € ) be an arbitrary vector. Smce w = [wq), -, W] where w;) is the weight of the j-th
layer, we can always find a vector wk in w? such that ||w(J) — wk llo < djd;_ 1e/d For brevity,
let j,, € [n.] denote the index of wk in e-net w?. Then let wy,,, [wkl' . 'wk e /l] This
means that we can always find a vector wy,, such that ||w — wi, |2 < e. Accordingly, we can
decompose Han(w) - VJ('w)H2 as

‘an(w) - VJ(w)H2

=3V, — E(VS (w,2)

2

1 ¢ 1
| - > (Viw, m) - Vi(wk,, z@)) + - > Vf(wr,, ) — E(Vf(wr,, z))
=1

i=1

E(Vf(wg,,z)) - E(Vf(w,z))

2
% > (Viw, ) — V(wr,, ) % > V(Wi xm) — E(V f(wg,, )
=1

i=1

< +

2

2

E(Vf(w,,2)) - E(Vf(w,z))

2

Here we also define four events Ey, FE, E5 and E3 as

E, = {sup HV.L('LU) - VJ(w)H2 > t} ,

weN

1 — .
"o {ffé‘?z n 2 (V) = VSl m0)| 2 3}
" { ol va Wi @) ~ BV (i, @) > ;t),}
Jw€ned] =[] 2
E; = {sup E(Vf(wy,,x)) —E(Vf(w,x))| > ;}
wen 2

Accordingly, we have
P(Eo) <P(E:) +P(E2) +P(E;3).

So we can respectively bound P (E;), P (E5) and P (E3) to bound P (Ey).
Step 1. Bound P (E; ): We first bound P (E}) as follows:
t
>
1)
2

)

3 ( 1L, (VF(w,z6) = V(wk,, z0)],
—t

n

%Z (Vi(w,z) = V(wr,, )

we |1

@
g%E (sup

P(E,) =P (sup

n

% Y (Vi(w,z) = V(wi, 2))

weN i—1

sup sup ||lw — wg
weN Hw wkaQ wEQH W|2>

3¢ .
<—]E (sup HVQJ”(w,ac)H ) ,
t we 2

where @ holds since by Markov inequality, we have that for an arbitrary nonnegative random variable
x, then P(a > 1) < ),
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Now we only need to bound E (supweg H Van(w, x) H ) . Now we utilize Lemma 10 to achieve
2
this goal:
E (SUP Hv2jn(IU,x)H > <=E (sup ||V2f(w,:c) — sz(w*7w)|‘2> <Ilya.
weN 2 weN

where o = cyrir =2, Therefore, we have

l
P(E,) < Sf\/aﬁe.

We further let
6/ o€
t> ——.
€

Then we can bound P(E ):
P(E,) <

Step 2. Bound P (E,): By Lemma 1, we know that for any vector z € R, its £5-norm can be
computed as

[E [P

1
sup (A, x) .
—€xex

€

where Ac = {\1,..., A, } be an e-covering net of BY(1).

Let Ay /o be the %—covering net of B(1) but it has only s nonzero entries. So the size of its e-net is

(7) () <owtem

Recall that we use j,, to denote the index of wiy in e-net w’ and we have j, € [n/J], (nJ <
exp (s, log (%)) ). Then we can bound P (E5) as follows:
t
>
1)
2

1 ;
=P su 2( A, — Vf(wk,, @) — E(Vf(wk,, > L
(jwe[ngf] b < n ; f(wr,, @) (Vf(wy, ))> 3)

J=LAEA /2

P(E;) =P ( sup

Jw€[ned],j=ll]

% D V(W zw) — E(Vf(wy,, @)
=1

l n
d 1
<exp (slog (6d)) exp E s;log <3r> sup P — A,
=1 € Jw€neILi=MAexn  \" i

=6

ge slo 18rd Ge cymmin tz t
X —_— xp | —cy
=P S\ e P\ 361 max (w72, wyT4 Wy T?)’ 64 /lw, max (1,72) ) )

where @ holds since by Lemma 8, we have

PG‘ D (A Vuf(w ) ~EVwf(w,za))) >f>

i=1

Vf(wk,,, z@) —E(Vf(’wkw,:):))> > t)

2
<3 i t t
< 3exp [ —cynmin , ,
Imax (wym2, w4, wert2)” | [lw, max (1,72)
where ¢ is a constant; wy, = ¢,72 =1 and wy = c,r?~1 in which ¢, = \/max<;<; d;.

Let wy, = 36/ max (ngZ, wg7'4, wg/TZ) and w3 = 64/lwg max(T, 7'2). Thus, if we set

¢ > max (\/wz(s log(18dr/e)+log(12/¢)) wg(slog(18dr/e)+log(12/g))>

Cg'M Cg'Tl
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then we have
P(E;) <

Step 3. Bound P (F5): We first bound P (Es) as follows:

P (Ey) —P (sup 1w )) — E(f(,2))]], > t)

weN 3
E — t
:]P (Sup || (f(wkwaw) f(w7m)H2) Sup ||w _ wkaQ Z )
weN |w — wg, || weD 3

<P <dE sup HV2jn(w,:c)H > t)
weN 2 3

<P <l\/0716 > ;) .

We set € enough small such that [,/aze < t/3 always holds. Then it yields P (Es3) = 0.
Step 4. Final result: Finally, to ensure P(Ey) < &, we just set € = 18r/n and

€ cgm ’ Cg'n

— <61\/07167 /e \/wg(slog(18dr/e)+log(l2/6)) wg(slog(18dr/e)+log(12/5))>

- <10812\/671r \/wg(s10g(dn/l)+log(12/5)) wg(slog(dn/l)+log(12/s))) .

ne Cg'm cgm

Notice, we have a; = cprir=2 where ¢y is a constant. Therefore, there exists two universal
l3r2ri 2

constants ¢y and cgr such that n > ¢ max (1o 7mzziriog/ey - $108(d/1)/(17?)), then

sup ijn(w)—VJ(w)HzgCgng\/l?q\/S10g(dn/1)+1og(12/€)

weN n

holds with probability at least 1 — £, where wy, = max (7r2/ =1, 72 =1 7I71), O

C.3.2 PROOF OF THEOREM 2

Proof. Suppose that {w™) w(?) ... (™} are the non-degenerate critical points of J(w). So for
any w'®) | it obeys

inf [\ (V27 ()| = ¢,

where AF (V2J (w(®))) denotes the i-th eigenvalue of the Hessian V2J (w(*)) and ( is a constant. We
further define a set D = {w € R?| |V J(w)]|2 < eand inf; [A; (V2T (w®))) | > ¢}. According
to Lemma 4, D = U7Z, D;, where each Dy, is a disjoint component with w'®) € Dy, for k < m and
Dy, does not contain any critical point of J(w) for & > m + 1. On the other hand, by the continuity
of VJ(w), it yields ||VJ(w)||2 = € for w € dDy. Notice, we set the value of € blow which is
actually a function related to n.

Then by utilizing Theorem 1, we let sample number n sufficient large such that

sup Han(w) - VJ('w)H <z, 2 <
weN 2 2
. .1 . 1Br2rd slog(d/l) _
holds with probability at least 1 — £, where if n > ¢y max(— Tog(@/D)2 Tog(1/2)*  Ir2 ), 29 =

chwg\/E\/Slog(dn/l)n-i-log(lQ/s).
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This further gives that for arbitrary w € Dy, we have

inf Htvjn(w) (1 t)VJ(w)H2 = inf |t (Vda(w) - VI(w)) + VJ(w)H2

weDy, weDy,

> inf VI (w)ll, ~ sup tHan(w)—VJ(w)H

weDy, 2
>5 (20)
Similarly, by utilizing Lemma 11, let n be sufficient large such that
; ¢
sup Jn'w—VszH <zg <=
sup (w) (w) op 5

2,2

holds with probability at least 1 — ¢, where if n > ¢, max(#lﬂlog(d/l), slog(d/l)/(IT?)),
727,

slog(nl)yHog(20/¢) )

zs = cp, Tlwy, -

Assume that b € R is a vector and satisfies b7'b = 1. In this case, we can bound \F (szn(w))
for arbitrary w € Dj, as follows:

inf |AF (VQ.fn(w))‘: inf min )bTv2jn(w)b’
wEDy weDy, bTb=1
. . T 27 R v T 72
= inf min )b (v Jo(w) -V J(w)) b+ bV J(w)b‘
> inf bTV2J (w)b| — ’bT 2 b’
wlélebrTrgnl} V2J (w)b| mm ( 2J,(w) — V2J (w ))

T2 T 2
> inf min |67V (w)b] - max ‘b ( 2J 0 (w) — V2J (w ))b’

= inf inf |\ (V2 (wge, @) | = || V2 (w) = V20 (w)
¢

> 2

2
This means that in each set Dy, Van (w) has no zero eigenvalues. Then, combine this and Eqn. (20),
by Lemma 3 we know that if the population risk J (w) has no critical point in Dy, then the empirical
risk jn(w) has also no critical point in Dy,; otherwise it also holds. By Lemma 3, we can also obtain
that in Dy, if J(w) has a unique critical point w;, with non-degenerate index sy, then jn(w) also
has a unique critical point w?k) in Dy, with the same non-degenerate index si. The first conclusion is

proved.

op

Now we bound the distance between the corresponding critical points of J (w) and J,, (w). Assume
that in Dy, J(w) has a unique critical point w*) and J,, (w) also has a unique critical point w).

Then, there exists ¢ € [0, 1] such that for any z € 9B%(1), we have
e 2| VI (w2
= max (VJ(wM), 2)

zTz=1

= max (VJ(w®), z) + (V2J (@™ + t(w) —w®)(wi) —w®), 2)

zT2z=1

g <<V2J(w(k))>2 (wglk) _ w(k)% (wgc) _ 'w(k))>

@
ZCer(Lk) - w(k)HQ’

where @ holds since V.J (w*)) = 0 and @ holds since w*) + t('w?(lk) —w®) is in Dy, and for any
w € Dy, we have inf; |\; (V?J (w)) | > ¢. Consider the conditions in Lemma 11 and Theorem 1,

13724
cqslog(d/l)e2r4log(1/e)"

2c,TW slog(dn/l)+log(12/¢
w(k)HQS gC g\/E\/ g( /)n g(12/e)

1/2

we can obtain that if n > ¢, max( slog(d/1)/¢?) where ¢y, is a constant, then

Jw® -
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holds with probability at least 1 — ¢. O

C.3.3 PROOF OF THEOREM 3

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. [|w[2 < 7.
Assume that w ;) has s; non-zero entries. Then we have 23:1 s; = s. So here we separately assume
w! = {wf,- - ,w’ ;}is the d;d;_1¢/d-covering net of the ball B%%~1 (1) which corresponds
to the weight w;) o% the j-th layer. Let n.’ be the ¢/I-covering number. By e-covering theory in
(Vershynin, 2012), we can have

i d'd‘_l 3r i 37“djdj_1 3rd
J < el < -] J — -] - .
e ( 8j ) (d‘dj 1€/d> = (SJ o (djdj—lﬁ/d TP\ e

Let w € €2 be an arbitrary vector. Since w = [w(y, -, wg] where wy;) is the weight of the j-th
layer, we can always find a vector wk in w? such that ||w(J) — wk ll2 < djd;_1€/d. For brevity,
let j, € [n.’] denote the index of wkj in e-net w’. Then let wy, = [wkl; . ,wkj; e ,wkl].

This means that we can always find a vector wy,, such that ||w — wg, ||]2 < . Now we use the
decomposition strategy to bound our goal:

J(w) — J(w)‘: %Zf(lmw(i)) —E(f(w,a:))‘
i=1
%Z Jlw, z;y)— ('wku”w(i)))+;Zf(wkw,w(i))—IEf(wkw,m)+Ef(wkw,a:)—IEf(w7w)
i=1 i=1

n

Z —f(wp,,, x@)) |+ %B(wkwam(i))_Ef(wkwvm)
=1

Then, we define four events Ey, F, E5 and E5 as

+|Ef(wg,,,x)—Ef(w, )|

1 n t
5= {2 stz 5}
1 — .
E, = {jwe[:?}ij_[l} g;f(wkw,w(i))—E(f(wkww)) 23},
E3 = {sup E(f(wg,,z))—E(f(w,x)) Z;}
wen

Accordingly, we have
P(Ey) <P(Ey) +P(Ez) + P (E;s).
So we can respectively bound P (E;), P (E5) and P (E3) to bound P (Ej).

Step 1. Bound P (E;): We first bound P (E;) as follows:
t
> —
1)

n

S (fw, ) — Fawp, 7))

weN i=1

P(E,) =P (sup

®3 1 &

<-E | sup |— w, ) — f(wr,, s

<3 (we% n;(f( (@)) — f(wr ()))D

<38 ( sup |2 X (fw,z) = flwg, @) sup [[w — wi |,
t weN Hw — Wk, ”2 weN

§% <sup HVJ (w, x) H )
t weN
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where @ holds since by Markov inequality, we have that for an arbitrary nonnegative random variable

x, then
E(x)

Pz >t) < ;

Now we only need to bound E (supweg Han(w, x) H
2

su Van:cH> su w, T
(wGIS)Z H wGIS)Z n ZVf @

where a; = ¢;lrir4=2. Therefore, we have

3¢ /@,
P(E)) < eto‘g.

). Therefore, by Lemma 10, we have

)| ) =E(swvrto.a,) < va

We further let

Then we can bound P(E ):

Step 2. Bound P (Es): Recall that we use j,, to denote the index of wij in e-net 'wg and we have
Juw € [n7], (ne? < exp (s;log (222))). We can bound PP (Es) as follows:

1 t
- Z f(wk’wam(i)) - E(f(wkw7m)) > g

P(E7) =P < sup
jwe[ng]je[l]

3rd 1 & t

< I P — . N —E > —

exp Zs] 0g ( 6 ) . Sl}p (‘nz.f(wkwvm(z)) (f(wkw7m)) = 3)
j=1 Jw€nl] jE(l] i=1
© /3dr\°® . t2 4
<4|— ) exp | —cpmnmin ) ,
€ Qw? max (dlw;T‘l, 72> 3wf7'
where @ holds because in Lemma 7, we have
1 t2 t

]ID(nZ(f(w’m(i))_E(f(wa‘E(i))))>t> < 2exp | —cpnmin

)
i—1 w)%rnax (dlw]%7'4,7'2) wT

where ¢ is a positive constant and wy = r!. Thus, if we set

9w3(s log(3rd/e) + log(8/¢)) max (diw3,7%) 3,27 (slog(3rd/e) + log(8/<))

t > max ,
cf/n Cf/’rl

then we have

e
P(E;) < 5.

Step 3. Bound P (E5): We first bound P (Es) as follows:

P (B) = ( sup () - B(f(w,2)], > £ )

weN

E(f t
]P; (Sllp || w) f(w w)HQ) sup ||’UJ _ wka2 Z )
wen ||w Wi, o weN 3
t
<P (dE sup ||VJw(w, )|, > )
weN 3
®
gp(

)
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where @ holds since we utilize Lemma 10. We set € enough small such that , /aze < t/3 always
holds. Then it yields P (E3) = 0.

Step 4. Final result: To ensure P(Ej) < ¢, we just set € = 3r//n. Note that @ > 3,/age. Thus
we can obtain

t > max ,

6,/age 9w;(s10g(3rd/e)+1og(8/€))max(dle%r‘l,q-?) 3@?72(3log(3rd/e)+10g(8/5))
3 ’ cfrm Crn

181, fagr 9w? (s log(dn/1)+log(8/¢)) max (leJZﬂAv 7'2) 3w3T?(slog(dn/l)+1og(8/c))
Il I cpmn ’ cpmn

4l—-2

Note that we have oy = ctlrﬁ,r where ¢; is a constant. Then Then there exist four universal

constants ¢ and ¢y such that if n > ¢y max (dls 1og(d)l:;§4 g7 log(d)/(Tle)), then

7 log(dn/l) + log(8
sup ||J (w) —J(w)H < cjwyT max (\/EZWfT, 1) \/3 og(dn/l) +log(8/¢)
we 2 n
holds with probability at least 1 — e. O

C.3.4 PROOF OF COROLLARY 1

Proof. By Lemma 5, we know ¢, = ¢,. Thus, the remaining work is to bound €. Actually, we can
have

n

1 .
]ESN’D,A,(a:zj),ij))N’DEZ(fj(wi§$/(j)7yzj)) —fj(wn;w'(j)7ygj))) <Es~p (sup

J(w) - I(w) )

j=1 we
< sup | (w) - J(w)|
we
SEf.
Thus, we have ¢, = ¢, < €. The proof is completed. O

C.4 PROOF OF OTHER LEMMAS
C.4.1 PROOF OF LEMMA 13

Lemma 15. (Rigollet, 2015) Suppose a random variable x is T2-sub-Gaussian, then the random
variable x* — Ex? is sub-exponential and obeys:

256274 1
E (exp)\ (x2 — ExQ)) <exp (27-) , AL T2 21
Proof. Here we utilize Lemma 15 to prove our conclusion. We have
k k k
Eexp ()\ (Z a;x? —E <Z am:?) )) 2 HEexp ()\ai (:cf — wa))
i=1 i=1 i=1
Z : E 128\%a; T} N < !
_i[[l exp( aiTi)a | |_W
k
<E exp (12&274 (Z a?)) :
i=1
where @ holds since x; are independent and @ holds because of Lemma 15. [
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C.4.2 PROOF OF LEMMA 14

Proof. Since the £3-norm of each wy;y is bounded, i.e. [|w;l|2 < (1 < j < 1), we can obtain

2 ®
< p20=s ) 2,2 < max (r*,r?h,

2 s
”Bs:tHF < HW( ) F

‘W<s—1>H2 ...me
F

2
F ‘

where @ holds since the function 2% obtains its maximum at two endpoints x = 1 and = [ for case
r < 1 and r > 1, respectively. On the other hand, we have HBs:tHop < ||Bs:t|lp < wy. Specifically,

we have ||Bl:1Hi“ <2 wJQ" i

D PROOFS FOR DEEP NONLINEAR NEURAL NETWORKS

In this section, we first present the technical lemmas in Sec. D.1. Then in Sec. D.2 we give the proofs
of these lemmas. Next, we utilize these technical lemmas to prove the results in Theorems 4 ~ 6 and
Corollary 2 in Sec. D.3. Finally, we give the proofs of other lemmas in Sec. D.4.

D.1 TECHNICAL LEMMAS

Here we present the key lemmas and theorems for proving our desired results. For brevity, we define
an operation G which maps an arbitrary vector z € R¥ into a diagonal matrix G(z) € R**¥ with its
i-th diagonal entry equal to o(z;)(1 — o(z;)) in which z; denotes the i-th entry of z. We further
define A; € R%i-1%di a5 follows:

A; = (WOHTguW) e RE-1xdi (=1 ... ), (22)

where W (%) is the weight matrix in the i-th layer and (9 is the linear output of the i-th layer. In this
section, we define

By =AA. A e RE1%d (s <t) and By, =1, (s >1t). (23)

Lemma 16. Suppose that the activation function in deep neural network are sigmoid functions. Then
the gradient of f(w,x) with respect to w(;y can be formulated as

Vi fw,@) = vee ((6(uP) B — ) 00)7), (G =1, ,1-1),
and
Vg [(w, @) = vee ()" - y)) (vD)7).
Besides, the loss f(w,x) is a-Lipschitz,

where o« = \/%609% (14 ¢ (I — 1)) in which ¢y, cq and c, are defined as

wa(’lU, w)HQ <a,

r

2 2\ -1
[oW —y|2 < ¢, < +00, cq=max(dy,dy, - ,d;) and ¢, = max (167 (IG) ) .

Lemma 17. Suppose that the activation functions in deep neural network are sigmoid functions.
Then there exists two universal constants cs, and cs, such that

Hv%ﬂf(w’m)nop S ||V,2uf(w,a:)“F <q,

where ¢ = W in which cq = max; d; and ¢, = max (ﬁsa (g)lﬂ)' Moreover, the
gradient V., f (w, @) is ¢-Lipschitz, i.e.

[V f(w1, @) = Vo fwa, @) ||, <c[lwi — wa2.
Similarly, there also exist a universal constant & such that

Hv?“f(w7w)||op < ||Vi,f('w,:c)HF <¢.
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Lemma 18. Suppose that the activation function in deep neural network are sigmoid functions. Then
we have

IV Va f(w, 2)|lop < |V Ve f(w, )| <P,

||0p

where = \/ (I 4 2)eyercq (ley + 1) in which ¢y, cq and ¢, are defined in Lemma 16.

Lemma 19. Suppose that the input sample x obeys Assumption 2 and the activation functions in deep
neural network are sigmoid functions. The gradient of the loss is 83%7T2-sub-Gaussian. Specifically,
for any X € RY, we have

E (A, Vi f(w, ) — EV,, f(w,))) < exp <857|>‘||2> ’

2

where = \/ 1+2) cycrcd (ley + 1) in which ¢y, ¢q and c, are defined in Lemma 16.

Lemma 20. Suppose that the input sample x obeys Assumption 2 and the activation functions in
deep neural network are sigmoid functions. The Hessian of the loss, evaluated on a unit vector, is
sub-Gaussian. Specifically, for any unit X € S*! (i.e. | A||2 = 1), there exist universal constant ~y
such that

E (t (A (Vo f (w, ) — EVE, f(w, ) A)) < exp (8,52;272) '

Notice, y obeys v > ||V Vi, f(w, )| op-

Lemma 21. Assume that the input sample x obeys Assumption 2 and the activation functions in
deep neural network are sigmoid functions. Then the sample Hessian uniformly converges to the
population Hessian in operator norm. That is, there exists such two universal constants c,,» and ¢,

. cm/§2l2r2
such that if n > T3 log(d) Tog(1/2)” then
- log(dn/l)+log(4
sup HVQJn(’LU)—VQJ(UJ)H Scm’YT\/S Og( n/ )+ Og( /E)
weN op n

holds with probability at least 1 — . Here y is the same parameter in Lemma 20.

D.2 PROOFS OF TECHNICAL LEMMAS

For brevity, we also define
Doy = WO [WO|2 (s <1) and Dyy =1, (s > 1).

We define a matrix P, € R% >4 whose ((s — Ddi + s,s) (s = 1,--- ,dy) entry equal to
o(ugk))(l — a(ugk)))(l - 2U(ugk))) and rest entries are all 0. On the other hand, since the values in
v belong to the range [0, 1] and v is the label, ||[v) — y||3 can be bounded:

[o® —y|3 < ¢, < +oo,
where ¢, is a universal constant. We further define ¢y = max(dy, dy,--- ,dy).

Then we give a lemma to summarize the properties of G(u(i)) defined in Eqn. (22), By.; defined in
Eqn. (23), Dy.; and Py.

Lemma 22. For G(u(i)) defined in Egn. (22), B.; defined in Eqn. (23), D.; and Py, we have the
following properties:

(1) For arbitrary matrices M and IN of proper sizes, we have
i 1 i 1
le(u)M|% < IMIE  and INc(u?)|% < TVl
(2) For arbitrary matrices M and IN of proper sizes, we have

1P M7 < 38”M||F and ||NP||7 < 38||N||F'
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(3) For arbitrary matrices M and IN of proper sizes, we have

1
D,.; and WDs:t < et S Cy

A 2(t—s+1 2 2\
where cgp = (Z) ( ) and ¢, = max (127 (1—2) )
(4) For arbitrary matrices M, N and I of proper sizes, let m = vec (M ). Then we have
2 2 2 2 2 2
[(N @ Dm|p < [[M|[p[IN|p and [[(I®N)m|p < |M|p[NlEg-

1
2
1Bsitllp < {g=ers

It should be pointed out that we defer the proof of Lemma 22 to Sec. D.4.

D.2.1 PROOF OF LEMMA 16

Proof. We use chain rule to compute the gradient of f(w, ) with respect to w;y. We first compute
several basis gradient. According to the relationship between w(), v, W) and f (w, x), we have

vv(l)f(wa 33) = v(l) - Y,

oult) 9 f (w, ) : Of (w, )
. — ’ — (i+1\T ? L] —
v’v(!)f(wa 13) - v Guli+D) - (W ) Hulitl) (Z =1, ,l 1)7
v 9f (w, x A Of(w,x . (24)
vu(i)f(wam): 8u(l)%:G(u( ))%7 (Z:L"' 7l)7

ou (0f(w,x) ; Of(w,x)
, ) — =1 ) i=1,---
Vwo f(w,x) o < 0 ) v ( O ) , (i=1, ).

Then by chain rule, we can easily compute the gradient of f(w, ) with respect to w;, which is
formulated as

. . T
Vw(j)f(wa w) = vec (v(J_l) (G(u(j))Aj+1Aj+2 T Al(v(l) - y)) ) ) (.7 = 17 o 7l - 1),
and .
Vo flw.2) = vee (00 ()0 - 1) ).

Besides, since the values in v(!) belong to the range [0, 1]. Combine with Lemma 22, we can bound
|V f(w,x)||2 as follows:

!
IV fw,2)ll3 =" | Vu,,, fw, )|
j=1
2 -1
+

=1

2

(-1 (G(u(l))('u(l) _ y)>T

. . T
=1 (G(um)BM:l(vm _ y))

F F

1 R R N IR L 2
PRI S VI S ST

@1

1
< =
—16 16
where ¢y, ¢4, ¢, are defined as

O _ 2 AT
o' —yll5 < ¢y, cq=max(dy,di,---,d;) and ¢, =max| —, | — .

Notice, @ holds since in Lemma 22, we have
-1
2 r\ 2(t—s+1) r2 /2
| Bs:tllz < (1) < max o\ 16 ]
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Thus, we can obtain

1
HWJ@wﬂb§¢w%%ﬂ+wUD)Aw
The proof is completed.

D.2.2 PROOF OF LEMMA 17

For convenience, we first give the computation of some gradients.
Lemma 23. Assume the activation functions in deep neural network are sigmoid functions. Then the
following properties hold:

ofwa) [ Awa)

(1) We can compute the gradients =5-75 FTG
“oui = C B —y) and G = Bina(w® —y).

. ()
(2) We can compute the gradient g}f)( S as
J

N , ‘ , T
8:;( = (N (e(um)Bm;i,l(W(”)T) € R (i > j).
J
ou® )
o = ()T @ I, e REXHA, (i = j).
(@)

. @
(3) We can compute the gradient g;’)( S as
J

v ®
dwj)

= WU )T @ (a(u) By € REXGG (5> ).

It should be pointed out that the proof of Lemma 23 can be founded Sec. D.4.

Proof. To prove our conclusion, we have two steps: computing the Hessian and bounding its operation
norm.

fwa) |

Step 1. Compute the Hessian: We first consider the computation of e
(L)awm

Pf(w,x) I (vec ((c(u)Aj114;42--- Ao —y)) (wU~)T))
8w5)8w(j) N 8w(7;) '

Recall that we define
Bs:t:AsAs-i-l"'At €Rd571><dt, (Sgt) and Bs:t :I, (S>t)

Then we have

Ovec (G(u(j)))

Pflwz) o Govy,a) & i
W = (’U (v y)" B} 41 z) ® (1a;) 8w(7;.) (=Qy)
. Ovec (G ( ) ii
b3 (o000 )BT, () By ) 2220 o g
k=j+1 (0
Ovec (W )

+ (000" — )T B s®)) @ () By ) =g
W)
(v —y) (2 Qi)
ow(, 4
. 81}(.771) ..
+1a; , ® G(U(J))Bj+1:l(v(l) -y) T (= Q7Y)
( ) Qwi

4+l g (G(u<j>)3j+1:l)
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avec(G(ut))

Case I: ¢ > 7. We first consider the case that ¢ > j. In this is case, Q? =0 since T
@

Suk)

Computing ng needs more efforts. By utilizing the computation of azm in Lemma 23, we have

dvec (6(u)) _ dvec (6(u)) Jul®) (=T (@) ()T :
ows,  oul aw(i)_PkG’ "o (e ) B (W ))T>’(k>z)

where Py is a matrix of size d7 x dj, whose ((s — 1)d, + s,s) (s = 1,--- ,dy,) entry equal to
U(ugk))(l - U(ugk)))(l - 20(u§k))) and rest entries are all 0. When k = 4,

dvec (c(u®)) _ Ovec (G(u®)) gu®) _

P, ((N—”)T ® Idk) e R xdidi-1,

8w(k) ouk) 8w(k)
Note that for k < i, we have %@) = 0. For brevity, let
@)

Dy = ((v(jfl)(v(l) - y)TB;}PH:z) ® (G(u(j))BjH:k_kaT)) (k=d,--.0). (25
Therefore, we have
S =P (@ @ 1)+ 3 Duy (0075 ()BT ).
k=i+1
Then we consider Qéj .
Q?sj = (v(j_l)(v(l) - y)TBz'TH;zG(u(i))) ® (G(u(j))BjH:FI) '

. W . i
Also we can use the computation of gz}(,) in Lemma 23 and compute Q7 as follows:

d(v" —y)

T
0

= (W‘”@ (G(U(j))Bj+1:l)> (("(i_l))T® (G(“(i))B”Ll)T) '

Finally, since ¢ > j, we can compute Qéj =0.

QY =vU Vg (G(u(j))BjJru)

e or 0G|
Case II: 7 = j. We first consider Do
Ovec (Ggru(’f))) _ Ovec (G(kU(k))) 8u(T’“) _p, ((v(k_l))T ®Idk> c Rdixdkdk,l’
Ow Ouk) ow

where P, is a matrix of size ds x dj, whose (s, (s—1)dj,+s) entry equal to U(ugk))(l —U(ugk))) (1—
2a(ugk))) and rest entries are all 0. @77 can be computed as

8'w(7;.)
= (('U(j_l)(”(l) - y)TBjT+1:z> ® (Idj)) (P] (('v(j_l))T ® IdJ,)) .

As for Q%j, by Eqn. (25) we have

QY = (20 (" )BT, @ (1)

1
Q=3 DP, <v(j1))T ® (G(’u(j))Bj+1:k—1(W(k))T)T> :

k=j+1

Since i = j, Q% does not exist. For convenience, we just set Q%' = 0.
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Now we consider Qij which can be computed as follows:

. ) , O(v® —
QY ZUU_D@(G(U(]))B]‘HJ) 4(3 7 )

W)
_ (v(jfl)@) <G(u(j))Bj+1;l)) ((v(jl))T® (G(U(j))Bj+1:l>T) ,

Finally, since 7 = j, we can compute ng =0.

O’ f(w,z)
OwowT
Step 2. Bound the operation norm of Hessian: We mainly use Lemma 22 to achieve this goal.
From Lemma 22, we have

Case I1I: i < j. Since is symmetrical, we have sz = Q{: (k=1,---,5).

(1) For arbitrary matrices M and IN of proper size, we have
i 1 i 1
o) M| < o IMIIE and - [NG(u)[[E < 1o 1N
(2) For arbitrary matrices M and IN of proper size, we have

26 26
IPMI3 < SIMIE and NPl < SN

(3) For By.; and Dy.;, we have

| Byull3 <

. l

2 2

T T
where Cr = ImMax (167 (16) >

(4) For arbitrary matrices M, N and I of proper sizes, let m = vec (M ). Then we have
2 2 2 2 2 2
(N @ Dm|[p < [|M| [N and (I N)m|p < |[M|p[|N|p -

1

1
WDs:t and 7Ds:t S Cr,

16t—s+1

The values of entries in v(") are bounded by 0 < a(ugf)) < 1 which leads to ||v(*) H; <d, < ey,
where ¢; = max; d;. On the other hand, since the values in v!) belong to the range [0,1] and y is
the label, |v(") — y||3 can be bounded:

l 2
o -yl < Cy < +00,
where ¢, is a universal constant.

We first define
C¥ = D, P, (v(i—l))T ® (G(u(i))BiH:k1(W(k))T)T>
and
C—D,P. ((’U(i_l))T ®Idi> _ ((v(i—l) ®Idi> (DiR)T)T 2 (,U(i—l) ® (DiB>T)T
=" N (D;P),

where Dj, is defined in Eqn. (25). @ holds since for an arbitrary vector u € R* and an arbitrary
matrix M € R¥** we have (u®@ I) M =u® M.

Cas}f I: i > j. According to the definition of C/ and C}?, we have Q;j =C¥ + Z;Ziﬂ C,ij. So
we have

2
TTWT) | _ Qi+ QY + QY + QY + QY
awg)aw@ . F
. 2
HC”JJF >l +Q7+ QY
k=it1 P

2 .12 ..
iJ i
o8]+ e

)

l
—(l—i+3) (HC“H?+ > e
k=i+1

42



Published as a conference paper at ICLR 2018

Here we bound each term separately:

. . 2 2 2
o <= o~ Bt 7 2 o

F
26 1 1
_Sscydj 1d1 116l_iDl+1ll6Z —;
26 1
—38 Cydj 1d’L 1775 16l_j
26

§3780ydj71diflcr'

Dy

Dj+1:l

Similarly, we can bound ||C}||% as follows:

1] 2
HC’“ F
<[l o ~u ] BriralE o 1B i W [0 2 | Benia (@7
>~ . Yy B k+1:1 F16 Jj+l:k—1 k F38 F16 i+1:k—1 P
26 1 1 1
_38Cyd] 1d;— 1161_ka+1:l16k_j_1Dj+1:kWDi+1:k
26 1 1
38cyd] 1d1 116l_j_1Dj+1:lWDi+l:k
214 5
< 38 Cyd] 1dl 1C..

12
We also bound HQ? H as

2

1
1 1)
01 <1 el gt 8 e

Finally, we bound HQ as follows:

: 1
i G-1) (i-1)
[@V]]) < [0 s 1Brral [0 0] 1 IBiaallt < g adirc.
2
Note that d; < ¢ 4. Thus, we can bound W as
W) wm
2
P f(w,x)
dw iy ow ||,

6 214
(l—2+3) (?)SCde 1di_q¢p + Z 38 Cyd] 1d; 1C + 2SCydj_1C7 + dj 1d;_ 1C>
k=i+1

4 4096 1
<(l+1) (cycgcr + ﬁcy(l —2)c5c? + 2560ycdcr + 2560(103) .
Case II: i = j. According to the definition of C*/ and C7, we have Q¥ = Ziﬁ:j-kl Cij.
Similarly, we have

0% f(w,

l
Ow; )3w( ) =||l@+ > e +QY
J

k=j+1 »

HQ]] +Q].7 +QJJ +Q.7] +QJ]

sWﬂ+m\p¥

2 l i ||? i ||?
F - F F
k=j7+1
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2
Thus, we can bound HQ{J first:

2
] < o[ o ol vt G o[ < st e

As for ij , we have

ot
o -t a7 s
26 cyd; 11611 - Dyy1 16kij_1Dj+1:k 16k,ij_1Dj+1:k
,23184 d2 e

Then we bound ||Q77[|2:

n 1 2 2
HQMH <H”(J HF 16||BJ+“HFH " )HF16”BJ+“”F*28d 1o

Note that for any input, we have ¢, = max; [[vU~D(v® —y)THi < max; [[0UD |2
H(v(“ - yHi < ¢ycq, where H'u(l) - yH? can be bounded by a constant ¢,. Thus, we can bound

9 f(w,)

Bl o | as
O f(w, x) i <(l—i+3) (266 &2 e+ i LM 2 C2Jrid2 c2>
awz)aw(j) - g8 vi—LT W 38 gL g8 Timlir

<(+2) (6?2161’6367' + %Cy(l —1)c3c? + 2;66302)
Case III: ; < j. Since 8;{)(5‘;;? is symmetrical, we have Q? = Qf: (k=1,---,5). Thus, it yields
0*f(w, x) 4096

64 1 1
ST B N < 4+1) eyl + ey (1 — 2)cRe? er + ——cac? ) .
ol dw || <(+ )<6561‘3ycdC * a1 <o\~ 2)eacr + gggeucacs  gppcacy

Final result: Thus we can bound

Voo f (w. )| o <[|Vaf(w, ),
2
> f(w, x) P f(w, x)
<\ (0= 1)l max || —L2 T 2T
1,j1i7#] 8’11}(])8117() =1 aw(J)é)le F

IN

64 , 4096 1,
((l —DI(+1) (65610y0dcr+6561 y(1—2)c5c? +256cycdc,, + 2560dCT>

1 4 5
+(1+42) <chc§cr + @cy(l — 1)lc3c? + —lc )>

6561 256
<y/es, erc3ld,

where c,, and c,, are two constants.
Since ||VZ, f(w Hop V2, f(w, z)|

where ¢ = /¢, ¢34

> we know that the gradient V,, f(w, x) is ¢-Lipschitz,
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On the other hand, since for any input , o(x) belongs to [0, 1], the values of the entries of V3, f (w, x)
can be bounded. Thus, we can bound

V2 f(w, ) op = up <>\®37Vif(w7w)> = [Vou f(w, 2)]ije A A A, < € < +oc.
All2<1

We complete the proof. O

D.2.3 PROOF OF LEMMA 18

For convenience, we first give the computation of some gradients.
Lemma 24. Assume the actlvatlon functlons in deep neural network are sigmoid functions. Then we
can compute the gradients 2% e <1) and a”(l) as

oul) . T _ .
a® = (G(u(l))A2 . -~Aj71(WJ)T> c RalJmh7 (> 1).
a'u(j) T v '

du® (G(“(l))A2 : "Aj) e R% XM (5> 1).

It should be pointed out that the proof of Lemma 24 can be founded Sec. D.4.

Proof. To prove our conclusion, we have two steps: computing V.V, f (w, ) and bounding its
operation norm.

Step 1. Compute V. V., f(w, x):

?f(w.z) .

We first consider the computation of PaTow,) -

P f(w,x) 0 (vec ((G(u(j))Aj+1Aj+2 o Ay (v — y)) (v(j_l))T)) .

ozxT ow ;) oxT

Recall that we define
A; = (W) € RE-17di,
By, =AA. A, eR¥-1%d (s<t) and By, =1, (s >t).
Then we have
Ovec (G(u(j)))

Pf(w,®) (1), @) 7 5 i
Gaug, ~ (00 v Bﬁlz) () =g — (2 Q)
. Ovec G(u(k)) .
+ Z ( =1 (v y)TB£+1:l)®(G(U(J))quLl:klekT) %(é Q)
k=j+1
o . (v® — )
P00 6 () By) 202V gl
. afv(jfl) .
+ Idj—l ® (G(u(J))Bj-‘rl:l(v(l) - y)) W(é QZ‘L)

By using Lemma 24, we can compute Qilj as

Ovec (G(u(k))) _ Ovec (G(u(k))) ouk)

- = P, (6(uM) By (WH)T !
oxT Ou) OxT k 2:k=1

Thus, we have
: . Ovec G(u(j))
Qi = (U(j D —y)"BY,, l) ® I, 3(:,;T )

~((v9 @ - ) B ) @ 1a,) Py (G(uu))BQ:k_l(W,C)T)T |
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As for Q%, we also can utilize Lemma 24 to compute it:

!

. . ] a G (k)

2= Z (U(jfl)(v(l) - y)TBzﬂ:l) @ (G(u(]))BjJ“l:k_le) %
:j+1

=3 (o )7 BE ) () B W) P () B (W)
k=i+1

Then we consider Q7 .

Q —vi Vg (G(U(j))Bj+1;l) % — (v(j—l) ® (G(u(j))Bj+1;l>) (G(u(l))BQ:Z)T

7 | can be computed as follows:

Qi —I, @ (G(u(j))BjJ,-l:l(v(l) 7y)) 81(;(;;1) _ (Idj—l ® (G(u(j))Bj+1:l(”(l) fy))) (G(“(l))sz) T.

Step 2. Bound the operation norm of Hessian: We mainly use Lemma 22 to achieve this goal.
From Lemma 22, we have

(1) For arbitrary matrices M and IN of proper size, we have
i 1 i 1
lo(u®) M]3 < T5IMI%  and ING(u™)|F < VIl
(2) For arbitrary matrices M and IN of proper size, we have
1P M7 < 38||MII% and [N P[5 < 38||N||F
(3) For Bg.; and D,.;, we have

1 1
2
sitllp < WDs:t and WDs:t < ¢y

-1
_ 7,_2 7,_2
where ¢, = max (4, 16 .

(4) For arbitrary matrices M, N and I of proper sizes, let m = vec (M). Then we have

1B

2 2 2 2 2 2
|(N & Dml% < [M|Z N2 and [[(T© N)m|2 < [M2 [N

The values of entries in v(") are bounded by 0 < a(ugf)) < 1 which leads to [|v(") H; <d, < ey,
where ¢; = max; d;. On the other hand, since the values in v(") belong to the range [0,1] and y is
the label, |v(") — y||3 can be bounded:

l 2
||”( ) — yllz < ¢y < +o0,
where ¢, is a universal constant.

We first define
= ((+0 @ ~ )T B ) @ (@) Bys W) ) P (s Boss (W)

Then we have Q, = Zk_J_HC So we have
. 2
=i+ Y cl+Qi+Ql

k=j+1 »

—HQJ-FQ]-FQ]-FQJ

ozt 0w

HaZf(

2 ! 12 2 2
=-j+3) || et + e, + @i
(l—Jj+3) Q1F+k§r1 kF+ Qs F+ Q4F
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Then we bound each term separately:
12 T 2 26 1 2 20
_ 2
HQ{HF < H’U(J 1)HF H'U(l) - yHF Bj+1:1ll % 3816 HB?:’f—l(Wk)T”F < 3gcydj—1cg'

2
Similarly, we bound HC’% H
F

12 ) 2 2 1 26 1 2
ol o5 o Bt 2y s W1 5 s
26 4 1 p L D
3869 i— 1lﬁl & k""lllﬁkfj*l j+1:k16k71 2:k
26
S?Cydj—lcg-

12
We also bound HQ;J as
F

2 X 2 1 1 1
< <J—1)H ~IBisral® = | Baou|% < —d; 12
LS 5 1Bially g 1Bl < Srdiac?

o

2
Finally, we bound HQf1 HF as follows:

112 1 2 1 1
|@i], = 75 1Bi+ral3 va |, 75IBallF < s5escn

Since ¢ = max; d;, we can bound H % s
2 f(w,z) ‘ 26 1 1
FE P <(l—-7+3) 386?4 1C2 + Z cy i1c? +2 cydj— 1cr+2—80y0r
(9) —3+1
26 26 1 1
<({+2) 380yd] 1c + Z 38 5 di— 1c +28cyd] 1cr+2gcycr
k=j+1
Final result: Thus we can bound
l @) 2
< <
Ve Ve f (0, 2)lop < VeV (w0, 2) | o < Z aw(]) o T
l 1 1
< Z (1+2) 8 12+ Z _1c2 4+ 28cydj_1cr + 28CUCT
Jj=1 —]+1
26
< ﬁl(l + 2)eyereq (ley + 1),
where c¢q = max; d;. The proof is completed. O

D.2.4 PROOF OF LEMMAS 19 AND 20

Lemma 25. (Alessandro, 2016; Rigollet, 2015) Let (x1,--- , @) be a vector of i.i.d. Gaussian
variables from N'(0,72) and let f : R% — R be L-Lipschitz. Then the variable f(x) — Ef(x) is
sub-Gaussian. That is, we have

P(/(e) ~Ef(@) > 0 S (~5fs ), (2 0)

or
E(A(f(x) —Ef(x))) < exp (4)\2L27'2) , (VA >0).
Remarkably, this is a dimension free inequality.
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Proof of Lemma 19. We first define a function g(z) = 27 V., f(w, x) where z € R? is a constant
vector. Then we have Vg g() = Va (27 Vo f(w, ) = V4V, f(w, @) z. Then by Lemma 18, we
can obtain ||Vg(x)|l2 = |VaVw f(w,x) 2|2 < B||2||2, where 5 = \/g—gl(l + 2)cycreq (lep + 1)

in which ¢, ¢4 and ¢, are defined in Lemma 18. This means g(x) is 3|/ z||2-Lipschitz. Thus, by
Lemma 25, we have

E (t (2, Vo f(w,2) = EVy f(w, 2))) = E (t (g(2) — Eg(x))) < exp (4*5%| 2[137°) .

Let A = tz. This further gives
E (X, Vu f(w,@) - EVy f(w,@))) < exp (45°7%|A[3) ,

which means (X, V,, f(w, ) — EV,, f(w, x)) is 83%72-sub-Gaussian. O

Proof of Lemma 20. We first define a function h(z) = 27V2, f(w,x)z where z € S*7!, ie.
|z|l2 = 1. Then h(w) is a y-Lipschitz function, where v = |V, V2, f(w, x)||,p. Note that since
the sigmoid function is infinitely differentiable function, V; V2, f(w, x) exists. Also since for any
input =, o(z) belongs to [0, 1]. Thus, the values of the entries in V; V2, f(w, x) can be bounded.
So according to the definition of the operation norm of a 3-way tensor, the operation norm of
V& V3, f(w,x) can be bounded by a constant. Without loss of generality, let || V5 V2, f(w, x)[lop <
v < +00. Thus, by Lemma 25, we have

E (t(z, (Ve f(w,z) —EVE, f(w,x)) 2)) = E (t (h(x) — Eh(x))) < exp( ¢ g T > .

This means that the hessian of the loss evaluated on a unit vector is 8y272-sub-Gaussian. O

D.2.5 PROOF OF LEMMA 21

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. |lwj)|l2 < 7.
Assume that w ;) has s; non-zero entries. Then we have Z;=1 s; = 5. So here we separately assume
w! = {w7,---,w’ ;}is the d;d;_1¢/d-covering net of the ball B%% 1 (1) which corresponds
to the weight w;) o% the j-th layer. Let n.’ be the ¢/I-covering number. By e-covering theory in
(Vershynin, 2012), we can have

; d:d;_l 3r i 3’/‘dj dj_l 3rd
i< et — - ) < i1 — || = i1 — -
e ( Sj ) (djdjle/(ld)) = (S] o8 (djdj16/d CPAZE e

Let w € () be an arbitrary vector. Since w = [w(l), e ,w(l)] where w;y is the weight of the j-th
layer, we can always find a vector wfcj in w? such that ||w;) — 'wfcj ll2 < djdj_1€¢/d. For brevity,
let j,, € [ne’] denote the index of wij in e-net w?. Then let wy,, = [wy, ;- ;wi],; -+ ;awy, ]. This
means that we can always find a vector wy,, such that [Jw — wy ||]2 < e. Accordingly, we can
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decompose Hv2jn(w) - VQJ(w)H as follows:
op

‘szn(w) - V2J(w)HOp

LYV (w, @)~ BV f(w, )
=1

op
:‘ - Z = Vf(wy,,xu)) + % Zv2f(wkw,:c(i)) —E(V?f(wg,,,x))
i=1 i=1
E(V?f(wh,, ) — E(V?f(w,z))
op

Z (V?fw, @) — V2 f (W, , (i)

% Z V2 f(wr,,, ) — E(V? f(wr,,, 2))
=1

op op

]E(VQf(wkwaw)) - ]E(VQf(wvw))

op
Here we also define four events Ey, FE, E; and FE5 as

E) = {sup "Van(w) - VQJ(w)Hop > t} ,

weN
- t

E, = { sup Z — V2 f (W, () Z3(

wel) —1 op

t

E; = Sup ZVQ Wi,y s L ) - E(VQf(wkw>m)) > g 3

jwelnel.j=1l op

t

E; =1 su EV2 (w E(V? }
= {sup 572w 2)) ~ BV 7w, =

Accordingly, we have
So we can respectively bound P (E;), P (E2) and P (E3) to bound P (Ey).

Step 1. Bound P (E;): We first bound P (E}) as follows:

t
=P sup V f(w,a:(l)) — sz(wkw,a:(i))) Z =
weN n ) 3
2§E sup Z(sz(w xiy) — V2 f(wg,,x )
=7 weo |ln s L(4) w ) (1) ,

1 V2 i v2 ) 7
izE( 15 2 (V2 (w, ) = V2 (wi,, 20) |l s |wwkw”2>

< su

o we% |lw — wkw”Q weN
3 n

<*E sup fZV‘?f(w x(;))
¢ we i=1 Op

2o

—t

where @ holds since by Markov inequality and @ holds because of Lemma 17.

Therefore, we can set
6Ee
t> —.
€
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Then we can bound P(E ):

P(Eq) <
Step 2. Bound P (E5): By Lemma 2, we know that for any matrix X € R?¥9, its operator norm
can be computed as

[ Xlop <

sup (A, X)) .
1—2e§3i|<’ )

where Ac = {\1,..., A, } be an e-covering net of BY(1).

Let Ay /4 be the i-covering net of BY(1) but it has only s nonzero entries. So the size of its e-net is

( (si ) (1?41) < exp (slog (12d)) .

Recall that we use j,, to denote the index of wi]_ in e-net w’ and we have j, € [n7], (nJ <

exp (s; log (224))). Then we can bound PP (E») as follows:
t
>
1)
2
=P sup 2
jwe[nej]a.j:[l]))‘eAl/4

!
3rd
<exp (slog (12d)) exp Z s;log (r) _sup P
€ Juw€lned]j=[,A€X1 /4

j=1 7.7:[l

P(E,)=P sup
Jw€ned],j=[l]

% Z V2 f (Wi, z(i)) — E(V? f(w,,, )
i=1

Wl =+

(VZf(’wkw,.’B(i))—E (VQf(wkw,m)) ) >\> =

Since by Lemma 20, (X, (VZ f(w,x) — EVZ f(w,x)) X) where A € B%(1) is 8y*r%-sub-
Gaussian, i.e.

E (t (X, (Vi f(w,x) — EVL, f(w,z)) X)) < exp (8t ’; T ) .

Thus, £ > (X, (VE f(w,z) — EVZ, f(w,x)) A) is 8772 /n-sub-Gaussian random variable. So

> 1) <o ni
- ex -5 | -
=6) = TP\ T2

we can obtain
Noted =3 ; d;d;—1. Then the probability of 5 is upper bounded as

nt? 36d°r
P(E2)<2exp(—W+slog< . ))

b (‘i S (3, (V2 (w, @) — BV, f(w,)) )

i=1

Thus, if we set

£ 77_\/72 (s 10g(36d27;{6) + log(4/¢))

)

then we have

P(Ey) <
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Step 3. Bound P (E5): We first bound P (E3) as follows:

P (By) =2  sup [E(V* (., @) — E(w,2)], > §)
=

EsupH(Vqumwﬁm>v2fqu»H22i§>
weN

o tne s
we)

t
sup |w — wg, ||y = 5
= w1, e l 3>

t
<P(E V3 f(w, >)
= ( 3%%” flw m)||op—3
SP(562§>-

We set € enough small such that {e < ¢/3 always holds. Then it yields P (E3) = 0.
Step 4. Final result: To ensure P(Ey) < ¢, we just set € = 3672 /n and

) 4T
n n

1 max (6{6777 \/72 (s log(36rd2 /e)+log(4/5))> o <108£r , \/d1og(n1)+1og(4/€)) |
€ ne

c /§2l2r2

=25 log(d) log(1/2)°

Therefore, there exists such two universal constants ¢,/ and ¢,,, such thatif n > p
then

. log(dn/l)+log(4
supHVQJn(w)—VzJ(w)H Scm'}/T\/s og(dn/1) +log(4/¢)
weQ op n
holds with probability at least 1 — ¢. O

D.3 PROOFS OF MAIN THEORIES
D.3.1 PROOF OF THEOREM 4

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. [[w(;)|2 < 7.
Assume thgt w(;) has s; non-zero entries. Then we have 22:1 s; = s. So here we separately assume
w! = {wf,--- ,w’ ;}is the d;d;_1¢/d-covering net of the ball B%% -1 (r) which corresponds

to the weight w;y of the j-th layer. Let n¢’ be the €/I-covering number. By e-covering theory in
(Vershynin, 2012), we can have

1 d‘d'_l 37’ i 3dedj_1 31"d
J<( %% T )< Jog (2r4%i-1 ) log [ 72).
e = ( Sj ) <djdj16/(ld)) = (S] o8 <djdj16/d ePATE T

Let w € () be an arbitrary vector. Since w = [w(l), e ,w(l)] where w;y is the weight of the j-th
layer, we can always find a vector wfcj in w? such that ||w;) — 'wfcj ll2 < djdj_1€¢/d. For brevity,

let j,, € [ne’] denote the index of wij in e-net w?. Then let wy,, = [wil; e ;'wi],; e ;w{;l]. This
means that we can always find a vector wy,, such that [Jw — wy ||]2 < e. Accordingly, we can
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decompose Han(w) - VJ(w)H as follows:
2

‘an('w) - VJ(w)H2

=3V, E(VS (w,2)

n

:‘ lz (VI(w,z3) = V (W, @) ZVf Wy, , T E(Vf(wg,,x))

n

E(Vf(w,,2)) - E(Vf(w,z))

2

% Y (Vi(w,z) = V(wi,. 2))
i=1

<

% > Vi (w,,zm) — BV f(wg,, )
1=1

E(Vf(wkwaw)) - ]E(Vf(w, :B))

2
Here we also define four events Ey, FE, E5 and E3 as

E, = {sup Han(w) - VJ(w)H2 > t} ,

weN

1 & t
E, = {Zlé% ﬁ; (Vf(w,z3)) — Vf(wi,,2q)) 2 > 3} ,
Ey = { sup ZVf Wi, > T(4) ) —E(Vf(wg,,z))| > ;} ,
Jw€lnedl],j=[l] 9
B — {Sup E(Vf(wp,,x)) - E(Vf(w,2)| > ;}
weN 9

Accordingly, we have
P(Ey) < P(Ey) + P (Es) + P (Es).
So we can respectively bound P (E;), P (E2) and P (Es3) to bound P (Eyp).

Step 1. Bound P (E;): We first bound P (E}) as follows:
4
>
1)
2

)

3 2 0 (VH(w,z) = Vi (wr,, z0)) [,
- sup sup |lw — wg, |
t weN Hw wkaQ wes

n

~ Y (VHw,z() = V(W 2@))

n-
i=1

P(E,) =P (sup

weN

@3
<-E [ sup
t weN

n

’ Y (Viwaw) = Vi(w, zam))

n -
=1

IN

<3—]E (sup “Van(w,w)“2> ,

t weQ

where @ holds because of Markov inequality. Then, we bound E (supweQ HVan (w, x) H ) as
2

follows:

(supHVQJ (w,x H )<E<Sup ZVQf w,x)
weN we|| T
where @ holds since by Lemma 17, we have

V2 f(w

®
) E (Sup ||V2f(w,w)||2> <g,
w e

Hop Voo f (w, )| o <.
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-1
. . 2 2
where ¢ = /cs, cc2l4 in which ¢y = max; d; and ¢, = max | =, ( & . Therefore, we have
16rCq 16° \ 16

3
P(E;) < %
We further let
6¢ce
t> —
€
Then we can bound P(E):
P(E,) < %

Step 2. Bound P (E): By Lemma 1, we know that for any vector € R4, its f5-norm can be
computed as

1
lz]]2 < T sup (A, x) .
— € xe.

where Ac = {\1,..., A, } be an e-covering net of BY(1).

Let Ay /2 be the %-covering net of B(1) but it has only s nonzero entries. So the size of its e-net is

( ; ) (13/2) < exp (slog (6d)) -

Recall that we use j,, to denote the index of wij in e-net w’ and we have j, € [n7], (nJ <

-

:P( sup 2</\,i;Vf(wkw,az(i))—E(Vf(wkw,ac))> >

Jw€[ned],j=[l],AEX1 /2

exp (s;log (224)). Then we can bound PP (E») as follows:

W =+

P(E;) =P sup
Jw G[n;j],j:[”

% Z Vf(wi,,zu) — E(Vf(wy,, T))
=1

)

Ll =+

l n
1
<exp (slog(6d)) exp [ > s;log (3:d> Sup] AEA P(Z <>\,
YAEA] /2

j=1 Jw€lnedlg=ll n—
t
Vf(wy,, i) —E(Vf(w,,T)) > > 6)'

Since by Lemma 19, (y, V f(w, x)) is 8 3272-sub-Gaussian, i.e.

E (A, Vo (w, ) — EVy f(w, ) < exp (M) ’

2

where § = \/3—21(1 + 2)cycreq (ley + 1) in which ¢y, ¢q and ¢, are defined in Lemma 16. Thus,

L3 (Y, Vf(w,z)) is 84272 /n-sub-Gaussian random variable. Thus, we can obtain

1 « t nt?
P (n Z;(y,Vf(wkw,m(i)) —E(Vf(wkw,w)» > 6) < exp <_725272) .

Notice, > j d;d;_; = d. In this case, the probability of E5 is upper bounded as

nt? 187
P(Eg) S exp (72627'2 + leg (6)) .

¢ 57'\/72 (slog(18d?r/e) + log(4/¢€))

n

Thus, if we set

)
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then we have -
P(E,;) < —.

Step 3. Bound P (E5): We first bound P (Es) as follows:
t
) =2 ( sup |E(Vw,2) - BV flw.2)] > £ )
(s [ 00s8) =V 2]

t
sup |w — wg,, ||y = >
o o = wra, sl 2= 3

t
<P | €E sup HV J (w m)H2 > 3)

wes

<P (ce>
(v=5)

where @ holds since by Lemma 17. We set e enough small such that ¢e < t/3 always holds. Then it
yields P (E3) = 0.

Step 4. Final result: To ensure P(Ey) < &, we just set € = 18r/n and

t > max <6§€7 57\/72 (slog(18d2r/e) + 10g(4/5))>

n

:max<1(1)igr, o \/72 (s1og(n1)+1og(4/s)))_

n

Note that ¢ = O(\/ lcqB). Therefore, there exists a universal constant ¢y such that if n >
ey cal®r? [ (slog(d)T2e? log(1/e)), then

N 1 log(dn/l)+log(4
sup 9.7, (w) - VT (w)| <T\/729 J(+2) (lcr+1)crcd\/s og(dn/1) Hog(4/<)
weN n

holds with probability at least 1 — ¢, where ¢, ¢4 and ¢, are defined in Lemma 16. O

D.3.2 PROOF OF THEOREM 5

Proof. Suppose that {w™) w(?) ... (™} are the non-degenerate critical points of .J (w). So for
any w*) | it obeys

inf ‘)\f (VQJ(w(k)))‘ > ¢,

where AF (V2J (w(®))) denotes the i-th eigenvalue of the Hessian V2J (w(*)) and  is a constant. We
further define a set D = {w € R?||[VJ(w)||> < eand inf; |\; (V2 (w™®))) | > ¢}. According
to Lemma 4, D = U7Z, D), where each Dy, is a disjoint component with w®) € Dy, for k < m and
Dy, does not contain any critical point of J(w) for & > m + 1. On the other hand, by the continuity
of VJ(w), it yields ||VJ(w)||2 = € for w € dDy. Notice, we set the value of € blow which is
actually a function related n.

Then by utilizing Theorem 4, we let sample number n sufficient large such that

sup ||V, (w) = VI (w)|, <52 5

wEQ 2 2

holds with probability at least 1 — &, where 3 = T\/%gcyl(l +2) (le, +1) crcd\/w.

This further gives that for arbitrary w € Dy, we have

inf Hthn(w) Y- t)VJ(w)H = inf ¢ (an('w) - VJ(w)) + VJ(w)H
2

weDy, weDy,

2

> inf VI (w)ll, ~ sup tHan(w)—VJ(w)H

weDy, 2

> (26)

[\J\m
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Similarly, by utilizing Lemma 21, let n be sufficient large such that

slog(dn/1)+log(4/e) < ¢

[\

up || V2, (w) — VT (w) | < 7\/

weR

holds with probability at least 1 — e. Assume that b € R? is a vector and satisfies b” b = 1. In this
case, we can bound \F (Van(w)) for arbitrary w € Dy, as follows:

inf
weDy

k 27 _ . T2 T
N (20t01) - g, g, b

. . T 27 2 172
= nf b%lfll’b (v Jo(w) -V J(w)) b+ b7V J(w)b‘

> inf i |67V (w)b| — min ‘b ( Jo(w) — V2J (w )) b’

T2 2 2
> inf min [b"V2 T (w)b] - max ’b (V2da(w) - V20 (w)) b’

— inf inf [\ (V2 (we), @) —Hv Ja(w) = VI (w)|

weDy 1

op
>

B [

This means that in each set Dy, V2jn(w) has no zero eigenvalues. Then, combining this and
Eqn. (26), by Lemma 3 we know that if the population risk J(w) has no critical point in Dy, then

the empirical risk jn(w) has also no critical point in Dy; otherwise it also holds. By Lemma 3, we

can also obtain that in Dy, if J(w) has a unique critical point w(*) with non-degenerate index sy,

then J,, (w) also has a unique critical point wi i

first conclusion is proved.

in Dj, with the same non-degenerate index si. The

Now we bound the distance between the corresponding critical points of J (w) and J,, (w). Assume

that in Dy, J(w) has a unique critical point w*) and J,, (w) also has a unique critical point w.

Then, there exists ¢ € [0, 1] such that for any z € 9B(1), we have

e 2| VI (w2
= max (VJ(wP), 2)

2T z=1
= max (VJ(w™), 2) + (V2I(w® + t(w® — w®))(w® —w®), z)
2T z=1

o ) 1/2
= ((7270™)” () = ). (it - w®))
®
Z<||w£bk) - w(k)H27
where @ holds since VJ(w®) = 0 and ®@ holds since w® + t(w( — w®) is

in Dy and for any w € Dy we have inf;|); (VQJ('w))| > (. Then if n >
cs max (cql®r?/(slog(d)r?e? log(1/¢)), slog(d/1) /¢*) where ¢, is a constant, then

2 12 log(dn/l)+log(4
s w0y = 27 P84 1y 5 1)y B OB
n

holds with probability at least 1 — €. The proof is completed. O

D.3.3 PROOF OF THEOREM 6

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ||w[2 < 7.
Assume that w ;) has s; non-zero entries. Then we have 22:1 s; = s. So here we separately assume

w! = {w],---,w! ,} is the d;d;_y¢/d-covering net of the ball B%9i-1(r) which corresponds
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to the weight w;) of the j-th layer. Let n¢’ be the €/I-covering number. By e-covering theory in
(Vershynin, 2012), we can have

: d;d;_, 3r % 3rd;d;_4 3rd
i< %% — ) < log | —1-L— 1 :
e ( Sj ) (djdjlﬁ/(ld)) = (Sj o <djdj16/d SRR

Let w € €2 be an arbitrary vector. Since w = [w(y, -, wg] where wy;) is the weight of the j-th
layer, we can always find a vector wk in w? such that ||w(J) — wk ll2 < djd;_1€/d. For brevity,
let j,, € [ne/] denote the index of wk in e-net w?. Then let wy,,, [wkl' . 'wk e wkl] This
means that we can always find a vector wy,, such that ||w — wi, |2 < e Accordlngly, we can

decompose |J,, (w) — J(w)’ as

J(w) — J(w)’ -

U3 flw ) - E(f(w»w»‘
=1

%Z(f(w, (i) = f (W, , (i) +%Zf(wkw,w(i))—Ef(wkw7$)+Ef(wkw790)—]Ef(’w7 x)

=1 1=1
< %Z(f(wam(i))_f(wkw7w(i))) + %Zf('wkwaw(i))_Ef(wkwvm) +|Ef(wg,,, ) —Ef(w,z)|.
=1 =1

Then, we define four events Ey, F, E5 and E3 as

Ey = {sup jn(w) - J(w)‘ > t} ’
weR
1= {Z}ggz n (flw, z@y) = f(wr,, ®a))| > ;}7
E, = { sup (W, T@)) —E(f (wp,,, T)) Z;},
]wE[nEJ]J [l Pl
{sup v T))—E(f(w,x)) 2;}
weN

Accordingly, we have
P(Ey) <P(Ey) +P(Ez) + P (Es).
So we can respectively bound P (E), P (E2) and P (E3) to bound P (Ey).
Step 1. Bound P (E;): We first bound P (E}) as follows:
4
> —
1)

%Z (f(w, (i) - f(wkw’w<i>)>‘>

i=1

n

U3 (Flaws ) — flwng @)

weN i—1

@3
S;E (sup

P(E,) =P (sup

weN

weN |w — wg,, |,

§3E< o X (w0, 20) = ke, 2@))| ||w’wkw||2>
weN

t
<72 (s v, ).

where @ holds since by Markov inequality, for an arbitrary nonnegative random variable z, then we
have

Plx >t) < ET&‘)
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Now we only need to bound E (supwEQ "an(w, x) H ) . Then by Lemma 16, we can bound it as
2

nZVfwa: >§a7
2

where o = \/Tlﬁcycd (1 + ¢-(1 — 1)) in which ¢y, ¢4 and ¢, are defined in Lemma 16.

follows:

weN we

E <sup Han(w,w)H2> <E (sup

Therefore, we have

P(E;) < %
We further let
6ae
t>
€
Then we can bound P(E; ):
P(Eq) < %

Step 2. Bound P (E>): Recall that we use j,, to denote the index of wij in e-net w! and we have
Juw € [ne], (n < exp (s;log (3”)) We can bound PP (E5) as follows:

Z ) — E(f(wy, @) z§>

S5 g m) — B(f(wy, @)

i=1

P(E;) =P ( sup
Jw€l

ned),j=[l]

<exp ZSJ10g< :d> ‘ [5up P(
Juw€

; )
> .
=1 ned], =] 3
Since when the activation functions are sigmoid functions, the loss f(w, «) is a-Lipschitz. Besides,
we assume  to be a vector of i.i.d. Gaussian variables from A/(0, 72). Then by Lemma 25, we know
that the variable f(x) — Ef(x) is 8a?*72-sub-Gaussian. Thus, we have
2
P(1f(@) - Bf(@)]> 0 < 2o (-5 055 ) (20)

where o = \/Tlficycd (1+ ¢, (1 —1)) in which ¢y, ¢4 and ¢, are defined in Lemma 16. Thus,

LS fwj, i) —E(f(w;, z)) is 8a?7? /n-sub-Gaussian random variable. Thus, we can obtain

1< t nt?
Pl|= >-]1<2 —— |-
(nz_l —3>— eXp( 18a272)

Notice 22:1 s; = s. In this case, the probability of E is upper bounded as
nt? 3dr
P(E;) < 2exp (180427'2 + slog (6)> .

¢ aT\/lS (slog(3dr/e) + log(4/¢))

n

Thus, if we set

)

then we have

€
P(E;) < 3
Step 3. Bound P (E5): We first bound P (E5) as follows:
t

P(E;) =P (sup (w0, ) ~ E(f(w.2)] > §

- t
=P ( sup @) = J(w,2)) sup [lw — wy,, ||, > )

weN ||w W, || weQ 3

IN©

P

(am®
- EE aup >w wlw.2)l, > §)
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where @ holds since by Lemma 16, for arbitrary « and w € Q, we have ||V, f(w, )2 < a. We
set € enough small such that ae < ¢/3 always holds. Then it yields PP (E3) = 0.

Step 4. Final result: Notice, we have 2¢ > 3ae. To ensure P(E) < ¢, we just set € = 3r/n and

¢>max (6046 or \/ 18 (slog(3dr/€) + 10g(4/5))):max (1800“70” \/ 18 (slog(nd)+log(4/5))) .
3 ne

n n

Therefore, if n > 181272 /(slog(d)T?e%log(1/¢)), then

. 9 1 d/l) + log(4
sp Jn(w)—J(w)‘ ST\/CyCd(l-‘rCT(l—l))\/s og(nd/l) + log(4/e)
wel) 8 n
holds with probability at least 1 — ¢, where ¢y, cq4, and ¢, are defined as
7'2 7’2 -1
o —y|2 < ¢, < 400, cg=max(dy,dy,---,d;) and ¢, = max I (16) .
The proof is completed. O

D.3.4 PROOF OF COROLLARY 2

Proof. By Lemma 5, we know €, = ¢,. Thus, the remaining work is to bound €. Actually, we can
have

1 <& , . .
]ESND,A,(%),ygj))N'DEZ(fj(wi;ml(j)yyfj))*fj(w ;"B/(j)vygj))) <Es.p (Sup J"(w)‘](w)D
j=1

weR
< sup jn(w) — J(w)’
we
<eép,.
Thus, we have ¢, = ¢, < ¢,. The proof is completed. ]

D.4 PROOF OF OTHER LEMMAS
D.4.1 PROOF OF LEMMA 22
Proof. Since G(u(?) is a diagonal matrix and its diagonal values are upper bounded by o(ug))(l -

U(ug))) < 1/4 where ugf) denotes the h-th entry of u(*), we can conclude

i 1 i 1
()M < LM and NG < NI

Note that Py is a matrix of size d? x dj, whose ((s — 1)dy, + s,s) (s =1,--- ,dy) entry equal to
U(ugk))(l - a(ugk)))(l - 20(ugk))) and rest entries are all 0. This gives

o(ul)(1 —o(u{))(1 —20(ul)) =%(3U(U§k)))(1 —o(u)(1 - 20(ul™))

3
! 3o(ul) +1 - o@®) +1 - 20ul)
-3 3
23
< 31
This means the maximal value in P;, is at most g—i Consider the structure in Py, we can obtain

26 26
[P.M|% < 5IM|I7 and NP7 <

< < IV
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As for B,.;, we have
IBatlf <IAslF [ Assalz - 1Al

2 2 2
=[[woyre@] [ Tae [ ovO)Tew)|
1 2 2 2
e Nw® H <s+1>H H (t)
—16t—st+1 HW F w F w F
1
:WDSZt'

Since the £>-norm of each w;y is bounded, i.e. ||w;||2 < 7, we can obtain
1 1 2(t—s+1) r\20=st)
1601 5= Tgt—st1” - (1) — Ot
Now we prove the final result. According to the property of Kronecker product that for any matrices
A, B and X of proper sizes, vec (AX B) = (BT ® A)vec (X), we have

vec (MNT) = (N @ I)vec (M) = (N ® I)m.

This further yields
2 2 2
I(N @ Dmlp = [vec (MNT) [ = [MN"|5 < | M| [N -
By similar way, we can obtain
2 2 2
(I @ N)ym|[p < [|M|% [Nz
The proof is completed. O

D.4.2 PROOF OF LEMMA 23
of (w,z)

Proof. By utilizing the chain rule in Eqn. (24) in Sec. D.2.1, we can easily compute =775~ and
6];(0"“;’;;” ) as follows:
of (w,x i i
% — @M Ay Ao — ) = 6w By 1a(0® — y)
and
of (w,x
% = Aip1-- A(0Y —y) = Biya (v —y).
Therefore, we can further obtain
Of (w, x)
dwj)

=vec ((G(u(j))Aj+1Aj+2 ... Al(v(l) _ y)) (,v(jfl))T)
=vec ((G(u(j))Aj+1Aj+2 e Ai_l(W(i))T>(G(u(i))Ai+1 . Al(v(l) _ y)) (v(jfl))T>
= (v(j—l)@) (G(u(J‘))AjJrlAj+2 e Ai,l(W(i))T)) vec (G(U(i))Ai+1 o Ay (0 — y))

= (070 ® (G A1 Ay Ay (WOYT)) (‘9{3(:()“3)) .

Note that we have 2/(w:2) — ou®® (8f(w’m)>. This gives

dw(j) T dwgy \ ou®
Hu® _ _ o
8':;( > =i NTg (G(u(ﬂ))Bj-i-l:i—l(W(l))T) e REXdidio1 (j > j).
j
When i = j, we have
Au® — (WD) @ I, € RExdidi1
3’11)(1)

Similarly, we can obtain

v . : T - < T o dxdid 1 e -

B, :(U(J 1))T® (G(u(J))AjHAjJr2 e Ai) :(U(J 1))T® (G(U(J))B#l:i) eR4i*didi-1 (> j).
j

The proof is completed. ]
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D.4.3 PROOF OF LEMMA 24

Proof. By Lemma 23, we have

of (w,x i
% =c(u)B1(v"Y —y) and

Of(w, x)

8'0(7) = Bi+1:l(v(l) - y)

Therefore, we can further obtain

of (w, x
% —o(wM) 4, 4,00 — y)
o) Az Ay (W6 Ay - Ao — )

NT
Note that we have a’gﬁj‘f{f) = (gzg;) (%S‘(’ﬁ)). This gives

oud)

. T . T
oy = (s As e A4 (W)T) T = (@) Baya (W)T) € REX (> 1),

Similarly, we can obtain

Hv)
du®
The proof is completed.

T

(G(u(l))A2 . Aj) - (G(u“))Bgzj)T e RL*d (5> 1),
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