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ABSTRACT

This work aims to provide comprehensive landscape analysis of empirical risk
in deep neural networks (DNNs), including the convergence behavior of its gra-
dient, its stationary points and the empirical risk itself to their corresponding
population counterparts, which reveals how various network parameters deter-
mine the convergence performance. In particular, for an l-layer linear neural
network consisting of di neurons in the i-th layer, we prove the gradient of its
empirical risk uniformly converges to the one of its population risk, at the rate of
O(r2l

√
l
√

maxi dis log(d/l)/n). Here d is the total weight dimension, s is the
number of nonzero entries of all the weights and the magnitude of weights per
layer is upper bounded by r. Moreover, we prove the one-to-one correspondence
of the non-degenerate stationary points between the empirical and population risks
and provide convergence guarantee for each pair. We also establish the uniform
convergence of the empirical risk to its population counterpart and further derive
the stability and generalization bounds for the empirical risk. In addition, we ana-
lyze these properties for deep nonlinear neural networks with sigmoid activation
functions. We prove similar results for convergence behavior of their empirical risk
gradients, non-degenerate stationary points as well as the empirical risk itself.
To our best knowledge, this work is the first one theoretically characterizing the
uniform convergence of the gradient and stationary points of the empirical risk
of DNN models, which benefits the theoretical understanding on how the neural
network depth l, the layer width di, the network size d, the sparsity in weight and
the parameter magnitude r determine the neural network landscape.

1 INTRODUCTION

Deep learning has achieved remarkable success in many fields, such as computer vision (Hinton
et al., 2006; Szegedy et al., 2015; He et al., 2016), natural language processing (Collobert & Weston,
2008; Bakshi & Stephanopoulos, 1993), and speech recognition (Hinton et al., 2012; Graves et al.,
2013). However, theoretical understanding on the properties of deep learning models still lags
behind their practical achievements (Shalev-Shwartz et al., 2017; Kawaguchi, 2016) due to their
high non-convexity and internal complexity. In practice, parameters of deep learning models are
learned by minimizing the empirical risk via (stochastic-)gradient descent. Therefore, some recent
works (Bartlett & Maass, 2003; Neyshabur et al., 2015) analyzed the convergence of the empirical
risk to the population risk, which are however still far from fully understanding the landscape of the
empirical risk in deep learning models. Beyond the convergence properties of the empirical risk itself,
the convergence and distribution properties of its gradient and stationary points are also essential
in landscape analysis. A comprehensive landscape analysis can reveal important information on
the optimization behavior and practical performance of deep neural networks, and will be helpful
to designing better network architectures. Thus, in this work we aim to provide comprehensive
landscape analysis by looking into the gradients and stationary points of the empirical risk.

Formally, we consider a DNN model f(w;x,y) : Rd0 × Rdl → R parameterized by w ∈ Rd
consisting of l layers (l ≥ 2) that is trained by minimizing the commonly used squared loss function
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over sample pairs {(x,y)} ⊂ Rd0 × Rdl from an unknown distribution D, where y is the target
output for the sample x. Ideally, the model can find its optimal parameter w∗ by minimizing the
population risk through (stochastic-)gradient descent by backpropagation:

min
w
J(w) , E(x,y)∼D f(w;x,y),

where f(w;x,y) = 1
2‖v

(l) − y‖22 is the squared loss associated to the sample (x,y) ∼ D in which
v(l) is the output of the l-th layer. In practice, as the sample distribution D is usually unknown and
only finite training samples

{
(x(i),y(i))

}n
i=1

i.i.d. drawn from D are provided, the network model is
usually trained by minimizing the empirical risk:

min
w
Ĵn(w) ,

1

n

n∑
i=1

f(w;x(i),y(i)). (1)

Understanding the convergence behavior of Ĵn(w) to J(w) is critical to statistical machine learning
algorithms. In this work, we aim to go further and characterize the landscape of the empirical risk
Ĵn(w) of deep learning models by analyzing the convergence behavior of its gradient and stationary
points to their corresponding population counterparts. We provide analysis for both multi-layer linear
and nonlinear neural networks. In particular, we obtain following new results.

• We establish the uniform convergence of empirical gradient ∇wĴn(w) to its popu-
lation counterpart ∇wJ(w). Specifically, when the sample size n is not less than
O
(
max(l3r2/(ε2s log(d/l)), s log(d/l)/l)

)
, with probability at least 1 − ε the conver-

gence rate is O(r2l
√
l
√

maxi dis log(d/l)/n), where there are s nonzero entries in the
parameterw, the output dimension of the i-th layer is di and the magnitude of the weight
parameter of each layer is upper bounded by r. This result implies that as long as the training
sample size n is sufficiently large, any stationary point of Ĵn(w) is also a stationary point
of J(w) and vise versa, although both Ĵn(w) and J(w) are very complex.

• We then prove the exact correspondence of non-degenerate stationary points between Ĵn(w)
and J(w). Indeed, the corresponding non-degenerate stationary points also uniformly
converge to each other at the same convergence rate as the one revealed above with an extra
factor 2/ζ. Here ζ > 0 accounts for the geometric topology of non-degenerate stationary
points (see Definition 1).

Based on the above two new results, we also derive the uniform convergence of the empirical risk
Ĵn(w) to its population risk J(w), which helps understand the generalization error of deep learning
models and stability of their empirical risk. These analyses reveal the role of the depth l of a neural
network model in determining its convergence behavior and performance. Also, the results tell that the
width factor

√
maxi di, the nonzero entry number s of weights, and the total network size d are also

critical to the convergence and performance. In addition, controlling magnitudes of the parameters
(weights) in DNNs are demonstrated to be important for performance. To our best knowledge, this
work is the first one theoretically characterizing the uniform convergence of empirical gradient and
stationary points in both deep linear and nonlinear neural networks.

2 RELATED WORK

To date, only a few theories have been developed for understanding DNNs which can be roughly
divided into following three categories. The first category aims to analyze training error of DNNs.
Baum (1988) pointed out that zero training error can be obtained when the last layer of a neural
network has more units than training samples. Later, Soudry & Carmon (2016) proved that for DNNs
with leaky rectified linear units (ReLU) and a single output, the training error achieves zero at any of
their local minima as long as the product of the number of units in the last two layers is larger than
the training sample size.

The second category of analysis works (Dauphin et al., 2014; Choromanska et al., 2015a; Kawaguchi,
2016; Tian, 2017) focus on analyzing loss surfaces of DNNs, e.g., how the stationary points are
distributed. Those results are helpful to understanding performance difference of large- and small-size
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networks (Choromanska et al., 2015b). Among them, Dauphin et al. (2014) experimentally verified
that a large number of saddle points indeed exist for DNNs. With strong assumptions, Choromanska
et al. (2015a) connected the loss function of a deep ReLU network with the spherical spin-class
model and described locations of the local minima. Later, Kawaguchi (2016) proved the existence
of degenerate saddle points for deep linear neural networks with squared loss function. They also
showed that any local minimum is also a global minimum. By utilizing techniques from dynamical
system analysis, Tian (2017) gave guarantees that for two-layer bias-free networks with ReLUs,
the gradient descent algorithm with certain symmetric weight initialization can converge to the
ground-truth weights globally, if the inputs follow Gaussian distribution. Recently, Nguyen & Hein
(2017) proved that for a fully connected network with squared loss and analytic activation functions,
almost all the local minima are globally optimal if one hidden layer has more units than training
samples and the network structure after this layer is pyramidal. Besides, some recent works, e.g.,
(Zhang et al., 2016; 2017), tried to alleviate analysis difficulties by relaxing the involved highly
nonconvex functions into ones easier.

In addition, some existing works (Bartlett & Maass, 2003; Neyshabur et al., 2015) analyze the
generalization performance of a DNN model. Based on the Vapnik–Chervonenkis (VC) theory,
Bartlett & Maass (2003) proved that for a feedforward neural network with one-dimensional output,
the best convergence rate of the empirical risk to its population risk on the sample distribution can
be bounded by its fat-shattering dimension. Recently, Neyshabur et al. (2015) adopted Rademacher
complexity to analyze learning capacity of a fully-connected neural network model with ReLU
activation functions and bounded inputs.

However, although gradient descent with backpropagation is the most common optimization technique
for DNNs, none of existing works analyzes convergence properties of gradient and stationary points
of the DNN empirical risk. For single-layer optimization problems, some previous works analyze
their empirical risk but essentially differ from our analysis method. For example, Negahban et al.
(2009) proved that for a regularized convex program, the minimum of the empirical risk uniformly
converges to the true minimum of the population risk under certain conditions. Gonen & Shalev-
Shwartz (2017) proved that for nonconvex problems without degenerated saddle points, the difference
between empirical risk and population risk can be bounded. Unfortunately, the loss of DNNs is
highly nonconvex and has degenerated saddle points (Fyodorov & Williams, 2007; Dauphin et al.,
2014; Kawaguchi, 2016), thus their analysis results are not applicable. Mei et al. (2017) analyzed
the convergence behavior of the empirical risk for nonconvex problems, but they only considered
the single-layer nonconvex problems and their analysis demands strong sub-Gaussian and sub-
exponential assumptions on the gradient and Hessian of the empirical risk respectively. Their analysis
also assumes a linearity property on gradient which is difficult to hold or verify. In contrast, our
analysis requires much milder assumptions. Besides, we prove that for deep networks which are
highly nonconvex, the non-degenerate stationary points of empirical risk can uniformly converge
to their corresponding stationary points of population risk at the rate of O(

√
s/n) which is faster

than the rate O(
√
d/n) for single-layer optimization problems in (Mei et al., 2017). Also, Mei et al.

(2017) did not analyze the convergence rate of the empirical risk, stability or generalization error of
DNNs as this work.

3 PRELIMINARIES

Throughout the paper, we denote matrices by boldface capital letters, e.g. A. Vectors are denoted by
boldface lowercase letters, e.g. a, and scalars are denoted by lowercase letters, e.g. a. We define the
r-radius ball as Bd(r) , {z ∈ Rd | ‖z‖2 ≤ r}. To explain the results, we also need the vectorization
operation vec(·). It is defined as vec(A) = (A(:, 1); · · · ;A(:, t)) ∈ Rst that vectorizesA ∈ Rs×t

along its columns. We use d=
∑l
j=1djdj−1 to denote the total dimension of weight parameters,

where dj denotes the output dimension of the j-th layer.

In this work, we consider both linear and nonlinear DNNs. Suppose both networks consist of l layers.
We use u(j) and v(j) to respectively denote the input and output of the j-th layer, ∀j = 1, . . . , l.

Deep linear neural networks: The function of the j-th layer is formulated as

u(j) ,W (j)v(j−1) ∈ Rdj , v(j) , u(j) ∈ Rdj , ∀j = 1, · · · , l,
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where v(0) = x is the input andW (j) ∈ Rdj×dj−1 is the weight matrix of the j-th layer.

Deep nonlinear neural networks: We adopt the sigmoid function as the non-linear activation
function. The function within the j-th layer can be written as

u(j) ,W (j)v(j−1) ∈ Rdj , v(j) , hj(u
(j)) = (σ(u

(j)
1 ); · · · ;σ(u

(j)
dj

)) ∈ Rdj , ∀j = 1, · · · , l,

where u(j)
i denotes the i-th entry of u(j) and σ(·) is the sigmoid function, i.e., σ(a) = 1/(1 + e−a).

Following the common practice, both DNN models adopt the squared loss function defined as
f(w;x,y) = 1

2‖v
(l) − y‖22, where w = (w(1); · · · ;w(l)) ∈ Rd contains all the weight pa-

rameters and w(j) = vec
(
W (j)

)
∈ Rdjdj−1 . Then the empirical risk Ĵn(w) is Ĵn(w) =

1
n

∑n
i=1 f(w;x(i),y(i)) = 1

2n

∑n
i=1 ‖v

(l)
(i) − y(i)‖22, where v(l)

(i) is the network’s output of x(i).

4 RESULTS FOR DEEP LINEAR NEURAL NETWORKS

We first analyze linear neural network models and present following new results: (1) the uniform
convergence of the empirical risk gradient to its population counterpart and (2) the convergence
properties of non-degenerate stationary points of the empirical risk. As a corollary, we also derive
the uniform convergence of the empirical risk to the population one, which further gives stability
and generalization bounds. In the next section, we extend the analysis to non-linear neural network
models.

We assume the input datum x is τ2-sub-Gaussian and has bounded magnitude, as formally stated in
Assumption 1.
Assumption 1. The input datum x ∈ Rd0 has zero mean and is τ2-sub-Gaussian, i.e.,

E[exp (〈λ,x〉)] ≤ exp

(
1

2
τ2‖λ‖22

)
, ∀λ ∈ Rd0 .

Besides, the magnitude x is bounded as ‖x‖2 ≤ rx, where rx is a positive universal constant.

Note that any random vector z consisting of independent entries with bounded magnitude is sub-
Gaussian and satisfies Assumption 1 (Vershynin, 2012). Moreover, for such a random z, we have
τ = ‖z‖∞ ≤ ‖z‖2 ≤ rx. Such an assumption on bounded magnitude generally holds for natural
data, e.g., images and speech signals. Besides, we assume the weight parameters w(j) of each layer
are bounded as w ∈ Ω = {w |w(j) ∈ Bdjdj−1(rj), ∀j = 1, · · · , l} where rj is a constant. For
notational simplicity, we let r = maxj rj . Such an assumption is common (Xu & Mannor, 2012).
Here we assume the entry value of y falls in [0, 1]. For any bounded target output y, we can always
scale it to satisfy such a requirement.

The results presented for linear neural networks here can be generalized to deep ReLU neural networks
by applying the results from Choromanska et al. (2015a) and Kawaguchi (2016), which transform
deep ReLU neural networks into deep linear neural networks under proper assumptions.

4.1 UNIFORM CONVERGENCE OF EMPIRICAL RISK GRADIENT

We first analyze the convergence of gradients for the DNN empirical and population risks. To our
best knowledge, these results are the first ones giving guarantees on gradient convergence, which help
better understand the landscape of DNNs and their optimization behavior. The results are stated blow.
Theorem 1. Suppose Assumption 1 on the input datum x holds and the activation functions in a
deep neural network are linear. Then the empirical gradient uniformly converges to the population
gradient in Euclidean norm. Specifically, there exist two universal constants cg′ and cg such that
if n ≥ cg′ max(l3r2r4

x/(cqs log(d/l)ε2τ4 log(1/ε)), s log(d/l)/(lτ2)) where cq =
√

max0≤i≤l di,
then

sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≤ εg , cgτωg

√
lcq

√
s log(dn/l) + log(12/ε)

n

holds with probability at least 1 − ε, where s denotes the number of nonzero entries of all weight
parameters and ωg = max

(
τr2l−1, r2l−1, rl−1

)
.
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From Theorem 1, one can observe that with an increasingly larger sample size n, the difference
between empirical risk and population risk gradients decreases monotonically at the rate of O(1/

√
n)

(up to a log factor). Theorem 1 also characterizes how the depth l contributes to obtaining small
difference between the empirical and population risk gradients. Specifically, a deeper neural network
needs more training samples to mitigate the difference. Also, due to the factor d, training a network
of larger size using gradient descent also requires more training samples. We observe a factor of√

maxi di (i.e. cq), which prefers a DNN architecture of balanced layer sizes (without extremely wide
layers). This result also matches the trend and empirical performance in deep learning applications
advocating deep but thin networks (He et al., 2016; Szegedy et al., 2015).

By observing Theorem 1, imposing certain regularizations on the weight parameters is useful. For
example, reducing the number of nonzero entries s encourages sparsity regularization like ‖w‖1.
The results also suggest not choosing large-magnitude weights w in order for a smaller factor r by
adopting regularization like ‖w‖22.

Theorem 1 also reveals the point derived from optimizing that the empirical and population risks have
similar properties when the sample size n is sufficiently large. For example, an ε/2-stationary point w̃
of Ĵn(w) is also an ε-stationary point of J(w) with probability 1−ε if n ≥ cε(τωg/ε)2lcqs log(d/l)
with cε being a constant. Here ε-stationary point for a function F means the point w satisfying
‖∇wF ‖2 ≤ ε. Understanding such properties is useful, since in practice one usually computes an
ε-stationary point of Ĵn(w). These results guarantee the computed point is at most a 2ε-stationary
point of J(w) and is thus close to the optimum.

4.2 UNIFORM CONVERGENCE OF STATIONARY POINTS

We then proceed to analyze the distribution and convergence properties of stationary points of the
DNN empirical risk. Here we consider non-degenerate stationary points which are geometrically
isolated and thus unique in local regions. Since degenerate stationary points are not unique in a local
region, we cannot expect to establish one-to-one corresponding relationship (see below) between
them in empirical risk and population risk.
Definition 1. (Non-degenerate stationary points) (Gromoll & Meyer, 1969) If a stationary point w
is said to be a non-degenerate stationary point of J(w), then it satisfies

inf
i

∣∣λi (∇2J(w)
)∣∣ ≥ ζ,

where λi
(
∇2J(w)

)
denotes the i-th eigenvalue of the Hessian∇2J(w) and ζ is a positive constant.

Non-degenerate stationary points include local minima/maxima and non-degenerate saddle points,
while degenerate stationary points refer to degenerate saddle points. Then we introduce the index of
non-degenerate stationary points which can characterize their geometric properties.
Definition 2. (Index of non-degenerate stationary points) (Dubrovin et al., 2012) The index of
a symmetric non-degenerate matrix is the number of its negative eigenvalues, and the index of a
non-degenerate stationary pointw of a smooth function F is simply the index of its Hessian∇2F (w).

Suppose that J(w) has m non-degenerate stationary points that are denoted as {w(1),
w(2), · · · ,w(m)}. We prove following convergence behavior of these stationary points.
Theorem 2. Suppose Assumption 1 on the input datum x holds and the activation functions in a deep
neural network are linear. Then if n ≥ ch max(l3r2r4

x/(cqs log(d/l)ε2τ4 log(1/ε)), s log(d/l)/ζ2)

where ch is a constant, for k ∈ {1, · · · ,m}, there exists a non-degenerate stationary point w(k)
n of

Ĵn(w) which corresponds to the non-degenerate stationary point w(k) of J(w) with probability at
least 1− ε. In addition, w(k)

n and w(k) have the same non-degenerate index and they satisfy

‖w(k)
n −w(k)‖2 ≤

2cgτωg
ζ

√
lcq

√
s log(dn/l) + log(12/ε)

n
, (k = 1, · · · ,m)

with probability at least 1− ε, where the parameters cq , ωg , and cg are given in Theorem 1.

Theorem 2 guarantees the one-to-one correspondence between the non-degenerate stationary points
of the empirical risk Ĵn(w) and the popular risk J(w). The distances of the corresponding pairs
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become smaller as n increases. In addition, the corresponding pairs have the same non-degenerate
index. This implies that the corresponding stationary points have the same geometric properties,
such as whether they are saddle points. Accordingly, we can develop more efficient algorithms,
e.g. escaping saddle points (Ge et al., 2015), since Dauphin et al. (2014) empirically proved that
saddle points are usually surrounded by high error plateaus. Also when n is sufficiently large, the
properties of stationary points of Ĵn(w) are similar to the points of the population risk J(w) in
the sense that they have exactly matching local minima/maxima and non-degenerate saddle points.
By comparing Theorems 1 and 2, we find that the requirement for sample number in Theorem 2
is more restrict, since establishing exact one-to-one correspondence between the non-degenerate
stationary points of Ĵn(w) and J(w) and bounding their uniform convergence rate to each other
are more challenging. From Theorems 1 and 2, we also notice that the uniform convergence rate of
non-degenerate stationary points has an extra factor 1/ζ. This is because bounding stationary points
needs to access not only the gradient itself but also the Hessian matrix. See more details in proof.

Kawaguchi (2016) pointed out that degenerate stationary points indeed exist for DNNs. However,
since degenerate stationary points are not isolated, such as forming flat regions, it is hard to establish
the unique correspondence for them as for non-degenerate ones. Fortunately, by Theorem 1, the
gradients at these points of Ĵn(w) and J(w) are close. This implies that a degenerate stationary
point of J(w) will also give a near-zero gradient for Ĵn(w), i.e., it is also a stationary point for
Ĵn(w).

In the proof, we consider the essential multi-layer architecture of the deep linear network, and do not
transform it into a linear regression model and directly apply existing results (see Loh & Wainwright
(2015) and Negahban et al. (2011)). This is because we care more about deep ReLU networks which
cannot be reduced in this way. Our proof technique is more suitable for analyzing the multi-layer
neural networks which paves a way for analyzing deep ReLU networks. Also such an analysis
technique can reveal the role of network parameters (dimension, norm, etc.) of each weight matrix
in the results which may benefit the design of networks. Besides, the obtained results are more
consistent with those for deep nonlinear networks (see Sec. 5).

4.3 UNIFORM CONVERGENCE, STABILITY AND GENERALIZATION OF EMPIRICAL RISK

Based on the above results, we can derive the uniform convergence of empirical risk to population
risk easily. In this subsection, we first give the uniform convergence rate of empirical risk for deep
linear neural networks in Theorem 3, and then use this result to derive the stability and generalization
bounds for DNNs in Corollary 1.
Theorem 3. Suppose Assumption 1 on the input datum x holds and the activation functions in a
deep neural network are linear. Then there exist two universal constants cf ′ and cf such that if
n ≥ cf ′ max(l3r4

x/(dls log(d/l)ε2τ4 log(1/ε)), s log(d/l)/(τ2dl)), then

sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣ ≤ εf , cfτ max

(√
dlτr

2l, rl
)√s log(dn/l) + log(8/ε)

n
(2)

holds with probability at least 1− ε. Here l is the number of layers in the neural network, n is the
sample size and dl is the dimension of the final layer.

From Theorem 3, when n→ +∞, we have |Ĵn(w)− J(w)| → 0. According to the definition of
uniform convergence (Vapnik & Vapnik, 1998; Shalev-Shwartz et al., 2010), under the distribution
D, the empirical risk of a deep linear neural network converges to its population risk uniformly at
the rate of O(1/

√
n). Theorem 3 also explains the roles of the depth l, the network size d, and the

number of nonzero weight parameters s in a DNN model.

Based on VC-dimension techniques, Bartlett & Maass (2003) proved that for a feedforward neural
network with polynomial activation functions and one-dimensional output, with probability at least

1 − ε the convergence bound satisfies |Ĵn(w) − inff J(w)| ≤ O(
√

(γ log2(n) + log(1/ε))/n).
Here γ is the shattered parameter and can be as large as the VC-dimension of the network model, i.e.
at the order ofO(ld log(d)+l2d) (Bartlett & Maass, 2003). Note that Bartlett & Maass (2003) did not
reveal the role of the magnitude of weight in their results. In contrast, our uniform convergence bound
is supw∈Ω |Ĵn(w)−J(w)| ≤ O(

√
(s log(dn/l) + log(1/ε))/n). So our convergence rate is tighter.
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Neyshabur et al. (2015) proved that the Rademacher complexity of a fully-connected neural network
model with ReLU activation functions and one-dimensional output is O

(
rl/
√
n
)

(see Corollary 2
in (Neyshabur et al., 2015)). Then by applying Rademacher complexity based argument (Shalev-
Shwartz & Ben-David, 2014a), we have | supf (Ĵn(w)−J(w))| ≤ O((rl +

√
log(1/ε))/

√
n) with

probability at least 1− ε where the loss function is the training error g = 1(v(l) 6=y) in which v(l) is
the output of the l-th layer in the network model f(w;x,y). The convergence rate in our theorem
is O(r2l

√
(s log(d/l) + log(1/ε))/n) and has the same convergence speed O(1/

√
n) w.r.t. sample

number n. Note that our convergence rate involves r2l since we use squared loss instead of the
training error in (Neyshabur et al., 2015). The extra parameters s and d are involved since we consider
the parameter space rather than the function hypothesis f in (Neyshabur et al., 2015), which helps
people more transparently understand the roles of the network parameters. Besides, the Rademacher
complexity cannot be applied to analyzing convergence properties of the empirical risk gradient and
stationary points as our techniques.

Based on Theorem 3, we proceed to analyze the stability property of the empirical risk and the
convergence rate of the generalization error in expectation. Let S = {(x(1),y(1)), · · · , (x(n),y(n))}
denote the sample set in which the samples are i.i.d. drawn from D. When the optimal solution
wn to problem (1) is computed by deterministic algorithms, the generalization error is defined as
εg = Ĵn(wn)− J(wn). But one usually employs randomized algorithms, e.g. stochastic gradient
descent (SGD), for computing wn. In this case, stability and generalization error in expectation
defined in Definition 3 are more applicable.

Definition 3. (Stability and generalization in expectation) (Vapnik & Vapnik, 1998; Shalev-Shwartz
et al., 2010; Gonen & Shalev-Shwartz, 2017) Assume a randomized algorithm A is employed,
((x′(1),y

′
(1)), · · · , (x

′
(n),y

′
(n))) ∼ D and wn = argminw Ĵn(w) is the empirical risk minimizer

(ERM). For every j ∈ [n], suppose wj
∗ = argminw

1
n−1

∑
i 6=j fi(w;x(i),y(i)). We say that the

ERM is on average stable with stability rate εk under distribution D if
∣∣∣ES∼D,A,(x′

(j)
,y′

(j)
)∼D

1
n

∑n
j=1

[
fj(w

j
∗;x
′
(j),y

′
(j))− fj(w

n;x′(j),y
′
(j))
]∣∣∣ ≤ εk. The ERM is said to have generalization

error with convergence rate εk′ under distribution D if we have
∣∣∣ES∼D,A

(
J(wn)− Ĵn(wn)

)∣∣∣ ≤
εk′ .

Stability measures the sensibility of the empirical risk to the input and generalization error measures
the effectiveness of ERM on new data. Generalization error in expectation is especially important for
applying DNNs considering their internal randomness, e.g. from SGD optimization. Now we present
the results on stability and generalization performance of deep linear neural networks.

Corollary 1. Suppose Assumption 1 on the input datum x holds and the activation functions in a
deep neural network are linear. Then with probability at least 1− ε, both the stability rate and the
generalization error rate of ERM of a deep linear neural network are at least εf :∣∣∣ES∼D,A,(x′

(j)
,y′

(j)
)∼D

1

n

n∑
j=1

(
f∗j − fj

) ∣∣∣ ≤ εf and
∣∣∣ES∼D,A

(
J(wn)− Ĵn(wn)

) ∣∣∣ ≤ εf ,
where f∗j and fj respectively denote fj(w

j
∗;x
′
(j),y

′
(j)) and fj(wn;x′(j),y

′
(j)), and εf is defined in

Eqn. (2).

According to Corollary 1, both the stability rate and the convergence rate of generalization error are
O(εf ). This result indicates that deep learning empirical risk is stable and its output is robust to small
perturbation over the training data. When n is sufficiently large, small generalization error of DNNs
is guaranteed.

5 RESULTS FOR DEEP NONLINEAR NEURAL NETWORKS

In the above section, we analyze the empirical risk optimization landscape for deep linear neural
network models. In this section, we extend our analysis to deep nonlinear neural networks which
adopt the sigmoid activation function. Our analysis techniques are also applicable to other third-order

7
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differentiable activation functions, e.g., tanh function with different convergence rate. Here we
assume the input data are i.i.d. Gaussian variables.

Assumption 2. The input datum x is a vector of i.i.d. Gaussian variables from N (0, τ2).

Since for any input, the sigmoid function always maps it to the range [0, 1]. Thus, we do not require
the input x to have bounded magnitude. Such an assumption is common. For instance, Tian (2017)
and Soudry & Hoffer (2017) both assumed that the entries in the input vector are from Gaussian
distribution. We also assumew ∈ Ω as in (Xu & Mannor, 2012). Here we also assume that the entry
value of the target output y falls in [0, 1]. Similar to the analysis of deep linear neural networks, here
we also aim to characterize the empirical risk gradient, stationary points and empirical risk for deep
nonlinear neural networks.

5.1 UNIFORM CONVERGENCE OF GRADIENT AND STATIONARY POINTS

Here we analyze convergence properties of gradients of the empirical risk for deep nonlinear neural
networks.

Theorem 4. Assume the input sample x obeys Assumption 2 and the activation functions in a deep
neural network are sigmoid functions. Then the empirical gradient uniformly converges to the
population gradient in Euclidean norm. Specifically, there are two universal constants cy and cy′
such that if n ≥ cy′cdl

3r2/(s log(d)τ2ε2 log(1/ε)) where cd=max0≤i≤l di, then with probability
at least 1− ε

sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≤ εl , τ

√
512

729
cyl(l + 2) (lcr + 1) cdcr

√
s log(dn/l) + log(4/ε)

n
,

where cr = max(r2/16,
(
r2/16

)l−1
), and s denotes the nonzero entry number of all weights.

Similar to deep linear neural networks, the layer number l, width di, number of nonzero parameter
entries s, network size d and magnitude of weights are all critical to the convergence rate. Also,
since there is a factor maxi di in the convergence rate, it is better to avoid choosing an extremely
wide layer. Interestingly, when analyzing the representation ability of deep learning, Eldan & Shamir
(2016) also suggested non-extreme-wide layers, though the conclusion was derived from a different
perspective. By comparing Theorems 1 and 4, one can observe that there is a factor (1/16)l−1 in the
convergence rate in Theorem 4. This is because the convergence rate accesses the Lipschitz constant
and when we bound it, sigmoid activation function brings the factor 1/16 for each layer.

Now we analyze the non-degenerate stationary points of the empirical risk for deep nonlinear neural
networks. Here we also assume that the population risk has m non-degenerate stationary points
denoted by {w(1),w(2), · · · ,w(m)}.
Theorem 5. Assume the input sample x obeys Assumption 2 and the activation functions in a
deep neural network are sigmoid functions. Then if n ≥ cs max

(
cdl

3r2/(s log(d)τ2ε2 log(1/ε)) ,
s log(d/l)/ζ2

)
where cs is a constant, for k ∈ {1, · · · ,m}, there exists a non-degenerate stationary

pointw(k)
n of Ĵn(w) which corresponds to the non-degenerate stationary pointw(k) of J(w) with

probability at least 1− ε. Moreover, w(k)
n and w(k) have the same non-degenerate index and they

obey∥∥∥w(k)
n −w(k)

∥∥∥
2
≤ 2τ

ζ

√
512

729
cyl(l + 2) (lcr + 1) cdcr

√
s log(dn/l) + log(4/ε)

n
, (k = 1, · · · ,m)

with probability at least 1− ε, where cy , cd and cr are the same parameters in Theorem 4.

According to Theorem 5, there is one-to-one correspondence between the non-degenerate stationary
points of Ĵn(w) and J(w). Also the corresponding pair has the same non-degenerate index, implying
they have exactly matching local minima/maxima and non-degenerate saddle points. When n is
sufficiently large, the non-degenerate stationary pointw(k)

n in Ĵn(w) is very close to its corresponding
non-degenerate stationary point w(k) in J(w). As for the degenerate stationary points, Theorem 4
guarantees the gradients at these points of J(w) and Ĵn(w) are very close to each other.

8
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5.2 UNIFORM CONVERGENCE, STABILITY AND GENERALIZATION OF EMPIRICAL RISK

Here we first give the uniform convergence analysis of the empirical risk and then analyze its stability
and generalization.

Theorem 6. Assume the input sample x obeys Assumption 2 and the activation functions in a deep
neural network are the sigmoid functions. If n ≥ 18l2r2/(s log(d)τ2ε2 log(1/ε)), then

sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣ ≤ εn , τ

√
9

8
cycd (1 + cr(l − 1))

√
s log(nd/l) + log(4/ε)

n
(3)

holds with probability at least 1−ε, where cy , cd and cr are given in Theorem 4.

From Theorem 6, we obtain that under the distribution D, the empirical risk of a deep nonlinear
neural network converges at the rate of O(1/

√
n) (up to a log factor). Theorem 6 also gives similar

results as Theorem 3, including the inclination of regularization penalty on weight and suggestion on
non-extreme-wide layers. Similar to linear networks, our risk convergence rate is also tighter than the
convergence rate on the networks with polynomial activation functions and one-dimensional output in
(Bartlett & Maass, 2003) since ours is at the order ofO(

√
(l − 1)(s log(dn/l) + log(1/ε))/n), while

the later is O(
√

(γ log2(n) + log(1/ε))/n) where γ is at the order of O(ld log(d) + l2d) (Bartlett
& Maass, 2003).

We then establish the stability property and the generalization error of the empirical risk for nonlinear
neural networks. By Theorem 6, we can obtain the following results.

Corollary 2. Assume the input sample x obeys Assumption 2 and the activation functions in a deep
neural network are sigmoid functions. Then with probability at least 1− ε, we have∣∣∣ES∼D,A,(x′

(j)
,y′

(j)
)∼D

1

n

n∑
j=1

(
f∗j − fj

) ∣∣∣ ≤ εn and
∣∣∣ES∼D,A

(
J(wn)− Ĵn(wn)

) ∣∣∣ ≤ εn,
where εn is defined in Eqn. (3). The notations f∗j and fj here are the same in Corollary 1.

By Corollary 2, we know that both the stability convergence rate and the convergence rate of
generalization error are O(1/

√
n). This result accords with Theorems 8 and 9 in (Shalev-Shwartz

et al., 2010) which impliesO(1/
√
n) is the bottleneck of the stability and generalization convergence

rate for generic learning algorithms. From this result, we have that if n is sufficiently large, the
empirical risk can be expected to be very stable. This also dispels misgivings of the random selection
of training samples in practice. Such a result indicates that the deep nonlinear neural network can
offer good performance on testing data if it achieves small training error.

6 PROOF ROADMAP

Here we briefly introduce our proof roadmap. Due to space limitation, all the proofs of Theorems 1
∼ 6 and Corollaries 1 and 2 as well as technical lemmas are deferred to the supplementary material.

The proofs of Theorems 1 and 4 are similar but essentially differ in some techniques
for bounding probability due to their different assumptions. For explanation simplic-
ity, we define four events: E = {supw∈Ω ‖∇Ĵn(w) − ∇J(w)‖2 > t}, E1 =
{supw∈Ω ‖ 1

n

∑n
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)
‖2 > t/3}, E2 = {supwikw∈Ni, i∈[l]

‖ 1
n

∑n
i=1∇f(wkw ,x(i)) − E∇f(wkw ,x)‖2 > t/3}, and E3 = {supw∈Ω ‖E∇f(wkw ,x)

−E∇f(w,x)‖2> t/3}, where wkw = [w1
kw

;w2
kw

; · · · ;wl
kw

] is constructed by selecting wi
kw
∈

Rdidi−1 from didi−1ε/d-net Ni such that ‖w −wkw‖2 ≤ ε. Note that in Theorems 1 and 4, t is
respectively set to εg and εl. Then we have P(E) ≤ P(E1) + P(E2) + P(E3). So we only need to
separately bound P(E1), P(E2) and P(E3). For P(E1) and P(E3), we use the gradient Lipschitz
constant and the properties of ε-net to prove P(E1) ≤ ε/2 and P(E3) = 0, while bounding P(E2)
needs more efforts. Here based on the assumptions, we prove that P(E2) has sub-exponential tail
associated to the sample number n and the networks parameters, and it satisfies P(E2) ≤ ε/2 with
proper conditions. Finally, combining the bounds of the three terms, we obtain the desired results.

9
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To prove Theorems 2 and 5, we first prove the uniform convergence of the empirical Hessian
to its population Hessian. Then, we define such a set D = {w ∈ Ω : ‖∇J(w)‖2 < ε and
infi

∣∣λi (∇2J(w)
)∣∣ ≥ ζ}. In this way, D can be decomposed into countably components, with

each component containing either exactly one or zero non-degenerate stationary point. For each
component, the uniform convergence of gradient and the results in differential topology guarantee
that if J(w) has no stationary points, then Ĵn(w) also has no stationary points and vise versa.
Similarly, for each component, the uniform convergence of Hessian and the results in differential
topology guarantee that if J(w) has a unique non-degenerate stationary point, then Ĵn(w) also has a
unique non-degenerate stationary point with the same index. After establishing exact correspondence
between the non-degenerate stationary points of empirical risk and population risk, we use the
uniform convergence of gradient and Hessian to bound the distance between the corresponding pairs.

We adopt a similar strategy to prove Theorems 3 and 6. Specifically, we divide the event
supw∈Ω|Ĵn(w)−∇J(w)| > t into E1, E2 and E3 which have the same forms as their counterparts
in the proofs of Theorem 1 with the gradient replaced by the loss function. To prove P(E1) ≤ ε/2
and P(E3) = 0, we can use the Lipschitz constant of the loss function and the ε-net properties. The
remaining is to prove P(E2). We also prove that it has sub-exponential tail associated to the sample
number n and the networks parameters and it obeys P(E2) ≤ ε/2 with proper conditions. Then we
utilize the uniform convergence of Ĵn(w) to prove the stability and generalization bounds of Ĵn(w)
(i.e. Corollaries 1 and 2).

7 CONCLUSION

In this work, we provided theoretical analysis on the landscape of empirical risk optimization for
deep linear/nonlinear neural networks with (stochastic-)gradient descent, including the properties
of the gradient and stationary points of empirical risk as well as the uniform convergence, stability,
and generalization of the empirical risk itself. To our best knowledge, most of the results are new to
deep learning community. These results also reveal that the depth l, the nonzero entry number s of
all weights, the network size d and the width of a network are critical to the convergence rates. We
also prove that the weight parameter magnitude is important to the convergence rate. Indeed, small
magnitude of the weights is suggested. All the results are consistent with the widely used network
architectures in practice.
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SUPPLEMENTARY MATERIAL OF EMPIRICAL RISK LANDSCAPE ANALYSIS FOR
UNDERSTANDING DEEP NEURAL NETWORKS

A STRUCTURE OF THIS DOCUMENT

This document gives some other necessary notations and preliminaries for our analysis in Sec. B.
Then we prove Theorems 1∼ 3 and Corollary 1 for deep linear neural networks in Sec. C. Then we
present the proofs of Theorems 4 ∼ 6 and Corollary 2 for deep nonlinear neural networks in Sec. D.

In both Sec. C and D, we first present the technical lemmas for proving our final results and
subsequently present the proofs of these lemmas. Then we utilize these technical lemmas to prove
our desired results. Finally, we give the proofs of other auxiliary lemmas.

B NOTATIONS AND PRELIMINARY TOOLS

Beyond the notations introduced in the manuscript, we need some other notations used in this
document. Then we introduce several lemmas that will be used later.

B.1 NOTATIONS

Throughout this document, we use 〈·, ·〉 to denote the inner product. A⊗C denotes the Kronecker
product betweenA and C. Note thatA and C inA⊗C can be matrices or vectors. For a matrix

A ∈ Rn1×n2 , we use ‖A‖F =
√∑

i,jA
2
ij to denote its Frobenius norm, whereAij is the (i, j)-th

entry ofA. We use ‖A‖op = maxi |λi(A)| to denote the operation norm of a matrixA ∈ Rn1×n1 ,
where λi(A) denotes the i-th eigenvalue of the matrixA. For a 3-way tensor A ∈ Rn1×n2×n3 , its
operation norm is computed as

‖A‖op = sup
‖λ‖2≤1

〈
λ⊗

3

,A
〉

=
∑
i,j,k

Aijkλiλjλk,

where Aijk denotes the (i, j, k)-th entry of A. Also we denote the vectorization ofW (j) (the weight
matrix of the j-th layer) as

w(j) = vec
(
W (j)

)
∈ Rdjdj−1 .

We denote Ik as the identity matrix of size k × k.

For notational simplicity, we further define e , v(l) − y as the output error vector. Then the squared
loss is defined as f(w;x,y) = 1

2‖e‖
2
2, where w = (w(1); · · · ;w(l)) ∈ Rd contains all the weight

parameters.

B.2 TECHNICAL LEMMAS

We first introduce Lemmas 1 and 2 which are respectively used for bounding the `2-norm of a vector
and the operation norm of a matrix. Then we introduce Lemmas 3 and 4 which discuss the topology
of functions. In Lemma 5, we give the relationship between the stability and generalization of
empirical risk.
Lemma 1. (Vershynin, 2012) For any vector x ∈ Rd, its `2-norm can be bounded as

‖x‖2 ≤
1

1− ε
sup
λ∈λε

〈λ,x〉 .

where λε = {λ1, . . . ,λkw} be an ε-covering net of Bd(1).
Lemma 2. (Vershynin, 2012) For any symmetric matrix X ∈ Rd×d, its operator norm can be
bounded as

‖X‖op ≤
1

1− 2ε
sup
λ∈λε

|〈λ,Xλ〉| .

where λε = {λ1, . . . ,λkw} be an ε-covering net of Bd(1).
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Lemma 3. (Mei et al., 2017) Let D ⊆ Rd be a compact set with a C2 boundary ∂D, and f, g :
A → R be C2 functions defined on an open set A, with D ⊆ A. Assume that for all w ∈ ∂D
and all t ∈ [0, 1], t∇f(w) + (1 − t)∇g(w) 6= 0. Finally, assume that the Hessian ∇2f(w) is
non-degenerate and has index equal to r for all w ∈ D. Then the following properties hold:

(1) If g has no critical point in D, then f has no critical point in D.

(2) If g has a unique critical pointw in D that is non-degenerate with an index of r, then f also has
a unique critical point w′ in D with the index equal to r.

Lemma 4. (Mei et al., 2017) Suppose that F (w) : Θ→ R is a C2 function where w ∈ Θ. Assume
that {w(1), . . . , w(m)} is its non-degenerate critical points and let D = {w ∈ Θ : ‖∇F (w)‖2 <
ε and infi

∣∣λi (∇2F (w)
)∣∣ ≥ ζ}. Then D can be decomposed into (at most) countably components,

with each component containing either exactly one critical point, or no critical point. Concretely,
there exist disjoint open sets {Dk}k∈N, with Dk possibly empty for k ≥ m+ 1, such that

D = ∪∞k=1Dk .

Furthermore, w(k) ∈ Dk for 1 ≤ k ≤ m and each Di, k ≥ m+ 1 contains no stationary points.
Lemma 5. (Shalev-Shwartz & Ben-David, 2014b; Gonen & Shalev-Shwartz, 2017) Assume that
D is a sample distribution and randomized algorithm A is employed for optimization. Suppose
that ((x′(1),y

′
(1)), · · · , (x

′
(n),y

′
(n))) ∼ D and wn = argminw Ĵn(w). For every j ∈ {1, · · · , n},

suppose wj
∗ = argminw

1
n−1

∑
i 6=j fi(w;x(i),y(i)). For arbitrary distribution D, we have∣∣∣∣∣∣ES∼D,A,(x′

(j)
,y′

(j)
)∼D

1

n

n∑
j=1

(
f∗j − fj

)∣∣∣∣∣∣ =

∣∣∣∣∣ES∼D,A

(
J(wn)− Ĵn(wn)

) ∣∣∣∣∣.
where f∗j and fj respectively denote fj(w

j
∗;x
′
(j),y

′
(j)) and fj(wn;x′(j),y

′
(j)).

C PROOFS FOR DEEP LINEAR NEURAL NETWORKS

In this section, we first present the technical lemmas in Sec. C.1 and then we give the proofs of
these lemmas in Sec. C.2. Next, we utilize these lemmas to prove the results in Theorems 1∼ 3 and
Corollary 1 in Sec. C.3. Finally, we give the proofs of other lemmas in Sec. C.4.

C.1 TECHNICAL LEMMAS

Here we present the technical lemmas for proving our desired results. For brevity, we also define
Bj:s as follows:

Bs:t ,W
(s)W (s−1) · · ·W (t) ∈ Rds×dt−1 , (s ≥ t); Bs:t , I, (s < t). (4)

Lemma 6. Assume that the activation functions in the deep neural network f(w,x) are linear
functions. Then the gradient of f(w,x) with respect to w(j) can be written as

∇w(j)
f(w,x) =

(
(Bj−1:1x)⊗BT

l:j+1

)
e, (j = 1, · · · , l),

where ⊗ denotes the Kronecke product. Then we can compute the Hessian matrix as follows:

∇2f(w,x) =


∇w(1)

(
∇w(1)

f(w,x)
)
· · · ∇w(1)

(
∇w(l)

f(w,x)
)

∇w(2)

(
∇w(1)

f(w,x)
)
· · · ∇w(2)

(
∇w(l)

f(w,x)
)

...
. . .

...
∇w(l)

(
∇w(1)

f(w,x)
)
· · · ∇w(l)

(
∇w(l)

f(w,x)
)
 ,

whereQst , ∇w(s)

(
∇w(t)

f(w,x)
)

is defined as

Qst=


(
BT
t−1:s+1

)
⊗
(
Bs−1:1xe

TBT
l:t+1

)
+
(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
, if s<t,(

Bs−1:1xx
TBs−1:1

)
⊗
(
Bl:s+1

TBl:s+1

)
, if s= t,(

BT
l:s+1ex

TBT
t−1:1

)
⊗Bs−1:t+1+

(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
, if s>t.
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Lemma 7. Suppose Assumption 1 on the input data x holds and the activation functions in deep
neural network are linear functions. Then for any t > 0, the objective f(w,x) obeys

P

(
1

n

n∑
i=1

(
f(w,x(i))−E(f(w,x(i)))

)
>t

)
≤ 2 exp

−cf ′nmin

 t2

ω2
f max

(
dlω2

fτ
4, τ2

) , t

ω2
fτ

2

 ,

where cf ′ is a positive constant and ωf = rl.
Lemma 8. Suppose Assumption 1 on the input data x holds and the activation functions in deep
neural network are linear functions. Then for any t > 0 and arbitrary unit vector λ ∈ Sd−1, the
gradient∇f(w,x) obeys

P

(
1

n

n∑
i=1

(〈
λ,∇wf(w,x(i))−E∇wf(w,x(i))

〉)
>t

)

≤ 3 exp

(
−cg′nmin

(
t2

lmax (ωgτ2, ωgτ4, ωg′τ2)
,

t√
lωg max (τ, τ2)

))
,

where cg′ is a constant; ωg = cqr
2(2l−1) and ωg′ = cqr

2(l−1) in which cq =
√

max0≤i≤l di.
Lemma 9. Suppose Assumption 1 on the input data x holds and the activation functions in deep
neural network are linear functions. Then for any t > 0 and arbitrary unit vector λ ∈ Sd−1, the
Hessian∇2f(w,x) obeys

P

(
1

n

n∑
i=1

(〈
λ, (∇2

wf(w,x(i))− E∇2
wf(w,x(i)))λ

〉)
> t

)

≤ 5 exp

(
−ch′nmin

(
t2

τ2l2 max (ωg, ωgτ2, ωh)
,

t
√
ωglmax (τ, τ2)

))
,

where ωg = r4(l−1) and ωh = r2(l−2).
Lemma 10. Suppose the activation functions in deep neural network are linear functions. Then for
any w ∈ Bd(r) and x ∈ Bd0(rx), we have

‖∇wf(w,x)‖2 ≤
√
αg, where αg = ctlr

4
xr

4l−2.

in which ct is a constant. Further, for any w ∈ Bd(r) and x ∈ Bd0(rx), we also have∥∥∇2f(w,x)
∥∥

op ≤
∥∥∇2f(w,x)

∥∥
F
≤ l
√
αl, where αl , ct′r

4
xr

4l−2.

in which ct′ is a constant. With the same condition, we can bound the operation norm of ∇3f(w,x).
That is, there exists a universal constant αp such that

∥∥∇3f(w,x)
∥∥

op ≤ αp.

Lemma 11. Suppose Assumption 1 on the input data x holds and the activation functions in deep neu-
ral network are linear functions. Then there exist two universal constant cg and ch such that the sam-
ple Hessian converges uniformly to the population Hessian in operator norm. Specifically, there exit

two universal constants ch1
and ch2

such that if n ≥ ch2
max(

α2
pr

2

τ2l2ω2
hε

2s log(d/l)
, s log(d/l)/(lτ2)),

then

sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≤ch1τ lωh

√
d log(nl)+log(20/ε)

n

holds with probability at least 1− ε, where ωh = max
(
τr2(l−1), r2(l−2), rl−2

)
.

C.2 PROOFS OF TECHNICAL LEMMAS

To prove the above lemmas, we first introduce some useful results.
Lemma 12. (Rudelson & Vershynin, 2013) Assume that x = (x1;x2; · · · ;xk) ∈ Rk is a random
vector with independent components xi which have zero mean and are independent τ2

i -sub-Gaussian
variables. Here maxi τ

2
i ≤ τ2. LetA be an k × k matrix. Then we have

E exp

λ
 ∑
i,j:i 6=j

Aijxixj − E(
∑
i,j:i 6=j

Aijxixj)

 ≤ exp
(
2τ2λ2‖A‖2F

)
, |λ| ≤ 1/(2τ‖A‖2).
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Lemma 13. Assume that x = (x1;x2; · · · ;xk) ∈ Rk is a random vector with independent compo-
nents xi which have zero mean and are independent τ2

i -sub-Gaussian variables. Here maxi τ
2
i ≤ τ2.

Let a be an n-dimensional vector. Then we have

E exp

(
λ

(
k∑
i=1

aix
2
i − E

(
k∑
i=1

aix
2
i

)))
≤ E exp

(
128λ2τ4

(
k∑
i=1

a2
i

))
, |λ| ≤ 1

τ2 maxi ai
.

Lemma 14. ForBj:t defined in Eqn. (4), we have the following properties:

‖Bs:t‖op ≤ ‖Bs:t‖F ≤ ωr and ‖Bl:1‖op ≤ ‖Bl:1‖F ≤ ωf ,

where ωr = rs−t+1 ≤ max
(
r, rl

)
and ωf = rl.

Lemma 13 is useful for bounding probability. The two inequalities in Lemma 14 can be obtained by
using ‖w(j)‖2 ≤ r (∀j = 1, · · · , l). We defer the proofs of Lemmas 13 and 14 to Sec. C.4.2.

C.2.1 PROOF OF LEMMA 6

Proof. When the activation functions are linear functions, we can easily compute the gradient of
f(w,x) with respect to w(j):

∇w(j)
f(w,x) =

(
(Bj−1:1x)⊗BT

l:j+1

)
e, (j = 1, · · · , l),

where ⊗ denotes the Kronecker product. Now we consider the computation of the Hessian matrix.
For brevity, letQs =

(
(Bs−1:1x)⊗BT

l:s+1

)
. Then we can compute∇2

w(s)
f(w,x) as follows:

∇2
w(s)

f(w,x) =
∂2f(w,x)

∂wT
(s)∂w(s)

=
∂2f(w,x)

∂wT
(s)∂w(s)

=
∂(Qse)

∂wT
(s)

=
∂vec (Qse)

∂wT
(s)

=
∂vec

(
QsBl:s+1W

(t)Bs−1:1x
)

∂wT
(s)

=
∂
(
(Bs−1:1x)T ⊗ (QsBl:s+1)

)
vec

(
W (s)

)
∂wT

(s)

=(Bs−1:1x)T ⊗
((

(Bs−1:1x)⊗BT
l:s+1

)
Bl:s+1

)
¬
=(Bs−1:1x)T ⊗

(
(Bs−1:1x)⊗

(
BT
l:s+1Bl:s+1

))
­
=
(
(Bs−1:1x)T ⊗ (Bs−1:1x)

)
⊗
(
BT
l:s+1Bl:s+1

)
®
=
(
(Bs−1:1x)(Bs−1:1x)T

)
⊗
(
BT
l:s+1Bl:s+1

)
,

where ¬ holds since Bj−1:1x is a vector and for any vector x, we have (x⊗A)B = x⊗ (AB).
­ holds because for any four matrices Z1 ∼ Z3 of proper sizes, we have (Z1 ⊗ Z2) ⊗ Z3 =
Z1 ⊗ (Z2 ⊗ Z3). ® holds because for any two matrices z1, z2 of proper sizes, we have z1z

T
2 =

z1 ⊗ zT2 = zT2 ⊗ z1.

Then, we consider the case s > t:

∇w(t)

(
∇w(s)

f(w,x)
)

=
∂2f(w,x)

∂wT
(t)∂w(s)

=
∂2f(w,x)

∂wT
(t)∂w(s)

=
∂(Qse)

∂wT
(t)

=
∂vec (Qse)

∂wT
(t)

=
∂vec

(
QsBl:t+1W

(t)Bt−1:1x
)

∂wT
(t)

+
∂vec

((
(Bs−1:1x)⊗BT

l:s+1

)
e
)

∂wT
(t)

.

Notice, here we just think thatQs in the
∂vec(QsBl:t+1W

(t)Bt−1:1x)
∂wT

(t)

is a constant matrix and is not

related toW (t). Similarly, we also take e in
∂vec(((Bs−1:1x)⊗BTl:s+1)e)

∂wT
(t)

as a constant vector. Since

we have

∂vec
(
QsBl:t+1W

(t)Bt−1:1x
)

∂wT
(t)

=
(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
,
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we only need to consider

∂vec
((

(Bs−1:1x)⊗BT
l:s+1

)
e
)

∂wT
(t)

=
∂vec

(
(Bs−1:1x)⊗

(
BT
l:s+1e

))
∂wT

(t)

=
∂vec

(
(Bs−1:1x)

(
BT
l:s+1e

)T)
∂wT

(t)

=
∂vec

(
Bs−1:t+1W

(t)
(
Bt−1:1xe

TBl:s+1

))
∂wT

t

=
∂
(
Bt−1:1xe

TBl:s+1

)T ⊗Bs−1:t+1vec
(
W (t)

)
∂wT

t

=
(
Bt−1:1xe

TBl:s+1

)T ⊗Bs−1:t+1.

Therefore, for s > t, by combining the above two terms, we can obtain

∇w(t)

(
∇w(s)

f(w,x)
)

=
(
BT
l:s+1ex

TBT
t−1:1

)
⊗Bs−1:t+1+

(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
.

Then, by similar method, we can compute the Hessian for the case s < t as follows:

∇w(t)

(
∇w(s)

f(w,x)
)

=
(
BT
t−1:s+1

)
⊗
(
Bs−1:1xe

TBT
l:t+1

)
+
(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
.

The proof is completed.

C.2.2 PROOF OF LEMMA 7

Proof. We first prove that v(l), which is defined in Eqn. (5), is sub-Gaussian.

v(l) = W (l) · · ·W (1)x = Bl:1x. (5)

Then by the convexity in λ of exp(λt) and Lemma 14, we can obtain

E
(

exp
(〈
λ,v(l) − E(v(l))

〉))
=E (exp (〈λ,Bl:1x− EBl:1x〉))

≤E
(
exp

(〈
BT
l:1λ,x

〉))
≤ exp

(
‖BT

l:1λ‖22τ2

2

)
¬
≤ exp

(
ω2
fτ

2‖λ‖22
2

)
,

(6)

where ¬ uses the conclusion that ‖Bl:1‖op ≤ ‖Bl:1‖F ≤ ωf in Lemma 14. This means that v(l) is
centered and is ω2

fτ
2-sub-Gaussian. Accordingly, we can obtain that the k-th entry of v(l) is also

zkτ
2-sub-Gaussian, where zk is a universal positive constant. Note that maxk zk ≤ ω2

f . Let v(l)
i

17



Published as a conference paper at ICLR 2018

denotes the output of the i-th sample x(i). By Lemma 13, we have that for s > 0,

P

(
1

n

n∑
i=1

(
‖v(l)

i ‖
2
2 − E‖v(l)

i ‖
2
2

)
>
t

2

)
= P

(
s

n∑
i=1

(
‖v(l)

i ‖
2
2 − E‖v(l)

i ‖
2
2

)
>
nst

2

)
¬
≤ exp

(
−snt

2

)
E

(
s

n∑
i=1

(
‖v(l)

i ‖
2
2 − E‖v(l)

i ‖
2
2

))
­
≤ exp

(
−snt

2

) n∏
i=1

E
(
s
(
‖v(l)

i ‖
2
2 − E‖v(l)

i ‖
2
2

))
®
≤ exp

(
−snt

2

) n∏
i=1

exp
(
128dls

2ω4
fτ

4
)
|s| ≤ 1

ω2
fτ

2

¯
≤ exp

(
−c′nmin

(
t2

dlω4
fτ

4
,

t

ω2
fτ

2

))
.

Note that ¬ holds because of Chebyshev’s inequality. ­ holds since x(i) are independent. ® is
established by applying Lemma 13. We have ¯ by optimizing s. Since v(l) is sub-Gaussian, we have

P

(
1

n

n∑
i=1

(
yTv

(l)
i − EyTv(l)

i

)
>
t

2

)
≤P

(
s

n∑
i=1

(
yTv

(l)
i − EyTv(l)

i

)
>
nst

2

)

≤ exp

(
−nst

2

)
E exp

(
s

n∑
i=1

(
yTv

(l)
i − EyTv(l)

i

))

≤ exp

(
−nst

2

) n∏
i=1

E exp
(
s
(
yTv

(l)
i − EyTv(l)

i

))
¬
≤ exp

(
−nst

2

) n∏
i=1

exp

(
ω2
fτ

2s2‖y‖22
2

)
­
≤ exp

(
− nt2

8ω2
fτ

2‖y‖22

)
,

where ¬ holds because of Eqn. (6) and we have ­ since we optimize s.

Since the loss function f(w,x) is defined as f(w,x) = ‖v(l) − y‖22, we have

f(w,x)− E(f(w,x))=‖v(l) − y‖22−E(‖v(l)−y‖22)=
(
‖v(l)‖22−E‖v(l)‖22

)
+
(
yTv(l)−EyTv(l)

)
.

Therefore, we have

P

(
1

n

n∑
i=1

(
f(w,x(i))− E(f(w,x(i)))

)
> t

)

≤P

(
1

n

n∑
i=1

(
‖v(l)

i ‖
2
2 − E‖v(l)

i ‖
2
2

)
>
t

2

)
+ P

(
1

n

n∑
i=1

(
yTv

(l)
i − EyTv(l)

i

)
>
t

2

)

≤2 exp

(
−cf ′nmin

(
t2

dlω4
fτ

4
,
t2

ω2
fτ

2
,

t

ω2
fτ

2

))
.

where cf ′ is a constant. Note that ‖y‖22 is the label of x, then it can also be bounded. The proof is
completed.

C.2.3 PROOF OF LEMMA 8

Proof. For brevity, letQj denote ∇w(j)
f(w,x). Then, by Lemma 6 we have

∇w(j)
f(w) =

(
(Bj−1:1x)⊗BT

l:j+1

)
e

¬
= (Bj−1:1x)⊗(BT

l:j+1e)
­
=
(
Bj−1:1 ⊗BT

l:j+1

)
(x⊗ e) ,

(7)
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where ¬ holds since Bj−1:1x is a vector, and ­ holds because for any four matrices Z1 ∼ Z4 of
proper sizes, we have (Z1Z3)⊗(Z2Z4) = (Z1⊗Z2)(Z3⊗Z4). Note that e = v(l)−y = Bl:1x−y.
Then we know that the i-th entryQi

j has the formQi
j =

∑
p,q z

ij
pqxpxq +

∑
p y

ij
p xp + rij (Step 1

blow will give the detailed analysis) where xp denotes the p-th entry in x. Note that zijpq, y
ij
p and rij

are constants and independent on x.

We divide λ ∈ R
∑l
j=1 djdj−1 into λ = (λ1; · · · ;λl) where λj ∈ Rdjdj−1 . Let λij denote the i-th

entry in λj . Accordingly, we have

E , 〈λ,∇wf(w,x)− E∇wf(w,x)〉 =

l∑
j=1

〈λj ,Qj − EQj〉 = E1 +E2 +E3,

where E1,E2, and E3 are defined as

E1=
∑

p,q:p6=q

 l∑
j=1

djdj−1∑
i=1

λijz
ij
pq

 (xpxq − Expxq) , E2 =
∑
p

 l∑
j=1

djdj−1∑
i=1

λijz
ij
pp

(x2
p − Ex2

p

)
,

E3 =
∑
p

 l∑
j=1

djdj−1∑
i=1

λijy
ij
p

 (xp − Exp) . (8)

Thus, we can further separate the event as:

P (E > t) ≤ P

(
1

n

n∑
k=1

Ek
1 >

t

3

)
+P

(
1

n

n∑
k=1

Ek
2 >

t

3

)
+P

(
1

n

n∑
k=1

Ek
3 >

t

3

)
.

Thus, to prove our conclusion, we can respectively establish the upper bounds of the three events.
To the end, for each input sample x(i), we divide its corresponding Qj − EQj into E1, E2 and
E3. Then we bound the three events separately. Before that, we first give several equalities. Since
Bj:s = W (j)W (j−1) · · ·W (s) (j ≥ s), by Lemma 14 we have

‖Bj:s‖2F ≤ r2(j−s+1) and ‖Bl:t+1‖2F ‖Bt−1:s+1‖2F ‖Bs−1:1‖2F ≤ r
2(l−2), (9)

These two inequalities can be obtained by using ‖W (i)‖2F = ‖w(i)‖22 ≤ r2.

Step 1. DivideQj −EQj : Note that e = v(l)−y = Bl:1x−y. LetHj = Bj−1:1⊗BT
l:j+1. Then

we can further write Eqn. (7) as
Qj = ∇w(j)

f(w) = Hj (x⊗ (Bl:1x)− x⊗ y) = Hj ((Id0
⊗Bl:1) (x⊗ x)− x⊗ y) , (10)

where Id0
∈ Rd0×d0 is the identity matrix. According to Eqn. (10), we can write the i-th entry of

Qj as the form Qi
j =

∑
p,q z

ij
pqxpxq +

∑
p y

ij
p xp + rij where xp denotes the p-th entry in x. Let

Zj = Hj (Id0
⊗Bl:1) ∈ Rdjdj−1×d2

0 . Then, we know that the i-th entry Qij = Z(i, :)x′, where
x′ = x ⊗ x = [x1x;x2x; · · · ,xd0x] ∈ Rd2

0 . In this way, we have zijpq = Zj(i, (p − 1)d0 + q)
which further implies ∑

p,q

(zijpq)
2 ≤ cq‖Zj(i, :)‖22, (11)

where cq =
√

max0≤i≤l di.

We divide the i-th row Hj(i, :) into Hj(i, :) = [H1
ji,H

2
ji, · · · ,H

d0
ji ] where Hp

ji ∈ R1×dl . Then
we have yijp = yTHp

ji. This yields∑
p

(yijp )2 ≤ cq
∑
p

(yTHp
ji)

2 ≤ cq
∑
p

‖y‖22‖H
p
ji‖

2
2 = cq‖y‖22‖Hj(i, :)‖22. (12)

Let λij denote the i-th entry of λj . Then, by Eqn. (8), we can obtain∑
j

〈λj , (Qj − E(Qj))〉 =
∑

p,q:p 6=q

apq (xpxq − Expxq)+
∑
p

app
(
x2
p − Ex2

p

)
+
∑
p

bp (xp − Exp)

= E1 +E2 +E3,
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where apq and bp are defined as

apq =

l∑
j=1

djdj−1∑
i=1

λijz
ij
pq and bp =

l∑
j=1

djdj−1∑
i=1

λijy
ij
p .

Note that for any four matrices of proper sizes, we have (Q1⊗Q2)(Q3⊗Q4) = (Q1Q3)⊗(Q2Q4),
indicating Zj =

(
Bj−1:1 ⊗BT

l:j+1

)
(Id0

⊗Bl:1) = Bj−1:1 ⊗
(
BT
l:j+1Bl:1

)
. This gives

cq‖Zj‖2F ≤ cq‖Bj−1:1‖2F ‖Bl:j+1‖2F ‖Bl:1‖2F
¬
≤ cqr2(l−1)r2l = cqr

2(2l−1) , ω. (13)

Note that Eqn. (13) uses the conclusion in Eqn. (9). Therefore, we can have the following bound:

djdj−1∑
i=1

(zijpq)
2 ≤

djdj−1∑
i=1

∑
p,q

(zijpq)
2

¬
≤ cq

djdj−1∑
i=1

‖Zj(i, :)‖22 = cq‖Zj‖2F ≤ ω, (14)

where ¬ uses Eqn. (11). Then we can utilize Eqn. (14) and
∑l
j=1

(∑djdj−1

i=1 (λij)
2
)

= 1 to bound
apq as follows:

a2
pq ≤ l

 l∑
j=1

djdj−1∑
i=1

λijz
ij
pq

2
 ≤ l l∑

j=1

djdj−1∑
i=1

(λij)
2

djdj−1∑
i=1

(zijpq)
2

 ≤ lω.
which further gives

∑
p,q

a2
pq ≤ l

l∑
j=1

djdj−1∑
i=1

(λij)
2

djdj−1∑
i=1

∑
p,q

(zijpq)
2

 ¬
≤ lω.

where ¬ uses Eqn. (14).

Similarly, we can obtain

djdj−1∑
i=1

(yijp )2 ≤
djdj−1∑
i=1

cq‖y‖22‖Hj(i, :)‖22 = cq‖y‖22‖Hj‖2F ≤ cq‖y‖22r2(l−1). (15)

So we can bound bp as

b2p ≤ l
l∑

j=1

djdj−1∑
i=1

λijy
ij
p

2

≤ l
l∑

j=1

djdj−1∑
i=1

(λij)
2

djdj−1∑
i=1

(yijp )2

 ≤ lω′,
where ω′ = cq‖y‖22r2(l−1). Accordingly, we can have

∑
p

b2p ≤ l
l∑

j=1

djdj−1∑
i=1

(λij)
2

djdj−1∑
i=1

∑
p

(yijp )2

 ¬
≤ lω′,

where ¬ uses (15).
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Step 2. Bound P(E1 > t/3), P(E2 > t/3) and P(E3 > t/3): Let Ek
h1 denotes the Eh1 which

corresponds to the k-th sample x(k). Therefore, we can bound

P

(
1

n

n∑
k=1

Ek
1 >

t

3

)
=P

s n∑
k=1

 ∑
p,q:p 6=q

akpq
(
xkpx

k
q − Exkpxkq

) >
snt

3


¬
≤ exp

(
−nst

3

)
E exp

s n∑
k=1

 ∑
p,q:p 6=q

akpq
(
xkpx

k
q − Exkpxkq

)
­
≤ exp

(
−nst

3

) n∏
k=1

E exp

s
 ∑
p,q:p 6=q

akpq
(
xkpx

k
q − Exkpxkq

)
®
≤ exp

(
−nst

3

) n∏
k=1

exp

2τ2s2
∑

p,q:p 6=q

(akpq)
2

 |s| ≤ 1

2τ
√
lω

≤ exp

(
−nst

3

) n∏
j=1

exp
(
2τ2s2lω

)
¯
≤ exp

(
−c′nmin

(
t2

ωlτ2
,

t√
lωτ

))
,

where ¬ holds because of Chebyshev’s inequality. ­ holds since x(i) are independent. ® is
established by applying Lemma 12. We have ¯ by optimizing s. Similarly, by Lemma 13 we can
bound P

(
1
n

∑n
k=1E

k
2 >

t
3

)
as follows:

P

(
1

n

n∑
k=1

Ek
2 >

t

3

)
≤ exp

(
−nst

3

) n∏
k=1

E exp

(
s

(∑
p

akpp
(
(xkp)2 − E(xkp)2

)))

≤ exp

(
−nst

3

) n∏
k=1

exp
(
128τ4s2lω

)
|s| ≤ 1

τ2
√
lω

≤ exp

(
−c′′nmin

(
t2

ωlτ4
,

t√
lωτ2

))
.

Finally, since x(i) are independent sub-Gaussian, we can use Hoeffding inequality and obtain

P

(
1

n

n∑
k=1

Ek
3 >

t

3

)
≤ P

(
1

n

n∑
k=1

(∑
p

bkp
(
xkp − Exkp

))
>
t

3

)
exp

(
−c
′′′nt2

ω′lτ2

)
.

Step 3. Bound P(E>t): By comparing the values of ω and ω′, we can obtain

P (E > t) ≤P

(
1

n

n∑
k=1

Ej
1>

t

3

)
+P

(
1

n

n∑
k=1

Ej
2>

t

3

)
+P

(
1

n

n∑
k=1

Ej
3>

t

3

)

≤3 exp

(
−cg′nmin

(
t2

lmax (ωgτ2, ωgτ4, ωg′τ2)
,

t√
lωg max (τ, τ2)

))
,

where ωg = cqr
2(2l−1) and ωg′ = cqr

2(l−1) in which cq =
√

max0≤i≤l di. The proof is completed.

C.2.4 PROOFS OF LEMMA 9

Proof. For brevity, letQts denote ∇w(t)

(
∇w(s)

f(w,x)
)
. Then, by Lemma 6 we have

Qts=


(
BT
l:s+1ex

TBT
t−1:1

)
⊗Bs−1:t+1 +

(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
, if s > t,(

Bs−1:1xx
TBs−1:1

)
⊗
(
Bl:s+1

TBl:s+1

)
, if s = t,(

BT
t−1:s+1

)
⊗
(
Bs−1:1xe

TBT
l:t+1

)
+
(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
, if s < t.
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Then we know that the (i, k)-th entry Qik
ts has the form Qik

ts =
∑
p,q z

ik
pqxpxq +

∑
p y

ik
p xp + rik

(explained in the following Step 1. I) where xp denotes the p-th entry in x. Note that zikpq, y
ik
p

and rik are constant and independent on x. For convenience, we let Qts = Hts + Gts, where
Gts =

(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
andHts is defined as

Hts =


(
BT
l:s+1ex

TBT
t−1:1

)
⊗Bs−1:t+1, if s > t,

0, if s = t,(
BT
t−1:s+1

)
⊗
(
Bs−1:1xe

TBT
l:t+1

)
, if s < t.

Let

E =
1

n

n∑
j=1

〈
λ,
(
∇2
wf(w,x)− E∇2

wf(w,x)
)
λ
〉
, Eh =

1

n

n∑
j=1

∑
t,s

〈λt,(Hts−E(Hts))λs〉 ,

Eg =
1

n

n∑
j=1

∑
t,s

〈λt,(Gts−E(Gts))λs〉 .

Then we divide the event as two events:

P (E > t) = P (Eh +Eg > t) ≤ P (Eh > t/2) + P (Eg > t/2) .

Now we look each event separately. Similar to Qts, the (i, k)-th entry Hik
ts has the form Hik

ts =∑
p,q z

ik
pqxpxq +

∑
p y

ik
p xp + rik. We divide the unit vector λ ∈ Rd as λ = (λ1; · · · ;λl) where

λj ∈ Rdjdj−1 . For input vector x, let
∑
t,s 〈λt, (Hts − E(Hts))λs〉 = Eh1 +Eh2 +Eh3, where

Eh1=
∑

p,q:p 6=q

∑
t,s

∑
i,k

(λitλ
k
s)zikpq

(xpxq−Expxq) , Eh2 =
∑
p

∑
t,s

∑
i,k

(λitλ
k
s)zikpq

(x2
p−Ex2

p

)
,

Eh3 =
∑
p

∑
t,s

∑
i,k

(λitλ
k
s)yikp

 (xp − Exp) , (16)

where xp denotes the p-th entry in x and λij denotes the i-th entry of λj . Let Ej
h1

, Ej
h2

, and Ej
h3

denote the Eh1
, Eh2

, and Ej
h3

of the j-th sample. Thus, considering n samples, we can further
separately divide the two events above as:

P
(
Eh>

t

2

)
≤P

 1

n

n∑
j=1

Ej
h1>

t

6

+P

 1

n

n∑
j=1

Ej
h2>

t

6

+P

 1

n

n∑
j=1

Ej
h3>

t

6

 .

Similarly, we can define Eg1,Eg2 and Eg3.

P
(
Eg>

t

2

)
≤P

 1

n

n∑
j=1

Ej
g1>

t

6

+P

 1

n

n∑
j=1

Ej
g2>

t

6

+P

 1

n

n∑
j=1

Ej
g3>

t

6

 .

Thus, to prove our conclusion, we can respectively establish the upper bounds of P
(
Eh>

t
2

)
and

P
(
Eg>

t
2

)
.

Step 1: Bound P
(
Eh>

t
2

)
To achieve our goal, for each input sample x(i), we divide its corresponding

∑
t,s(Hts − EHts)

as Eh1, Eh2 and Eh3. Then we bound the three events separately. Before that, we first give two
equalities. SinceBj:s = W (j)W (j−1) · · ·W (s) (j ≥ s), by Lemma 14 we have

‖Bj:s‖2F ≤ r2(j−s+1) and ‖Bl:t+1‖2F ‖Bt−1:s+1‖2F ‖Bs−1:1‖2F ≤ r
2(l−2), (17)

These two inequalities can be obtained by using ‖W (i)‖2F = ‖w(i)‖22 ≤ r2.
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I. Divide Hts − EHts: For t 6= s, we can write the (i, k)-th entry Hik
ts as the form Hik

ts =∑
p,q z

ik
pqxpxq +

∑
p y

ik
p xp+ rik. Now we try to bound zikpq and yikp . We first consider the case s < t.

Note that e = v(l) − y = Bl:1x− y. Specifically, we have

Hts =
(
BT
t−1:s+1

)
⊗
(
Bs−1:1xx

TBT
l:1B

T
l:t+1 −Bs−1:1xy

TBT
l:t+1

)
.

So the (i′, k′)-th entry in the matrix Bs−1:1xx
TBT

l:1B
T
l:t+1 is [Bs−1:1xx

TBT
l:1B

T
l:t+1]i′k′ =

(Bs−1:1)(i′, :)x(Bl:1Bl:t+1)(k′, :)x = xT ((Bs−1:1)(i′, :))T (Bl:1Bl:t+1)(k′, :)x, where A(i′, :)
denotes the i′-th row of A. Let i′i = mod(i,ds), k′k = mod(k,dt−1), i′′i = bi/dsc and
k′′k = bk/dt−1c. In this case, the (i, k)-th entry Hik

ts = [Bt−1:s+1]k′′k i′′i x
T ((Bs−1:1)(i′i, :

))T (Bl:1Bl:t+1)(k′k, :)x+ [Bt−1:s+1]k′′k i′′i y
T (Bl:t+1)(k′k, :)

T (Bs−1:1)(i′i, :)x. Therefore, we have∑
p,q

(zikpq)
2 =[Bt−1:s+1]2k′′k i′′i

∥∥((Bs−1:1)(i′i, :))
T (Bl:1Bl:t+1)(k′k, :)

∥∥2

F

≤[Bt−1:s+1]2k′′k i′′i
‖(Bs−1:1)(i′i, :)‖

2
2 ‖(Bl:1Bl:t+1)(k′k, :)‖

2
2 .

Therefore, we can further establish∑
i,k

∑
p,q

(zikpq)
2 ≤

∑
i,k

[Bt−1:s+1]2k′′k i′′i
‖(Bs−1:1)(i′i, :)‖

2
2 ‖(Bl:1Bl:t+1)(k′k, :)‖

2
2

≤
∑
i,k

[Bt−1:s+1]2k′′k i′′i
‖(Bs−1:1)(i′i, :)‖

2
2 ‖(Bl:1Bl:t+1)(k′k, :)‖

2
2

=
∑
k

‖(Bt−1:s+1)(k′′k , :)‖22 ‖Bs−1:1‖2F ‖(Bl:1Bl:t+1)(k′k, :)‖
2
2

=‖Bt−1:s+1‖2F ‖Bs−1:1‖2F ‖Bl:1Bl:t+1‖2F
¬
≤r4(l−1) , ω.

(18)

where ¬ uses Eqn. (17). Similarly, we can bound∑
p

(yikp )2 =[Bt−1:s+1]2k′′k i′′i

∥∥yT (Bl:t+1)(k′k, :)
T (Bs−1:1)(i′i, :)

∥∥2

F

≤[Bt−1:s+1]2k′′k i′′i
‖y‖22 ‖(Bl:t+1)(k′k, :)‖

2
2 ‖(Bs−1:1)(i′i, :)‖

2
2 .

So it further yields∑
i,k

∑
p

(yikp )2 ≤
∑
i,k

[Bt−1:s+1]2k′′k i′′i
‖y‖22 ‖(Bl:t+1)(k′k, :)‖

2
2 ‖(Bs−1:1)(i′i, :)‖

2
2

≤‖y‖22 ‖Bt−1:s+1‖2F ‖Bl:t+1‖2F ‖Bs−1:1‖2F
¬
≤ ‖y‖22 r

2(l−2) , ω′,

(19)

where ¬ uses Eqn. (17). Note that for the case s ≥ t, Eqn. (18) and (19) also holds. Let λij denote
the i-th entry of λj . Then, by Eqn. (16), we can obtain∑
t,s

(〈λt, (Hts−E(Hts))λs〉)=
∑

p,q:p 6=q

apq (xpxq−Expxq)+
∑
p

app
(
x2
p−Ex2

p

)
+
∑
p

bp (xp−Exp)

= Eh1 +Eh2 +Eh3,

where apq and bp are defined as

apq =
∑
t,s

∑
i,k

(λitλ
k
s)zikpq and bp =

∑
t,s

∑
i,k

(λitλ
k
s)yikp .

Then according to Eqn. (18) and
∑
t,s

(∑
i,k(λitλ

k
s)2
)

= 1, we can bound apq as follows:

a2
pq≤ l2

∑
t,s

∑
i,k

(λitλ
k
s)zikpq

2

≤ l2
∑
t,s

∑
i,k

(λitλ
k
s)2

∑
i,k

(zikpq)
2

≤ωl2∑
t,s

∑
i,k

(λitλ
k
s)2

≤ωl2.
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which further yields

∑
p,q

a2
pq ≤ l2

∑
t,s

∑
i,k

(λitλ
k
s)2

∑
i,k

∑
p,q

(zikpq)
2

 ≤ ωl2∑
t,s

∑
i,k

(λitλ
k
s)2

 ≤ ωl2.
Similarly, by using Eqn. (19), we have

b2p ≤ l2
∑
t,s

∑
i,k

(λitλ
k
s)yikp

2

≤ l2
∑
t,s

∑
i,k

(λitλ
k
s)2

∑
i,k

(yikp )2

 ¬
≤ ω′l2.

Accordingly, we can have

∑
p

b2p≤ l2
∑
t,s

∑
i,k

(λitλ
k
s)2

∑
i,k

∑
p

(yikp )2

≤ω′l2.
II. Bound P(Eh1 > t/6), P(Eh2 > t/6) and P(Eh3 > t/6): Let Ejh1 denotes the Ej

h1 which
corresponds to the j-th sample x(i). Therefore, we can bound

P

 1

n

n∑
j=1

Ej
h1 >

t

6

 ≤P
s n∑

j=1

 ∑
p,q:p 6=q

ajpq
(
xjpx

j
q − Exjpxjq

) >
snt

6


¬
≤ exp

(
−nst

6

)
E exp

s n∑
j=1

 ∑
p,q:p 6=q

ajpq
(
xjpx

j
q − Exjpxjq

)
­
≤ exp

(
−nst

6

) n∏
j=1

E exp

s
 ∑
p,q:p 6=q

ajpq
(
xjpx

j
q − Exjpxjq

)
®
≤ exp

(
−nst

6

) n∏
j=1

exp

2τ2s2
∑

p,q:p6=q

(ajpq)
2

 |s| ≤ 1

2τ l
√
ω

≤ exp

(
−nst

6

) n∏
j=1

exp
(
2τ2s2l2ω

)
¯
≤ exp

(
−c′nmin

(
t2

ωl2τ2
,

t√
ωlτ

))
,

where ¬ holds because of Chebyshev’s inequality. ­ holds since x(i) are independent. ®
is established because of Lemma 12. We have ¯ by optimizing s. Similarly, we can bound
P
(

1
n

∑n
j=1E

j
h2 >

t
6

)
as follows:

P

 1

n

n∑
j=1

Ej
h2 >

t

6

 ≤ exp

(
−nst

6

) n∏
j=1

E exp

(
s

(∑
p

ajpp
(
(xjp)

2 − E(xjp)
2
)))

≤ exp

(
−nst

6

) n∏
j=1

exp
(
128τ4s2l2ω

)
|s| ≤ 1

τ2l
√
ω

≤ exp

(
−c′′nmin

(
t2

ωl2τ4
,

t√
ωlτ2

))
.

Finally, since x(i) are independent sub-Gaussian, we can use Hoeffding inequality and obtain

P

 1

n

n∑
j=1

Ej
h3 >

t

6

 = P

 1

n

n∑
j=1

(∑
p

bjp
(
xjp − Exjp

))
>
t

6

 ≤ exp

(
− c
′′′nt2

ω′l2τ2

)
.
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Since for s = t, P
(

1
n

∑n
j=1E

j
h1 >

t
6

)
= P

(
1
n

∑n
j=1E

j
h2 >

t
6

)
= P

(
1
n

∑n
j=1E

j
h3 >

t
6

)
= 0,

the above upper bounds also hold.

III: Bound P
(
Eh>

t
2

)
By comparing the values of ω and ω′, we can obtain

P
(
Eh>

t

2

)
≤P

 1

n

n∑
j=1

Ej
h1>

t

6

+P

 1

n

n∑
j=1

Ej
h2>

t

6

+P

 1

n

n∑
j=1

Ej
h3>

t

6


≤3 exp

(
−c′2nmin

(
t2

l2 max (ωτ2, ωτ4, ωqτ2)
,

t√
ωlmax (τ, τ2)

))
,

where ωq = r2(l−2).

Step 2: Bound P
(
Eg>

t
2

)
To achieve our goal, for each input sample x(i), we also divide its

corresponding
∑
t,s(Gts −EGts) asEh1,Eh2 andEh3. Then we bound the three events separately.

Before that, we first give several equalities.

I. DivideGts−EGts: DividingGts−EGts is more easy than dividingHts−EHts since the later
has more complex form. SinceGts =

(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)
. we also can write

the (i, k)-th entryGik
ts as the formGik

ts =
∑
p,q z

ik
pqxpxq +

∑
p y

ik
p xp + rik. But here yikp = 0.

Then similar to the step in dividingHts − EHts, we can bound

a2
pq ≤ ωgl2 and

∑
p,q

a2
pq ≤ ωgl2 where ωg = r4(l−1).

II. Bound P(Eg1 > t/6), P(Eg2 > t/6) and P(Eg3 > t/6): Since yikp = 0, P(Eh3 > t/6) = 0.
Similar to the above methods, we can bound

P

 1

n

n∑
j=1

Ej
g1 >

t

6

 ≤ exp

(
−c′1n

(
t2

ωgl2τ2
,

t
√
ωglτ

))
,

and

P

 1

n

n∑
j=1

Ej
g2 >

t

6

 ≤ exp

(
−c′′1n

(
t2

ωgl2τ4
,

t
√
ωglτ2

))
.

III: Bound P
(
Eh>

t
2

)
We can obtain P

(
Eg>

t
2

)
as follows:

P
(
Eg>

t

2

)
≤P

 1

n

n∑
j=1

Ej
g1>

t

6

+P

 1

n

n∑
j=1

Ej
g2>

t

6

+P

 1

n

n∑
j=1

Ej
g3>

t

6


≤2 exp

(
−c′2nmin

(
t2

ωgl2 max (τ2, τ4)
,

t
√
ωglmax (τ, τ2)

))
.

Step 3: Bound P(E>t) Finally, we combine the above results and obtain

P (E > t) ≤P
(
Eh>

t

2

)
+P

(
Eg>

t

2

)
≤5 exp

(
−ch′nmin

(
t2

τ2l2 max (ωg, ωgτ2, ωh)
,

t
√
ωglmax (τ, τ2)

))
,

where ωg = r4(l−1) and ωh = r2(l−2).

C.2.5 PROOF OF LEMMA 10

Proof. Before proving our conclusion, we first give an inequality:

‖e‖22 = ‖Bl:1x− y‖22 ≤ ‖Bl:1x‖22 + 2
∣∣yTBl:1x

∣∣+ ‖y‖22
¬
≤ r2

xω
2
f + 2rxωf‖y‖2 + ‖y‖22 ,
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where ωf = rl. Notice, ¬ holds since by Lemma 14, we have ‖Bl:1‖2F ≤ r2l.

Then we consider ∇wf(w,x). Firstly, by Lemma 6 we can bound ‖∇w(j)
f(w,x)‖22 as follows:

‖∇w(j)
f(w,x)‖22 =

∥∥((Bj−1:1x)⊗BT
l:j+1

)
e
∥∥2

2
≤ ‖Bj−1:1‖22 ‖x‖

2
2 ‖Bl:j+1‖22 ‖e‖

2
2

¬
≤r2

xω
2
f1

(
r2
xω

2
f + 2rxωf‖y‖2 + ‖y‖22

)
,

where ωf1 = r(l−1). ¬ holds since we have ‖Bl:j+1‖2F ‖Bj−1:1‖2F ≤ r2(l−1) by using ‖W (i)‖2F =

‖w(i)‖22 ≤ r2. Therefore, we can further obtain

‖∇wf(w,x)‖22 =

l∑
i=1

‖∇w(i)
f(w,x)‖22 ≤ lr2

xω
2
f1

(
r2
xω

2
f + 2rxωf‖y‖2 + ‖y‖22

)
.

Notice, y is the label of sample and the weight magnitude r is usually lager than 1. Then we have
‖y‖2 ≤ rl. Also, the values in input data are usually smaller than rl. Thus, we have

‖∇wf(w,x)‖22 ≤ ctlr4
xr

4l−2 , αg,

where ct is a constant. Then we use the inequality
∥∥∇2f(w,x)

∥∥
op ≤

∥∥∇2f(w,x)
∥∥
F

to bound∥∥∇2f(w,x)
∥∥

op. Next we only need to give the upper bound of
∥∥∇2f(w,x)

∥∥
F

. Let ωf2 = rl−2.

We first considerQst , ∇w(s)

(
∇w(t)

f(w,x)
)
. By Lemma 6, if s < t, we have

‖Qst‖2F =
∥∥(BT

t−1:s+1

)
⊗
(
Bs−1:1xe

TBT
l:t+1

)
+
(
Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)∥∥2

F

≤2
(∥∥(BT

t−1:s+1

)
⊗
(
Bs−1:1xe

TBT
l:t+1

)∥∥2

F
+
∥∥(Bs−1:1xx

TBT
t−1:1

)
⊗
(
BT
l:s+1Bl:t+1

)∥∥2

F

)
≤2 ‖Bt−1:s+1‖2F ‖Bs−1:1‖2F ‖x‖

2
2 ‖e‖

2
2 ‖Bl:t+1‖2F

+ 2 ‖Bs−1:1‖2F ‖x‖
2
2 ‖x‖

2
2 ‖Bt−1:1‖2F ‖Bl:s+1‖2F ‖Bl:t+1‖2F

¬
≤2ω2

f2r
2
x

(
r2
xω

2
f + rxωf‖y‖2 + ‖y‖22

)
+ 2ω4

f1r
4
x,

where ¬ holds since we use ‖Bl:t+1‖2F ‖Bt−1:s+1‖2F ‖Bs−1:1‖2F ≤ ω2
f2

and ‖Bs−1:1‖2F ‖Bl:s+1‖2F
≤ ω2

f1
. Note that when s ≥ t, the above inequality also holds. Similarly, consider the values in input

data and the values in label, we have

‖Qst‖2F ≤ ct′r
4
xr

4l−2 , αl,

where ct′ is a constant. Therefore, we can bound

∥∥∇2f(w,x)
∥∥

op ≤
∥∥∇2f(w,x)

∥∥
F
≤

√√√√ l∑
s=1

l∑
t=1

‖Qst‖2F ≤ l
√
αl.

On the other hand, if the activation functions are linear functions, f(w,x) is fourth order differentiable
when l ≥ 2. This means that ∇x∇3

wf(w,x) exists. Also since for any input x ∈ Bd0(rx) and
w ∈ Ω, we can always find a universal constant αp such that

‖∇3
wf(w,x)‖op = sup

‖λ‖2≤1

〈
λ⊗

3

,∇3
wf(w,x)

〉
=
∑
i,j,k

[∇3
wf(w,x)]ijkλiλjλk ≤ αp < +∞.

We complete the proofs.

C.2.6 PROOF OF LEMMA 11

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ‖w(j)‖2 ≤ r.
Assume thatw(j) has sj non-zero entries. Then we have

∑l
j=1 sj = s. So here we separately assume

wj
ε = {wj

1, · · · ,w
j
nεj
} is the djdj−1ε/d-covering net of the ball Bdjdj−1(r) which corresponds
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to the weight w(j) of the j-th layer. Let nεj be the ε/l-covering number. By ε-covering theory in
(Vershynin, 2012), we can have

nε
j ≤

(
djdj−1

sj

)(
3r

djdj−1ε/d

)sj
≤ exp

(
sj log

(
3rdjdj−1

djdj−1ε/d

))
= exp

(
sj log

(
3rd

ε

))
.

Let w ∈ Ω be an arbitrary vector. Since w = [w(1), · · · ,w(l)] where w(j) is the weight of the j-th
layer, we can always find a vector wj

kj
in wj

ε such that ‖w(j) −wj
kj
‖2 ≤ djdj−1ε/d. For brevity,

let jw ∈ [nε
j ] denote the index of wj

kj
in ε-net wj

ε . Then let wkw = [wj
k1

; · · · ;wj
kj

; · · · ;wj
kl

].
This means that we can always find a vector wkw such that ‖w − wkw‖2 ≤ ε. Now we use the
decomposition strategy to bound our goal:

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op

=

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(w,x(i))− E(∇2f(w,x))

∥∥∥∥∥
op

=

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇f(wkw ,x(i))

)
+

1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

+ E(∇2f(wkw ,x))− E(∇2f(w,x))

∥∥∥∥∥
op

≤

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
op

+

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

∥∥∥∥∥
op

+

∥∥∥∥∥E(∇2f(wkw ,x))− E(∇2f(w,x))

∥∥∥∥∥
op
.

Here we also define four events E0, E1, E2 and E3 as

E0 =

{
sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≥ t
}
,

E1 =

 sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
op
≥ t

3

 ,

E2 =

 sup
jw∈[nεj ],j=[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

∥∥∥∥∥
op
≥ t

3

 ,

E3 =

{
sup
w∈Ω

∥∥E(∇2f(wkw ,x))− E(∇2f(w,x))
∥∥

op ≥
t

3

}
.

Accordingly, we have

P (E0) ≤ P (E1) + P (E2) + P (E3) .

So we can respectively bound P (E1), P (E2) and P (E3) to bound P (E0).
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Step 1. Bound P (E1): We first bound P (E1) as follows:

P (E1) =P

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
2

≥ t

3

)
¬
≤3

t
E

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
2

)

≤3

t
E
(

sup
w∈Ω

∥∥∇2f(w,x)−∇2f(wkw ,x)
∥∥

2

)
≤3

t
E

(
sup
w∈Ω

∣∣ 1
n

∑n
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∣∣
‖w −wkw‖2

sup
w∈Ω
‖w −wkw‖2

)
­
≤3αpε

t
,

where ¬ holds since by Markov inequality and ­ holds because of Lemma 10.

Therefore, we can set

t ≥ 6αpε

ε
.

Then we can bound P(E1):
P(E1) ≤ ε

2
.

Step 2. Bound P (E2): By Lemma 2, we know that for any matrix X ∈ Rd×d, its operator norm
can be computed as

‖X‖op ≤
1

1− 2ε
sup
λ∈λε

|〈λ,Xλ〉| .

where λε = {λ1, . . . ,λkw} be an ε-covering net of Bd(1).

Let λ1/4 be the 1
4 -covering net of Bd(1) but it has only s nonzero entries. So the size of its ε-net is(

d
s

)(
3

1/4

)s
≤ exp (s log (12d)) .

Recall that we use jw to denote the index of wj
kj

in ε-net wj
ε and we have jw ∈ [nε

j ], (nε
j ≤

exp
(
sj log

(
3rd
ε

))
). Then we can bound P (E2) as follows:

P (E2) =P

(
sup

jw∈[njε] j∈[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

∥∥∥∥∥
2

≥ t

3

)

≤P

(
sup

jw∈[njε] j∈[l],λ∈λ1/4

2

∣∣∣∣∣
〈
λ,

(
1

n

n∑
i=1

∇2f(wkw ,x(i))− E
(
∇2f(wkw ,x)

))
λ

〉∣∣∣∣∣ ≥ t

3

)

≤ exp (s log (12d)) exp

 l∑
j=1

sj log

(
3rd

ε

) sup
jw∈[njε] j∈[l],λ∈λ1/4

P

(∣∣∣∣∣ 1n
n∑
i=1

〈
λ,

(
∇2f(wkw ,x(i))−E

(
∇2f(wkw ,x)

))〉∣∣∣∣∣≥ t

6

)
¬
≤ exp

(
s log

(
36rd2

ε

))
10 exp

(
−ch′nmin

(
t2

36τ2l2 max (ωg, ωgτ2, ωh)
,

t

6
√
ωglmax (τ, τ2)

))
,

where ¬ holds since by Lemma 9, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

(〈
λ, (∇2

wf(w,x)− E∇2
wf(w,x))λ

〉)∣∣∣∣∣ > t

)

≤ 10 exp

(
−ch′nmin

(
t2

τ2l2 max (ωg, ωgτ2, ωh)
,

t
√
ωglmax (τ, τ2)

))
,
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where ωg = r4(l−1) and ωh = r2(l−2).

Let dε = s log(36d2r/ε)+log(20/ε). Thus, if we set

t ≥ max

√36τ2l2 max (ωg, ωgτ2, ωh) dε
ch′n

,
6
√
ωglmax

(
τ, τ2

)
dε

ch′n

,
then we have

P (E2) ≤ ε

2
.

Step 3. Bound P (E3): We first bound P (E3) as follows:

P (E3) =P
(

sup
w∈Ω

∥∥E(∇2f(wkw ,x))− E(∇2f(w,x))
∥∥

2
≥ t

3

)
≤P
(
E sup
w∈Ω

∥∥(∇2f(wkw ,x)−∇2f(w,x)
∥∥

2
≥ t

3

)
≤P

(
sup
w∈Ω

∣∣ 1
n

∑n
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∣∣
‖w −wkw‖2

sup
w∈Ω
‖w −wkw‖2 ≥

t

3

)
¬
≤P
(
αpε ≥

t

3

)
,

where ¬ holds because of Lemma 10. We set ε enough small such that αpε < t/3 always holds.
Then it yields P (E3) = 0.

Step 4. Final result: For brevity, let ω2 = 36τ2l2 max
(
ωg, ωgτ

2, ωh
)

and ω3 = 6
√
ωglmax

(
τ, τ2

)
.

To ensure P(E0) ≤ ε, we just set ε = 36rl/n and

t ≥ max

6αpε

ε
, 3αpε,

√
ω2(s log(36d2r/ε)+log(20/ε))

ch′n
,
ω3(s log(36d2r/ε)+log(20/ε))

ch′n


= max

216αpr

nε
,

√
ω2(s log(d2nl)+log(20/ε))

ch′n
,
ω3(s log(36d2n/l)+log(20/ε))

ch′n

 .

Thus, there exit two universal constants ch1
and ch2

such that if n ≥ ch2
max(

α2
pr

2

τ2l2ω2
hε

2s log(d/l)
,

s log(d/l)/(lτ2)), then

sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≤ch1τ lωh

√
d log(nl)+log(20/ε)

n

holds with probability at least 1 − ε, where ωh = max
(
τr2(l−1), r2(l−2), rl−2

)
. The proof is

completed.

C.3 PROOFS OF MAIN THEOREMS

C.3.1 PROOF OF THEOREM 1

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ‖w(j)‖2 ≤ r.
Assume thatw(j) has sj non-zero entries. Then we have

∑l
j=1 sj = s. So here we separately assume

wj
ε = {wj

1, · · · ,w
j
nεj
} is the djdj−1ε/d-covering net of the ball Bdjdj−1(r) which corresponds

to the weight w(j) of the j-th layer. Let nεj be the ε/l-covering number. By ε-covering theory in
(Vershynin, 2012), we can have

nε
j ≤

(
djdj−1

sj

)(
3r

djdj−1ε/d

)sj
≤ exp

(
sj log

(
3rdjdj−1

djdj−1ε/d

))
= exp

(
sj log

(
3rd

ε

))
.
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Let w ∈ Ω be an arbitrary vector. Since w = [w(1), · · · ,w(l)] where w(j) is the weight of the j-th
layer, we can always find a vector wj

kj
in wj

ε such that ‖w(j) −wj
kj
‖2 ≤ djdj−1ε/d. For brevity,

let jw ∈ [nε
j ] denote the index ofwj

kj
in ε-netwj

ε . Then letwkw = [wj
k1

; · · · ;wj
kj

; · · · ;wj
kl

]. This
means that we can always find a vector wkw such that ‖w − wkw‖2 ≤ ε. Accordingly, we can
decompose

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
as∥∥∥∇Ĵn(w)−∇J(w)

∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

∇f(w,x(i))− E(∇f(w,x))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)
+

1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

+ E(∇f(wkw ,x))− E(∇f(w,x))

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

∥∥∥∥∥
2

+

∥∥∥∥∥E(∇f(wkw ,x))− E(∇f(w,x))

∥∥∥∥∥
2

.

Here we also define four events E0, E1, E2 and E3 as

E0 =

{
sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≥ t
}
,

E1 =

{
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

≥ t

3

}
,

E2 =

{
sup

jw∈[nεj ],j=[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

∥∥∥∥∥
2

≥ t

3

}
,

E3 =

{
sup
w∈Ω

∥∥∥∥∥E(∇f(wkw ,x))− E(∇f(w,x))

∥∥∥∥∥
2

≥ t

3

}
.

Accordingly, we have
P (E0) ≤ P (E1) + P (E2) + P (E3) .

So we can respectively bound P (E1), P (E2) and P (E3) to bound P (E0).

Step 1. Bound P (E1): We first bound P (E1) as follows:

P (E1) =P

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

≥ t

3

)
¬
≤3

t
E

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

)

≤3

t
E

(
sup
w∈Ω

∥∥ 1
n

∑n
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥
2

‖w −wkw‖2
sup
w∈Ω
‖w −wkw‖2

)

≤3ε

t
E
(

sup
w∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2

)
,

where ¬ holds since by Markov inequality, we have that for an arbitrary nonnegative random variable
x, then P(x ≥ t) ≤ E(x)

t .
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Now we only need to bound E
(

supw∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2

)
. Now we utilize Lemma 10 to achieve

this goal:

E
(

sup
w∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2

)
≤= E

(
sup
w∈Ω

∥∥∇2f(w,x)−∇2f(w∗,x)
∥∥

2

)
≤ l
√
αl.

where αl = ct′r
4
xr

4l−2. Therefore, we have

P (E1) ≤
3l
√
αlε

t
.

We further let

t ≥
6l
√
αlε

ε
.

Then we can bound P(E1):
P(E1) ≤ ε

2
.

Step 2. Bound P (E2): By Lemma 1, we know that for any vector x ∈ Rd, its `2-norm can be
computed as

‖x‖2 ≤
1

1− ε
sup
λ∈λε

〈λ,x〉 .

where λε = {λ1, . . . ,λkw} be an ε-covering net of Bd(1).

Let λ1/2 be the 1
2 -covering net of Bd(1) but it has only s nonzero entries. So the size of its ε-net is(

d
s

)(
3

1/2

)s
≤ exp (s log (6d)) .

Recall that we use jw to denote the index of wj
kj

in ε-net wj
ε and we have jw ∈ [nε

j ], (nε
j ≤

exp
(
sj log

(
3rd
ε

))
). Then we can bound P (E2) as follows:

P (E2) =P

(
sup

jw∈[nεj ],j=[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

∥∥∥∥∥
2

≥ t

3

)

=P

(
sup

jw∈[nεj ],j=[l],λ∈λ1/2

2

〈
λ,

1

n

n∑
i=1

∇f(wkw ,x(i))− E (∇f(wkw ,x))

〉
≥ t

3

)

≤ exp (s log (6d)) exp

 l∑
j=1

sj log

(
3rd

ε

) sup
jw∈[nεj ],j=[l],λ∈λ1/2

P

(
1

n

n∑
i=1

〈
λ,

∇f(wkw ,x(i))− E (∇f(wkw ,x))

〉
≥ t

6

)
¬
≤ exp

(
s log

(
18rd

ε

))
6 exp

(
−cg′nmin

(
t2

36lmax (ωgτ2, ωgτ4, ωg′τ2)
,

t

6
√
lωg max (τ, τ2)

))
,

where ¬ holds since by Lemma 8, we have

P

(
1

n

n∑
i=1

(〈
λ,∇wf(w,x(i))−E∇wf(w,x(i))

〉)
>t

)

≤ 3 exp

(
−cg′nmin

(
t2

lmax (ωgτ2, ωgτ4, ωg′τ2)
,

t√
lωg max (τ, τ2)

))
,

where cg′ is a constant; ωg = cqr
2(2l−1) and ωg′ = cqr

2(l−1) in which cq =
√

max0≤i≤l di.

Let ω2 = 36lmax
(
ωgτ

2, ωgτ
4, ωg′τ

2
)

and ω3 = 6
√
lωg max

(
τ, τ2

)
. Thus, if we set

t ≥ max

(√
ω2(s log(18dr/ε)+log(12/ε))

cg′n
,
ω3(s log(18dr/ε)+log(12/ε))

cg′n

)
,
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then we have

P (E2) ≤ ε

2
.

Step 3. Bound P (E3): We first bound P (E3) as follows:

P (E3) =P
(

sup
w∈Ω
‖E(f(wkw ,x))− E(f(w,x))‖2 ≥

t

3

)
=P
(

sup
w∈Ω

‖E (f(wkw ,x)− f(w,x)‖2)

‖w −wkw‖2
sup
w∈Ω
‖w −wkw‖2 ≥

t

3

)
≤P
(
εE sup

w∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2
≥ t

3

)
≤P
(
l
√
αlε ≥

t

3

)
.

We set ε enough small such that l
√
αlε < t/3 always holds. Then it yields P (E3) = 0.

Step 4. Final result: Finally, to ensure P(E0) ≤ ε, we just set ε = 18lr/n and

t ≥ max

(
6l
√
αlε

ε
, 3l
√
αlε,

√
ω2(s log(18dr/ε)+log(12/ε))

cg′n
,
ω3(s log(18dr/ε)+log(12/ε))

cg′n

)

= max

(
108l2

√
αlr

nε
,

√
ω2(s log(dn/l)+log(12/ε))

cg′n
,
ω3(s log(dn/l)+log(12/ε))

cg′n

)
.

Notice, we have αl = ct′r
4
xr

4l−2 where ct′ is a constant. Therefore, there exists two universal
constants cg and cg′ such that n ≥ cg′ max(

l3r2r4x
cqs log(d/l)ε2τ4 log(1/ε) , s log(d/l)/(lτ2)), then

sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≤cgτωg

√
lcq

√
s log(dn/l)+log(12/ε)

n

holds with probability at least 1− ε, where ωg = max
(
τr2l−1, r2l−1, rl−1

)
.

C.3.2 PROOF OF THEOREM 2

Proof. Suppose that {w(1),w(2), · · · ,w(m)} are the non-degenerate critical points of J(w). So for
any w(k), it obeys

inf
i

∣∣∣λki (∇2J(w(k))
)∣∣∣ ≥ ζ,

where λki
(
∇2J(w(k))

)
denotes the i-th eigenvalue of the Hessian∇2J(w(k)) and ζ is a constant. We

further define a set D = {w ∈ Rd | ‖∇J(w)‖2 ≤ ε and infi |λi
(
∇2J(w(k))

)
| ≥ ζ}. According

to Lemma 4, D = ∪∞k=1Dk where each Dk is a disjoint component with w(k) ∈ Dk for k ≤ m and
Dk does not contain any critical point of J(w) for k ≥ m+ 1. On the other hand, by the continuity
of ∇J(w), it yields ‖∇J(w)‖2 = ε for w ∈ ∂Dk. Notice, we set the value of ε blow which is
actually a function related to n.

Then by utilizing Theorem 1, we let sample number n sufficient large such that

sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≤ zg ,

ε

2

holds with probability at least 1− ε, where if n ≥ cg′ max(
l3r2r4x

cqs log(d/l)ε2τ4 log(1/ε) ,
s log(d/l)

lτ2 ), zg =

cgτωg
√
lcq

√
s log(dn/l)+log(12/ε)

n .
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This further gives that for arbitrary w ∈ Dk, we have

inf
w∈Dk

∥∥∥t∇Ĵn(w) + (1− t)∇J(w)
∥∥∥

2
= inf
w∈Dk

∥∥∥t(∇Ĵn(w)−∇J(w)
)

+∇J(w)
∥∥∥

2

≥ inf
w∈Dk

‖∇J(w)‖2 − sup
w∈Dk

t
∥∥∥∇Ĵn(w)−∇J(w)

∥∥∥
2

≥ ε
2
. (20)

Similarly, by utilizing Lemma 11, let n be sufficient large such that

sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≤ zs ≤

ζ

2

holds with probability at least 1 − ε, where if n ≥ ch2
max(

α2
pr

2

τ2l2ω2
hε

2s log(d/l)
, s log(d/l)/(lτ2)),

zs = ch1
τ lωh

√
s log(nl)+log(20/ε)

n .

Assume that b ∈ Rd is a vector and satisfies bT b = 1. In this case, we can bound λki
(
∇2Ĵn(w)

)
for arbitrary w ∈ Dk as follows:

inf
w∈Dk

∣∣∣λki (∇2Ĵn(w)
)∣∣∣ = inf

w∈Dk
min
bT b=1

∣∣∣bT∇2Ĵn(w)b
∣∣∣

= inf
w∈Dk

min
bT b=1

∣∣∣bT (∇2Ĵn(w)−∇2J(w)
)
b+ bT∇2J(w)b

∣∣∣
≥ inf
w∈Dk

min
bT b=1

∣∣bT∇2J(w)b
∣∣− min

bT b=1

∣∣∣bT (∇2Ĵn(w)−∇2J(w)
)
b
∣∣∣

≥ inf
w∈Dk

min
bT b=1

∣∣bT∇2J(w)b
∣∣− max

bT b=1

∣∣∣bT (∇2Ĵn(w)−∇2J(w)
)
b
∣∣∣

= inf
w∈Dk

inf
i
|λki
(
∇2f(w(k),x)

)
| −
∥∥∥∇2Ĵn(w)−∇2J(w)

∥∥∥
op

≥ζ
2
.

This means that in each set Dk,∇2Ĵn(w) has no zero eigenvalues. Then, combine this and Eqn. (20),
by Lemma 3 we know that if the population risk J(w) has no critical point in Dk, then the empirical
risk Ĵn(w) has also no critical point in Dk; otherwise it also holds. By Lemma 3, we can also obtain
that in Dk, if J(w) has a unique critical point w(k) with non-degenerate index sk, then Ĵn(w) also
has a unique critical pointwn

(k) in Dk with the same non-degenerate index sk. The first conclusion is
proved.

Now we bound the distance between the corresponding critical points of J(w) and Ĵn(w). Assume
that in Dk, J(w) has a unique critical point w(k) and Ĵn(w) also has a unique critical point w(k)

n .
Then, there exists t ∈ [0, 1] such that for any z ∈ ∂Bd(1), we have

ε ≥‖∇J(w(k)
n )‖2

= max
zT z=1

〈∇J(w(k)
n ), z〉

= max
zT z=1

〈∇J(w(k)), z〉+ 〈∇2J(w(k) + t(w(k)
n −w(k)))(w(k)

n −w(k)), z〉

¬
≥
〈(
∇2J(w(k))

)2

(w(k)
n −w(k)), (w(k)

n −w(k))

〉1/2

­
≥ζ‖w(k)

n −w(k)‖2,
where ¬ holds since∇J(w(k)) = 0 and ­ holds since w(k) + t(w

(k)
n −w(k)) is in Dk and for any

w ∈ Dk we have infi |λi
(
∇2J(w)

)
| ≥ ζ. Consider the conditions in Lemma 11 and Theorem 1,

we can obtain that if n ≥ ch max(
l3r2r4x

cqs log(d/l)ε2τ4 log(1/ε) , s log(d/l)/ζ2) where ch is a constant, then

‖w(k)
n −w(k)‖2 ≤

2cgτωg
ζ

√
lcq

√
s log(dn/l)+log(12/ε)

n
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holds with probability at least 1− ε.

C.3.3 PROOF OF THEOREM 3

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ‖w(j)‖2 ≤ r.
Assume thatw(j) has sj non-zero entries. Then we have

∑l
j=1 sj = s. So here we separately assume

wj
ε = {wj

1, · · · ,w
j
nεj
} is the djdj−1ε/d-covering net of the ball Bdjdj−1(r) which corresponds

to the weight w(j) of the j-th layer. Let nεj be the ε/l-covering number. By ε-covering theory in
(Vershynin, 2012), we can have

nε
j ≤

(
djdj−1

sj

)(
3r

djdj−1ε/d

)sj
≤ exp

(
sj log

(
3rdjdj−1

djdj−1ε/d

))
= exp

(
sj log

(
3rd

ε

))
.

Let w ∈ Ω be an arbitrary vector. Since w = [w(1), · · · ,w(l)] where w(j) is the weight of the j-th
layer, we can always find a vector wj

kj
in wj

ε such that ‖w(j) −wj
kj
‖2 ≤ djdj−1ε/d. For brevity,

let jw ∈ [nε
j ] denote the index of wj

kj
in ε-net wj

ε . Then let wkw = [wj
k1

; · · · ;wj
kj

; · · · ;wj
kl

].
This means that we can always find a vector wkw such that ‖w − wkw‖2 ≤ ε. Now we use the
decomposition strategy to bound our goal:

∣∣∣Ĵn(w)− J(w)
∣∣∣= ∣∣∣∣∣ 1n

n∑
i=1

f(w,x(i))− E(f(w,x))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))−f(wkw ,x(i))

)
+

1

n

n∑
i=1

f(wkw ,x(i))−Ef(wkw ,x)+Ef(wkw ,x)−Ef(w,x)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))−f(wkw ,x(i))

)∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

f(wkw ,x(i))−Ef(wkw ,x)

∣∣∣∣∣+
∣∣∣∣∣Ef(wkw ,x)−Ef(w,x)

∣∣∣∣∣.
Then, we define four events E0, E1, E2 and E3 as

E0 =

{
sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣ ≥ t} ,

E1 =

{
sup
w∈Ω

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣∣∣∣ ≥ t

3

}
,

E2 =

{
sup

jw∈[nεj ],j=[l]

∣∣∣∣∣ 1n
n∑
i=1

f(wkw ,x(i))−E(f(wkw ,x))

∣∣∣∣∣≥ t

3

}
,

E3 =

{
sup
w∈Ω

∣∣∣∣∣E(f(wkw ,x))−E(f(w,x))

∣∣∣∣∣≥ t

3

}
.

Accordingly, we have
P (E0) ≤ P (E1) + P (E2) + P (E3) .

So we can respectively bound P (E1), P (E2) and P (E3) to bound P (E0).

Step 1. Bound P (E1): We first bound P (E1) as follows:

P (E1) =P

(
sup
w∈Ω

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣∣∣∣ ≥ t

3

)
¬
≤3

t
E

(
sup
w∈Ω

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣∣∣∣
)

≤3

t
E

(
sup
w∈Ω

∣∣ 1
n

∑n
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣
‖w −wkw‖2

sup
w∈Ω
‖w −wkw‖2

)

≤3ε

t
E
(

sup
w∈Ω

∥∥∥∇Ĵn(w,x)
∥∥∥

2

)
,
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where ¬ holds since by Markov inequality, we have that for an arbitrary nonnegative random variable
x, then

P(x ≥ t) ≤ E(x)

t
.

Now we only need to bound E
(

supw∈Ω

∥∥∥∇Ĵn(w,x)
∥∥∥

2

)
. Therefore, by Lemma 10, we have

E
(

sup
w∈Ω

∥∥∥∇Ĵn(w,x)
∥∥∥

2

)
=E

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

∇f(w,x(i))

∥∥∥∥∥
2

)
=E
(

sup
w∈Ω
‖∇f(w,x)‖2

)
≤√αg.

where αg = ctlr
4
xr

4l−2. Therefore, we have

P (E1) ≤
3ε
√
αg

t
.

We further let

t ≥
6ε
√
αg

ε
.

Then we can bound P(E1):
P(E1) ≤ ε

2
.

Step 2. Bound P (E2): Recall that we use jw to denote the index of wj
kj

in ε-net wj
ε and we have

jw ∈ [nε
j ], (nε

j ≤ exp
(
sj log

(
3rd
ε

))
). We can bound P (E2) as follows:

P (E2) =P

(
sup

jw∈[njε] j∈[l]

∣∣∣∣∣ 1n
n∑
i=1

f(wkw ,x(i))− E(f(wkw ,x))

∣∣∣∣∣ ≥ t

3

)

≤ exp

 l∑
j=1

sj log

(
3rd

ε

) sup
jw∈[njε] j∈[l]

P

(∣∣∣∣∣ 1n
n∑
i=1

f(wkw ,x(i))− E(f(wkw ,x))

∣∣∣∣∣ ≥ t

3

)

¬
≤4

(
3dr

ε

)s
exp

−cf ′nmin

 t2

9ω2
f max

(
dlω2

fτ
4, τ2

) , t

3ω2
fτ

2

 ,

where ¬ holds because in Lemma 7, we have

P

(
1

n

n∑
i=1

(
f(w,x(i))−E(f(w,x(i)))

)
>t

)
≤ 2 exp

−cf ′nmin

 t2

ω2
f max

(
dlω2

fτ
4, τ2

) , t

ω2
fτ

2

 ,

where cf ′ is a positive constant and ωf = rl. Thus, if we set

t ≥ max


√√√√9ω2

f (s log(3rd/ε) + log(8/ε)) max
(
dlω2

fτ
4, τ2

)
cf ′n

,
3ω2

fτ
2(s log(3rd/ε) + log(8/ε))

cf ′n

 ,

then we have
P (E2) ≤ ε

2
.

Step 3. Bound P (E3): We first bound P (E3) as follows:

P (E3) =P
(

sup
w∈Ω
‖E(f(wkw ,x))− E(f(w,x))‖2 ≥

t

3

)
=P
(

sup
w∈Ω

‖E (f(wkw ,x)− f(w,x)‖2)

‖w −wkw‖2
sup
w∈Ω
‖w −wkw‖2 ≥

t

3

)
≤P
(
εE sup

w∈Ω
‖∇Jw(w,x)‖2 ≥

t

3

)
¬
≤P
(
√
αgε ≥

t

3

)
,
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where ¬ holds since we utilize Lemma 10. We set ε enough small such that √αgε < t/3 always
holds. Then it yields P (E3) = 0.

Step 4. Final result: To ensure P(E0) ≤ ε, we just set ε = 3rl/n. Note that 6
√
αgε

ε > 3
√
αgε. Thus

we can obtain

t≥max

6
√
αgε

ε
,

√√√√9ω2
f (s log(3rd/ε)+log(8/ε)) max

(
dlω2

fτ
4, τ2

)
cf ′n

,
3ω2

fτ
2(s log(3rd/ε)+log(8/ε))

cf ′n



=max

18l
√
αgr

nε
,

√√√√9ω2
f (s log(dn/l)+log(8/ε)) max

(
dlω2

fτ
4, τ2

)
cf ′n

,
3ω2

fτ
2(s log(dn/l)+log(8/ε))

cf ′n

 .

Note that we have αg = ctlr
4
xr

4l−2 where ct is a constant. Then Then there exist four universal

constants cf and cf ′ such that if n ≥ cf ′ max
(

l3r4x
dls log(d)ε2τ4 log(1/ε) , s log(d)/(τ2dl)

)
, then

sup
w∈Ω

∥∥∥Ĵn(w)− J(w)
∥∥∥

2
≤ cfωfτ max

(√
dlωfτ, 1

)√s log(dn/l) + log(8/ε)

n

holds with probability at least 1− ε.

C.3.4 PROOF OF COROLLARY 1

Proof. By Lemma 5, we know εs = εg. Thus, the remaining work is to bound εs. Actually, we can
have∣∣∣∣∣∣ES∼D,A,(x′

(j)
,y′

(j)
)∼D

1

n

n∑
j=1

(
fj(w

j
∗;x
′
(j),y

′
(j))−fj(w

n;x′(j),y
′
(j))
)∣∣∣∣∣∣ ≤ES∼D

(
sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣)

≤ sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣

≤εf .

Thus, we have εg = εs ≤ εf . The proof is completed.

C.4 PROOF OF OTHER LEMMAS

C.4.1 PROOF OF LEMMA 13

Lemma 15. (Rigollet, 2015) Suppose a random variable x is τ2-sub-Gaussian, then the random
variable x2 − Ex2 is sub-exponential and obeys:

E
(
expλ

(
x2 − Ex2

))
≤ exp

(
256λ2τ4

2

)
, |λ| ≤ 1

16τ2
. (21)

Proof. Here we utilize Lemma 15 to prove our conclusion. We have

E exp

(
λ

(
k∑
i=1

aix
2
i − E

(
k∑
i=1

aix
2
i

)))
¬
=

k∏
i=1

E exp
(
λai

(
x2
i − Ex2

i

))
­
≤

k∏
i=1

E exp
(
128λ2a2

i τ
4
i

)
, |λ| ≤ 1

maxi aiτ2

≤E exp

(
128λ2τ4

(
k∑
i=1

a2
i

))
,

where ¬ holds since xi are independent and ­ holds because of Lemma 15.
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C.4.2 PROOF OF LEMMA 14

Proof. Since the `2-norm of each w(j) is bounded, i.e. ‖w(j)‖2 ≤ r (1 ≤ j ≤ l), we can obtain

‖Bs:t‖2F ≤
∥∥∥W (s)

∥∥∥2

F

∥∥∥W (s−1)
∥∥∥2

F
· · ·
∥∥∥W (t)

∥∥∥2

F
≤ r2(t−s+1),ω2

r

¬
≤max

(
r2, r2l

)
,

where ¬ holds since the function r2x obtains its maximum at two endpoints x = 1 and x = l for case
r < 1 and r ≥ 1, respectively. On the other hand, we have ‖Bs:t‖op ≤ ‖Bs:t‖F ≤ ωr. Specifically,

we have ‖Bl:1‖2F ≤ r2l , ω2
f .

D PROOFS FOR DEEP NONLINEAR NEURAL NETWORKS

In this section, we first present the technical lemmas in Sec. D.1. Then in Sec. D.2 we give the proofs
of these lemmas. Next, we utilize these technical lemmas to prove the results in Theorems 4 ∼ 6 and
Corollary 2 in Sec. D.3. Finally, we give the proofs of other lemmas in Sec. D.4.

D.1 TECHNICAL LEMMAS

Here we present the key lemmas and theorems for proving our desired results. For brevity, we define
an operation G which maps an arbitrary vector z ∈ Rk into a diagonal matrix G(z) ∈ Rk×k with its
i-th diagonal entry equal to σ(zi)(1 − σ(zi)) in which zi denotes the i-th entry of z. We further
defineAi ∈ Rdi−1×di as follows:

Ai = (W (i))TG(u(i)) ∈ Rdi−1×di (i = 1, · · · , l), (22)

whereW (i) is the weight matrix in the i-th layer and u(i) is the linear output of the i-th layer. In this
section, we define

Bs:t = AsAs+1 · · ·At ∈ Rds−1×dt , (s ≤ t) and Bs:t = I, (s > t). (23)

Lemma 16. Suppose that the activation function in deep neural network are sigmoid functions. Then
the gradient of f(w,x) with respect to w(j) can be formulated as

∇w(j)
f(w,x) = vec

((
G(u(j))Bj+1:l(v

(l) − y)
)

(v(j−1))T
)
, (j = 1, · · · , l − 1),

and
∇w(l)

f(w,x) = vec
((

G(u(l))(v(l) − y)
)

(v(l−1))T
)
.

Besides, the loss f(w,x) is α-Lipschitz,

‖∇wf(w,x)‖2 ≤ α,

where α =
√

1
16cycd (1 + cr(l − 1)) in which cy , cd and cr are defined as

‖v(l) − y‖22 ≤ cy < +∞, cd = max(d0,d1, · · · ,dl) and cr = max

(
r2

16
,

(
r2

16

)l−1
)
.

Lemma 17. Suppose that the activation functions in deep neural network are sigmoid functions.
Then there exists two universal constants cs1 and cs2 such that∥∥∇2

wf(w,x)
∥∥

op ≤
∥∥∇2

wf(w,x)
∥∥
F
≤ ς,

where ς =
√
cs1crc

2
dl

4 in which cd = maxi di and cr = max

(
r2

16 ,
(
r2

16

)l−1
)

. Moreover, the

gradient∇wf(w,x) is ς-Lipschitz, i.e.

‖∇wf(w1,x)−∇wf(w2,x)‖2 ≤ς‖w1 −w2‖2.

Similarly, there also exist a universal constant ξ such that∥∥∇3
wf(w,x)

∥∥
op ≤

∥∥∇3
wf(w,x)

∥∥
F
≤ ξ.
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Lemma 18. Suppose that the activation function in deep neural network are sigmoid functions. Then
we have

‖∇w∇xf(w,x)‖op ≤ ‖∇w∇xf(w,x)‖F ≤β,

where β =
√

26

38 l(l + 2)cycrcd (lcr + 1) in which cy , cd and cr are defined in Lemma 16.

Lemma 19. Suppose that the input sample x obeys Assumption 2 and the activation functions in deep
neural network are sigmoid functions. The gradient of the loss is 8β2τ2-sub-Gaussian. Specifically,
for any λ ∈ Rd, we have

E (〈λ,∇wf(w,x)− E∇wf(w,x)〉) ≤ exp

(
8β2τ2‖λ‖22

2

)
,

where β =
√

26

38 l(l + 2)cycrcd (lcr + 1) in which cy , cd and cr are defined in Lemma 16.

Lemma 20. Suppose that the input sample x obeys Assumption 2 and the activation functions in
deep neural network are sigmoid functions. The Hessian of the loss, evaluated on a unit vector, is
sub-Gaussian. Specifically, for any unit λ ∈ Sd−1 (i.e. ‖λ‖2 = 1), there exist universal constant γ
such that

E
(
t
〈
λ,
(
∇2
wf(w,x)− E∇2

wf(w,x)
)
λ
〉)
≤ exp

(
8t2γ2τ2

2

)
.

Notice, γ obeys γ ≥ ‖∇x∇2
wf(w,x)‖op.

Lemma 21. Assume that the input sample x obeys Assumption 2 and the activation functions in
deep neural network are sigmoid functions. Then the sample Hessian uniformly converges to the
population Hessian in operator norm. That is, there exists such two universal constants cm′ and cm
such that if n ≥ cm′ξ

2l2r2

γ2τ2ε2s log(d) log(1/ε) , then

sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≤cmγτ

√
s log(dn/l)+log(4/ε)

n

holds with probability at least 1− ε. Here γ is the same parameter in Lemma 20.

D.2 PROOFS OF TECHNICAL LEMMAS

For brevity, we also define

Ds:t = ‖W (s)‖2F · · · ‖W (t)‖2F (s ≤ t) and Ds:t = 1, (s > t).

We define a matrix Pk ∈ Rd2
k×dk whose ((s − 1)dk + s, s) (s = 1, · · · ,dk) entry equal to

σ(u
(k)
s )(1− σ(u

(k)
s ))(1− 2σ(u

(k)
s )) and rest entries are all 0. On the other hand, since the values in

v(l) belong to the range [0, 1] and y is the label, ‖v(l) − y‖22 can be bounded:

‖v(l) − y‖22 ≤ cy < +∞,

where cy is a universal constant. We further define cd = max(d0,d1, · · · ,dl).

Then we give a lemma to summarize the properties of G(u(i)) defined in Eqn. (22),Bs:t defined in
Eqn. (23),Ds:t and Pk.

Lemma 22. For G(u(i)) defined in Eqn. (22),Bs:t defined in Eqn. (23),Ds:t and Pk, we have the
following properties:

(1) For arbitrary matricesM andN of proper sizes, we have

‖G(u(i))M‖2F ≤
1

16
‖M‖2F and ‖NG(u(i))‖2F ≤

1

16
‖N‖2F .

(2) For arbitrary matricesM andN of proper sizes, we have

‖PkM‖2F ≤
26

38
‖M‖2F and ‖NPk‖2F ≤

26

38
‖N‖2F .
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(3) For arbitrary matricesM andN of proper sizes, we have

‖Bs:t‖2F ≤
1

16t−s+1
Ds:t and

1

16t−s+1
Ds:t ≤ cst ≤ cr,

where cst =
(
r
4

)2(t−s+1)
and cr = max

(
r2

16 ,
(
r2

16

)l−1
)

.

(4) For arbitrary matricesM ,N and I of proper sizes, letm = vec (M). Then we have

‖(N ⊗ I)m‖2F ≤ ‖M‖
2
F ‖N‖

2
F and ‖(I ⊗N)m‖2F ≤ ‖M‖

2
F ‖N‖

2
F .

It should be pointed out that we defer the proof of Lemma 22 to Sec. D.4.

D.2.1 PROOF OF LEMMA 16

Proof. We use chain rule to compute the gradient of f(w,x) with respect tow(j). We first compute
several basis gradient. According to the relationship between u(j),v(j),W (j) and f(w,x), we have

∇v(l)f(w,x) = v(l) − y,

∇v(i)f(w,x) =
∂u(i+1)

∂v(i)

∂f(w,x)

∂u(i+1)
= (W (i+1))T

∂f(w,x)

∂u(i+1)
, (i = 1, · · · , l − 1),

∇u(i)f(w,x) =
∂v(i)

∂u(i)

∂f(w,x)

∂v(i)
= G(u(i))

∂f(w,x)

∂v(i)
, (i = 1, · · · , l),

∇W (i)f(w,x) =
∂u(i)

∂w(i)

(
∂f(w,x)

∂u(i)

)T
= v(i−1)

(
∂f(w,x)

∂u(i)

)T
, (i = 1, · · · , l).

(24)

Then by chain rule, we can easily compute the gradient of f(w,x) with respect to w(j) which is
formulated as

∇w(j)
f(w,x) = vec

(
v(j−1)

(
G(u(j))Aj+1Aj+2 · · ·Al(v

(l) − y)
)T)

, (j = 1, · · · , l − 1),

and

∇w(l)
f(w,x) = vec

(
v(l−1)

(
G(u(l))(v(l) − y)

)T)
.

Besides, since the values in v(l) belong to the range [0, 1]. Combine with Lemma 22, we can bound
‖∇wf(w, x)‖2 as follows:

‖∇wf(w,x)‖22 =
l∑

j=1

∥∥∇w(j)
f(w,x)

∥∥2

2

=

∥∥∥∥v(l−1)
(
G(u(l))(v(l) − y)

)T∥∥∥∥2

F

+

l−1∑
j=1

∥∥∥∥v(j−1)
(
G(u(j))Bj+1:l(v

(l) − y)
)T∥∥∥∥2

F

≤ 1

16
dl−1

∥∥∥v(l) − y
∥∥∥2

2
+

1

16

∥∥∥v(l) − y
∥∥∥2

2

l−1∑
j=1

dj−1 ‖Bj+1:l‖2F

¬
≤ 1

16
cycd +

1

16
cycdcr(l − 1),

where cy, cd, cr are defined as

‖v(l) − y‖22 ≤ cy, cd = max(d0,d1, · · · ,dl) and cr = max

(
r2

16
,

(
r2

16

)l−1
)
.

Notice, ¬ holds since in Lemma 22, we have

‖Bs:t‖2F ≤
(r

4

)2(t−s+1)

≤ max

(
r2

16
,

(
r2

16

)l−1
)
.
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Thus, we can obtain

‖∇wf(w, x)‖2 ≤
√

1

16
cycd (1 + cr(l − 1)) , α.

The proof is completed.

D.2.2 PROOF OF LEMMA 17

For convenience, we first give the computation of some gradients.
Lemma 23. Assume the activation functions in deep neural network are sigmoid functions. Then the
following properties hold:

(1) We can compute the gradients ∂f(w,x)
∂u(i) and ∂f(w,x)

∂v(i) as

∂f(w,x)

∂u(i)
= G(u(i))Bi+1:l(v

(l) − y) and
∂f(w,x)

∂v(i)
= Bi+1:l(v

(l) − y).

(2) We can compute the gradient ∂u(i)

∂w(j)
as

∂u(i)

∂w(j)
= (v(j−1))T ⊗

(
G(u(j))Bj+1:i−1(W (i))T

)T
∈ Rdi×djdj−1 , (i > j).

∂u(i)

∂w(i)
= (v(i−1))T ⊗ Idi ∈ Rdi×didi−1 , (i = j).

(3) We can compute the gradient ∂v(i)

∂w(j)
as

∂v(i)

∂w(j)
= (v(j−1))T ⊗

(
G(u(j))Bj+1:i

)T
∈ Rdi×djdj−1 , (i ≥ j).

It should be pointed out that the proof of Lemma 23 can be founded Sec. D.4.

Proof. To prove our conclusion, we have two steps: computing the Hessian and bounding its operation
norm.

Step 1. Compute the Hessian: We first consider the computation of ∂2f(w,x)

∂wT
(i)
∂w(j)

:

∂2f(w,x)

∂wT
(i)∂w(j)

=
∂
(
vec

((
G(u(j))Aj+1Aj+2 · · ·Al(v

(l) − y)
)

(v(j−1))T
))

∂wT
(i)

.

Recall that we define

Bs:t = AsAs+1 · · ·At ∈ Rds−1×dt , (s ≤ t) and Bs:t = I, (s > t).

Then we have

∂2f(w,x)

∂wT
(i)∂w(j)

=
(
v(j−1)(v(l) − y)TBT

j+1:l

)
⊗
(
Idj
) ∂vec (G(u(j))

)
∂wT

(i)

(, Qij
1 )

+

l∑
k=j+1

(
v(j−1)(v(l) − y)TBT

k+1:l

)
⊗
(
G(u(j))Bj+1:k−1W

T
k

) ∂vec (G(u(k))
)

∂wT
(i)

(, Qij
2 )

+
(
v(j−1)(v(l) − y)TBT

i+1:lG(u(i))
)
⊗
(
G(u(j))Bj+1:i−1

) ∂vec (W T
i

)
∂wT

(i)

(, Qij
3 )

+ v(j−1) ⊗
(
G(u(j))Bj+1:l

) ∂(v(l) − y)

∂wT
(i)

(, Qij
4 )

+ Idj−1 ⊗
(
G(u(j))Bj+1:l(v

(l) − y)
) ∂v(j−1)

∂wT
(i)

(, Qij
5 )
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Case I: i > j. We first consider the case that i>j. In this is case,Qij
1 =0 since

∂vec(G(u(j)))
∂wT

(i)

= 0.

ComputingQij
2 needs more efforts. By utilizing the computation of ∂u

(k)

∂w(i)
in Lemma 23, we have

∂vec
(
G(u(k))

)
∂w(i)

=
∂vec

(
G(u(k))

)
∂u(k)

∂u(k)

∂w(i)
=Pk

(
v(i−1))T⊗

(
G(u(i))Bi+1:k−1(W (k))T

)T)
, (k>i)

where Pk is a matrix of size d2
k × dk whose ((s − 1)dk + s, s) (s = 1, · · · ,dk) entry equal to

σ(u
(k)
s )(1− σ(u

(k)
s ))(1− 2σ(u

(k)
s )) and rest entries are all 0. When k = i,

∂vec
(
G(u(k))

)
∂w(k)

=
∂vec

(
G(u(k))

)
∂u(k)

∂u(k)

∂w(k)
= Pk

(
(v(k−1))T ⊗ Idk

)
∈ Rd

2
k×dkdk−1 .

Note that for k < i, we have ∂G(u(k))
∂w(i)

= 0. For brevity, let

Dk ,
((
v(j−1)(v(l) − y)TBT

k+1:l

)
⊗
(
G(u(j))Bj+1:k−1W

T
k

))
(k = i, · · · , l). (25)

Therefore, we have

Qij
2 = DiPi

(
(v(i−1))T ⊗ Idi

)
+

l∑
k=i+1

DkPk

(
(v(i−1))T ⊗

(
G(u(i))Bi+1:k−1(W (k))T

)T)
.

Then we considerQij
3 .

Qij
3 =

(
v(j−1)(v(l) − y)TBT

i+1:lG(u(i))
)
⊗
(
G(u(j))Bj+1:i−1

)
.

Also we can use the computation of ∂v(l)

∂w(i)
in Lemma 23 and computeQij

4 as follows:

Qij
4 =v(j−1)⊗

(
G(u(j))Bj+1:l

)∂(v(l) − y)

∂wT
(i)

=
(
v(j−1)⊗

(
G(u(j))Bj+1:l

))(
(v(i−1))T⊗

(
G(u(i))Bi+1:l

)T)
.

Finally, since i > j, we can computeQij
5 = 0.

Case II: i = j. We first consider ∂G(u(k))
∂w(k)

:

∂vec
(
G(u(k))

)
∂wT

(k)

=
∂vec

(
G(u(k))

)
∂u(k)

∂u(k)

∂wT
(k)

= Pk

(
(v(k−1))T ⊗ Idk

)
∈ Rd

2
k×dkdk−1 ,

wherePk is a matrix of size d2
k×dk whose (s, (s−1)dk+s) entry equal to σ(u

(k)
s )(1−σ(u

(k)
s ))(1−

2σ(u
(k)
s )) and rest entries are all 0. Qjj

1 can be computed as

Qjj
1 =

(
v(j−1)(v(l) − y)TBT

j+1:l

)
⊗
(
Idj
) ∂vec (G(u(j))

)
∂wT

(j)

=
((
v(j−1)(v(l) − y)TBT

j+1:l

)
⊗
(
Idj
))(

Pj

(
(v(j−1))T ⊗ Idj

))
.

As forQjj
2 , by Eqn. (25) we have

Qjj
2 =

l∑
k=j+1

DkPk

(
v(j−1))T ⊗

(
G(u(j))Bj+1:k−1(W (k))T

)T)
.

Since i = j,Qjj
3 does not exist. For convenience, we just setQjj

3 = 0.
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Now we considerQjj
4 which can be computed as follows:

Qjj
4 =v(j−1)⊗

(
G(u(j))Bj+1:l

)∂(v(l)−y)

∂wT
(j)

=
(
v(j−1)⊗

(
G(u(j))Bj+1:l

))(
(v(j−1))T⊗

(
G(u(j))Bj+1:l

)T)
.

Finally, since i = j, we can computeQjj
5 = 0.

Case III: i < j. Since ∂2f(w,x)
∂w∂wT

is symmetrical, we haveQij
k = Qji

k (k = 1, · · · , 5).

Step 2. Bound the operation norm of Hessian: We mainly use Lemma 22 to achieve this goal.
From Lemma 22, we have

(1) For arbitrary matricesM andN of proper size, we have

‖G(u(i))M‖2F ≤
1

16
‖M‖2F and ‖NG(u(i))‖2F ≤

1

16
‖N‖2F .

(2) For arbitrary matricesM andN of proper size, we have

‖PkM‖2F ≤
26

38
‖M‖2F and ‖NPk‖2F ≤

26

38
‖N‖2F .

(3) ForBs:t andDs:t, we have

‖Bs:t‖2F ≤
1

16t−s+1
Ds:t and

1

16t−s+1
Ds:t ≤ cr,

where cr = max

(
r2

16 ,
(
r2

16

)l)
.

(4) For arbitrary matricesM ,N and I of proper sizes, letm = vec (M). Then we have

‖(N ⊗ I)m‖2F ≤ ‖M‖
2
F ‖N‖

2
F and ‖(I ⊗N)m‖2F ≤ ‖M‖

2
F ‖N‖

2
F .

The values of entries in v(h) are bounded by 0 ≤ σ(u
(i)
h ) ≤ 1 which leads to

∥∥v(h)
∥∥2

F
≤ dh ≤ cd,

where cd = maxi di. On the other hand, since the values in v(l) belong to the range [0, 1] and y is
the label, ‖v(l) − y‖22 can be bounded:

‖v(l) − y‖22 ≤ cy < +∞,
where cy is a universal constant.

We first define

Cij
k = DkPk

(
v(i−1))T ⊗

(
G(u(i))Bi+1:k−1(W (k))T

)T)
and

Cij =DiPi

(
(v(i−1))T ⊗ Idi

)
=
((
v(i−1) ⊗ Idi

)
(DiPi)

T
)T ¬

=
(
v(i−1) ⊗ (DiPi)

T
)T

=(v(i−1))T ⊗ (DiPi) ,

where Dk is defined in Eqn. (25). ¬ holds since for an arbitrary vector u ∈ Rk and an arbitrary
matrixM ∈ Rk×k, we have (u⊗ Ik)M = u⊗M .

Case I: i > j. According to the definition of Cij and Cij
k , we haveQij

2 = Cij +
∑l
k=i+1C

ij
k . So

we have∥∥∥∥∥ ∂2f(w,x)

∂wT
(i)∂w(j)

∥∥∥∥∥
2

F

=
∥∥∥Qij

1 +Qij
2 +Qij

3 +Qij
4 +Qij

5

∥∥∥2

F

=

∥∥∥∥∥Cij +

l∑
k=i+1

Cij
k +Qij

3 +Qij
4

∥∥∥∥∥
2

F

=(l − i+ 3)

(∥∥Cij
∥∥2

F
+

l∑
k=i+1

∥∥∥Cij
k

∥∥∥2

F
+
∥∥∥Qij

3

∥∥∥2

F
+
∥∥∥Qij

4

∥∥∥2

F

)
.
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Here we bound each term separately:∥∥Cij
∥∥2

F
≤
∥∥∥v(j−1)

∥∥∥2

F

∥∥∥v(l) − y
∥∥∥2

F
‖Bi+1:l‖2F

1

16

∥∥Bj+1:i−1W
T
i

∥∥2

F

26

38

∥∥∥v(i−1)
∥∥∥2

F

≤26

38
cydj−1di−1

1

16l−i
Di+1:l

1

16i−j
Dj+1:i

≤26

38
cydj−1di−1

1

16l−j
Dj+1:l

≤26

38
cydj−1di−1cr.

Similarly, we can bound ‖Cij
k ‖2F as follows:∥∥∥Cij

k

∥∥∥2

F

≤
∥∥∥v(j−1)

∥∥∥2

F

∥∥∥v(l)−y
∥∥∥2

F
‖Bk+1:l‖2F

1

16

∥∥Bj+1:k−1W
T
k

∥∥2

F

26

38

∥∥∥v(i−1)
∥∥∥2

F

1

16

∥∥∥Bi+1:k−1(W (k))T
∥∥∥2

F

≤26

38
cydj−1di−1

1

16l−k
Dk+1:l

1

16k−j−1
Dj+1:k

1

16k−i−1
Di+1:k

=
26

38
cydj−1di−1

1

16l−j−1
Dj+1:l

1

16k−i−1
Di+1:k

≤214

38
cydj−1di−1c

2
r.

We also bound
∥∥∥Qij

3

∥∥∥2

F
as∥∥∥Qij

3

∥∥∥2

F
≤
∥∥∥v(j−1)

∥∥∥2

F

∥∥∥v(l) − y
∥∥∥2

F

1

16
‖Bi+1:l‖2F

1

16
‖Bj+1:i−1‖2F ≤

1

28
cydj−1cr.

Finally, we bound
∥∥∥Qij

4

∥∥∥2

F
as follows:∥∥∥Qij

4

∥∥∥2

F
≤
∥∥∥v(j−1)

∥∥∥2

F

1

16
‖Bj+1:l‖2F

∥∥∥v(i−1)
∥∥∥2

F

1

16
‖Bi+1:l‖2F ≤

1

28
dj−1di−1c

2
r.

Note that di ≤ cd. Thus, we can bound
∥∥∥∥ ∂2f(w,x)

∂w(j)∂w
T
(i)

∥∥∥∥2

F

as

∥∥∥∥∥ ∂2f(w,x)

∂wT
(i)∂w(j)

∥∥∥∥∥
2

F

≤(l − i+ 3)

(
26

38
cydj−1di−1cr +

l∑
k=i+1

214

38
cydj−1di−1c

2
r +

1

28
cydj−1cr +

1

28
dj−1di−1c

2
r

)

≤(l + 1)

(
64

6561
cyc

2
dcr +

4096

6561
cy(l − 2)c2dc

2
r +

1

256
cycdcr +

1

256
cdc

2
r

)
.

Case II: i = j. According to the definition of Cij and Cij
k , we haveQjj

2 =
∑l
k=j+1C

jj
k .

Similarly, we have∥∥∥∥∥ ∂2f(w,x)

∂wT
(i)∂w(j)

∥∥∥∥∥
2

F

=
∥∥∥Qjj

1 +Qjj
2 +Qjj

3 +Qjj
4 +Qjj

5

∥∥∥2

F
=

∥∥∥∥∥∥Qjj
1 +

l∑
k=j+1

Cjj
k +Qij

4

∥∥∥∥∥∥
2

F

≤(l − j + 2)

∥∥∥Qjj
1

∥∥∥2

F
+

l∑
k=j+1

∥∥∥Cjj
k

∥∥∥2

F
+
∥∥∥Qjj

4

∥∥∥2

F

 .
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Thus, we can bound
∥∥∥Qjj

1

∥∥∥2

F
first:∥∥∥Qjj

1

∥∥∥2

F
≤
∥∥∥v(j−1)

∥∥∥2

F

∥∥∥v(l) − y
∥∥∥2

F
‖Bj+1:l‖2F

26

38

∥∥∥v(j−1)
∥∥∥2

F
≤ 26

38
cyd

2
j−1cr.

As forQjj
2 , we have∥∥∥Cij

k

∥∥∥2

F

≤
∥∥∥v(j−1)

∥∥∥2

F

∥∥∥v(l) − y
∥∥∥2

F
‖Bk+1:l‖2F

1

16

∥∥Bj+1:k−1W
T
k

∥∥2

F

26

38

∥∥∥v(j−1)
∥∥∥2

F

1

16

∥∥∥Bj+1:k−1(W (k))T
∥∥∥2

F

=
26

38
cyd

2
j−1

1

16l−k
Dk+1:l

1

16k−j−1
Dj+1:k

1

16k−j−1
Dj+1:k

≤214

38
cyd

2
j−1c

2
r.

Then we bound ‖Qjj
4 ‖2F :∥∥∥Qjj

4

∥∥∥2

F
≤
∥∥∥v(j−1)

∥∥∥2

F

1

16
‖Bj+1:l‖2F

∥∥∥v(j−1)
∥∥∥2

F

1

16
‖Bj+1:l‖2F ≤

1

28
d2
j−1c

2
r.

Note that for any input, we have cv = maxj
∥∥v(j−1)(v(l) − y)T

∥∥2

F
≤ maxj ‖v(j−1)‖2F∥∥(v(l) − y

∥∥2

F
≤ cycd, where

∥∥v(l) − y
∥∥2

F
can be bounded by a constant cy. Thus, we can bound∥∥∥∥ ∂2f(w,x)

∂wT
(i)
∂w(j)

∥∥∥∥2

F

as

∥∥∥∥∥ ∂2f(w,x)

∂wT
(i)∂w(j)

∥∥∥∥∥
2

F

≤(l − i+ 3)

(
26

38
cyd

2
j−1cr +

l∑
k=i+1

214

38
cyd

2
j−1c

2
r +

1

28
d2
j−1c

2
r

)

≤(l + 2)

(
64

6561
cyc

2
dcr +

4096

6561
cy(l − 1)c2dc

2
r +

1

256
c2dc

2
r

)
.

Case III: i < j. Since ∂2f(w,x)
∂w∂wT

is symmetrical, we haveQij
k = Qji

k (k = 1, · · · , 5). Thus, it yields∥∥∥∥∥ ∂2f(w,x)

∂wT
(i)∂w(j)

∥∥∥∥∥
2

F

≤(l + 1)

(
64

6561
cyc

2
dcr +

4096

6561
cy(l − 2)c2dc

2
r +

1

256
cycdcr +

1

256
cdc

2
r

)
.

Final result: Thus we can bound∥∥∇2
wf(w,x)

∥∥
op ≤

∥∥∇2
wf(w,x)

∥∥
F

≤

√√√√(l − 1)l max
i,j:i 6=j

∥∥∥∥∥ ∂2f(w,x)

∂w(j)∂w
T
(i)

∥∥∥∥∥
2

F

+

l∑
j=1

∥∥∥∥∥ ∂2f(w,x)

∂w(j)∂w
T
(i)

∥∥∥∥∥
2

F

≤
(

(l − 1)l(l+1)

(
64

6561
cyc

2
dcr+

4096

6561
cy(l − 2)c2dc

2
r+

1

256
cycdcr +

1

256
cdc

2
r

)
+(l + 2)

(
64

6561
cyc

2
dcr +

4096

6561
cy(l − 1)lc2dc

2
r +

1

256
lc2dc

2
r

)) 1
2

≤
√
cs1crc

2
dl

4,

where cs1 and cs2 are two constants.

Since
∥∥∇2

wf(w,x)
∥∥

op ≤
∥∥∇2

wf(w,x)
∥∥
F

, we know that the gradient ∇wf(w,x) is ς-Lipschitz,

where ς =
√
cs1crc

2
dl

4.
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On the other hand, since for any inputx, σ(x) belongs to [0, 1], the values of the entries of∇3
wf(w,x)

can be bounded. Thus, we can bound

‖∇3
wf(w,x)‖op = sup

‖λ‖2≤1

〈
λ⊗

3

,∇3
wf(w,x)

〉
= [∇3

wf(w,x)]ijkλiλjλk ≤ ξ < +∞.

We complete the proof.

D.2.3 PROOF OF LEMMA 18

For convenience, we first give the computation of some gradients.

Lemma 24. Assume the activation functions in deep neural network are sigmoid functions. Then we
can compute the gradients ∂u(j)

∂u(1) and ∂v(j)

∂u(1) as

∂u(j)

∂u(1)
=
(
G(u(1))A2 · · ·Aj−1(W j)T

)T
∈ Rdj×d1 , (j > 1).

∂v(j)

∂u(1)
=
(
G(u(1))A2 · · ·Aj

)T
∈ Rdj×d1 , (j > 1).

It should be pointed out that the proof of Lemma 24 can be founded Sec. D.4.

Proof. To prove our conclusion, we have two steps: computing ∇x∇wf(w,x) and bounding its
operation norm.

Step 1. Compute∇x∇wf(w,x):

We first consider the computation of ∂2f(w,x)
∂xT ∂w(j)

:

∂2f(w,x)

∂xT∂w(j)
=
∂
(
vec

((
G(u(j))Aj+1Aj+2 · · ·Al(v

(l) − y)
)

(v(j−1))T
))

∂xT
.

Recall that we define

Ai = (W (i))TG(u(i)) ∈ Rdi−1×di .

Bs:t = AsAs+1 · · ·At ∈ Rds−1×dt , (s ≤ t) and Bs:t = I, (s > t).

Then we have

∂2f(w,x)

∂xT∂w(j)
=
(
v(j−1)(v(l) − y)TBT

j+1:l

)
⊗
(
Idj
) ∂vec (G(u(j))

)
∂xT

(, Qj
1)

+

l∑
k=j+1

(
v(j−1)(v(l) − y)TBT

k+1:l

)
⊗
(
G(u(j))Bj+1:k−1W

T
k

) ∂vec (G(u(k))
)

∂xT
(, Qj

2)

+ v(j−1) ⊗
(
G(u(j))Bj+1:l

) ∂(v(l) − y)

∂xT
(, Qj

3)

+ Idj−1 ⊗
(
G(u(j))Bj+1:l(v

(l) − y)
) ∂v(j−1)

∂xT
(, Qj

4)

By using Lemma 24, we can computeQij
1 as

∂vec
(
G(u(k))

)
∂xT

=
∂vec

(
G(u(k))

)
∂u(k)

∂u(k)

∂xT
= Pk

(
G(u(1))B2:k−1(W k)T

)T
.

Thus, we have

Qj
1 =

(
v(j−1)(v(l) − y)TBT

j+1:l

)
⊗ Idj

∂vec
(
G(u(j))

)
∂xT

=
((
v(j−1)(v(l) − y)TBT

j+1:l

)
⊗ Idj

)
Pk

(
G(u(1))B2:k−1(W k)T

)T
.
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As forQj
2, we also can utilize Lemma 24 to compute it:

Qj
2 =

l∑
k=j+1

(
v(j−1)(v(l) − y)TBT

k+1:l

)
⊗
(
G(u(j))Bj+1:k−1W

T
k

) ∂vec (G(u(k))
)

∂xT

=

l∑
k=i+1

((
v(j−1)(v(l) − y)TBT

k+1:l

)
⊗
(
G(u(j))Bj+1:k−1W

T
k

))
Pk

(
G(u(1))B2:k−1(W k)T

)T
.

Then we considerQij
3 .

Qj
3 = v(j−1) ⊗

(
G(u(j))Bj+1:l

) ∂(v(l) − y)

∂xT
=
(
v(j−1) ⊗

(
G(u(j))Bj+1:l

))(
G(u(1))B2:l

)T
.

Qj
4 can be computed as follows:

Qj
4 =Idj−1

⊗
(
G(u(j))Bj+1:l(v

(l)−y)
) ∂v(j−1)

∂xT
=
(
Idj−1

⊗
(
G(u(j))Bj+1:l(v

(l)−y)
))(

G(u(1))B2:j

)T
.

Step 2. Bound the operation norm of Hessian: We mainly use Lemma 22 to achieve this goal.
From Lemma 22, we have

(1) For arbitrary matricesM andN of proper size, we have

‖G(u(i))M‖2F ≤
1

16
‖M‖2F and ‖NG(u(i))‖2F ≤

1

16
‖N‖2F .

(2) For arbitrary matricesM andN of proper size, we have

‖PkM‖2F ≤
26

38
‖M‖2F and ‖NPk‖2F ≤

26

38
‖N‖2F .

(3) ForBs:t andDs:t, we have

‖Bs:t‖2F ≤
1

16t−s+1
Ds:t and

1

16t−s+1
Ds:t ≤ cr,

where cr = max

(
r2

4 ,
(
r2

16

)l−1
)

.

(4) For arbitrary matricesM ,N and I of proper sizes, letm = vec (M). Then we have

‖(N ⊗ I)m‖2F ≤ ‖M‖
2
F ‖N‖

2
F and ‖(I ⊗N)m‖2F ≤ ‖M‖

2
F ‖N‖

2
F .

The values of entries in v(h) are bounded by 0 ≤ σ(u
(i)
h ) ≤ 1 which leads to

∥∥v(h)
∥∥2

F
≤ dh ≤ cd,

where cd = maxi di. On the other hand, since the values in v(l) belong to the range [0, 1] and y is
the label, ‖v(l) − y‖22 can be bounded:

‖v(l) − y‖22 ≤ cy < +∞,
where cy is a universal constant.

We first define

Cj
k =

((
v(j−1)(v(l) − y)TBT

k+1:l

)
⊗
(
G(u(j))Bj+1:k−1W

T
k

))
Pk

(
G(u(1))B2:k−1(W k)T

)T
.

Then we haveQj
2 =

∑l
k=j+1C

j
k. So we have

∥∥∥∥∂2f(w,x)

∂xT∂w(j)

∥∥∥∥2

F

=
∥∥∥Qj

1 +Qj
2 +Qj

3 +Qj
4

∥∥∥2

F
=

∥∥∥∥∥∥Qj
1 +

l∑
k=j+1

Cj
k +Qj

3 +Qj
4

∥∥∥∥∥∥
2

F

=(l − j + 3)

∥∥∥Qj
1

∥∥∥2

F
+

l∑
k=j+1

∥∥∥Cj
k

∥∥∥2

F
+
∥∥∥Qj

3

∥∥∥2

F
+
∥∥∥Qj

4

∥∥∥2

F

 .
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Then we bound each term separately:∥∥∥Qj
1

∥∥∥2

F
≤
∥∥∥v(j−1)

∥∥∥2

F

∥∥∥v(l) − y
∥∥∥2

F
‖Bj+1:l‖2F

26

38

1

16

∥∥B2:k−1(W k)T
∥∥2

F
≤ 26

38
cydj−1c

2
r.

Similarly, we bound
∥∥∥Cj

k

∥∥∥2

F
:∥∥∥Cj

k

∥∥∥2

F
=
∥∥∥v(j−1)

∥∥∥2

F

∥∥∥v(l) − y
∥∥∥2

F
‖Bk+1:l‖2F

1

16

∥∥Bj+1:k−1W
T
k

∥∥2

F

26

38

1

16

∥∥∥B2:k−1(W (k))T
∥∥∥2

F

=
26

38
cydj−1

1

16l−k
Dk+1:l

1

16k−j−1
Dj+1:k

1

16k−1
D2:k

≤26

38
cydj−1c

2
r.

We also bound
∥∥∥Qij

3

∥∥∥2

F
as∥∥∥Qij

3

∥∥∥2

F
≤
∥∥∥v(j−1)

∥∥∥2

2

1

16
‖Bj+1:l‖2F

1

16
‖B2:l‖2F ≤

1

28
dj−1c

2
r.

Finally, we bound
∥∥∥Qj

4

∥∥∥2

F
as follows:∥∥∥Qj

4

∥∥∥2

F
=

1

16
‖Bj+1:l‖2F

∥∥∥v(l) − y
∥∥∥2

F

1

16
‖B2:j‖2F ≤

1

28
cycr.

Since cd = maxi di, we can bound
∥∥∥ ∂2f(w,x)
∂w(j)∂xT

∥∥∥2

F
as

∥∥∥∥∂2f(w,x)

∂xT∂w(j)

∥∥∥∥2

F

≤(l − j + 3)

26

38
cydj−1c

2
r +

l∑
k=j+1

26

38
cydj−1c

2
r +

1

28
cydj−1cr +

1

28
cycr


≤(l + 2)

26

38
cydj−1c

2
r +

l∑
k=j+1

26

38
cydj−1c

2
r +

1

28
cydj−1cr +

1

28
cycr

 .

Final result: Thus we can bound

‖∇w∇xf(w,x)‖op ≤‖∇w∇xf(w,x)‖F ≤

√√√√ l∑
j=1

∥∥∥∥∂2f(w,x)

∂w(j)∂xT

∥∥∥∥2

F

≤

√√√√√ l∑
j=1

(l + 2)

26

38
cydj−1c2r +

l∑
k=j+1

26

38
cydj−1c2r +

1

28
cydj−1cr +

1

28
cycr


≤
√

26

38
l(l + 2)cycrcd (lcr + 1),

where cd = maxj dj . The proof is completed.

D.2.4 PROOF OF LEMMAS 19 AND 20

Lemma 25. (Alessandro, 2016; Rigollet, 2015) Let (x1, · · · ,xk) be a vector of i.i.d. Gaussian
variables from N (0, τ2) and let f : Rd0 → R be L-Lipschitz. Then the variable f(x)− Ef(x) is
sub-Gaussian. That is, we have

P (f(x)− Ef(x) > t) ≤ exp

(
− t2

2L2τ2

)
, (∀t ≥ 0),

or
E (λ(f(x)− Ef(x))) ≤ exp

(
4λ2L2τ2

)
, (∀λ ≥ 0).

Remarkably, this is a dimension free inequality.

47



Published as a conference paper at ICLR 2018

Proof of Lemma 19. We first define a function g(x) = zT∇wf(w,x) where z ∈ Rd is a constant
vector. Then we have∇xg(x) = ∇x

(
zT∇wf(w,x)

)
= ∇x∇wf(w,x)z. Then by Lemma 18, we

can obtain ‖∇xg(x)‖2 = ‖∇x∇wf(w,x)z‖2 ≤ β‖z‖2, where β =
√

26

38 l(l + 2)cycrcd (lcr + 1)

in which cy, cd and cr are defined in Lemma 18. This means g(x) is β‖z‖2-Lipschitz. Thus, by
Lemma 25, we have

E (t 〈z,∇wf(w,x)− E∇wf(w,x)〉) = E (t (g(x)− Eg(x))) ≤ exp
(
4t2β2‖z‖22τ2

)
.

Let λ = tz. This further gives

E (〈λ,∇wf(w,x)− E∇wf(w,x)〉) ≤ exp
(
4β2τ2‖λ‖22

)
,

which means 〈λ,∇wf(w,x)− E∇wf(w,x)〉 is 8β2τ2-sub-Gaussian.

Proof of Lemma 20. We first define a function h(x) = zT∇2
wf(w,x)z where z ∈ Sd−1, i.e.

‖z‖2 = 1. Then h(w) is a γ-Lipschitz function, where γ = ‖∇x∇2
wf(w,x)‖op. Note that since

the sigmoid function is infinitely differentiable function, ∇x∇2
wf(w,x) exists. Also since for any

input x, σ(x) belongs to [0, 1]. Thus, the values of the entries in ∇x∇2
wf(w,x) can be bounded.

So according to the definition of the operation norm of a 3-way tensor, the operation norm of
∇x∇2

wf(w,x) can be bounded by a constant. Without loss of generality, let ‖∇x∇2
wf(w,x)‖op ≤

γ < +∞. Thus, by Lemma 25, we have

E
(
t
〈
z,
(
∇2
wf(w,x)− E∇2

wf(w,x)
)
z
〉)

= E (t (h(x)− Eh(x))) ≤ exp

(
8t2γ2τ2

2

)
.

This means that the hessian of the loss evaluated on a unit vector is 8γ2τ2-sub-Gaussian.

D.2.5 PROOF OF LEMMA 21

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ‖w(j)‖2 ≤ r.
Assume thatw(j) has sj non-zero entries. Then we have

∑l
j=1 sj = s. So here we separately assume

wj
ε = {wj

1, · · · ,w
j
nεj
} is the djdj−1ε/d-covering net of the ball Bdjdj−1(r) which corresponds

to the weight w(j) of the j-th layer. Let nεj be the ε/l-covering number. By ε-covering theory in
(Vershynin, 2012), we can have

nε
j ≤

(
djdj−1

sj

)(
3r

djdj−1ε/(ld)

)sj
≤ exp

(
sj log

(
3rdjdj−1

djdj−1ε/d

))
= exp

(
sj log

(
3rd

ε

))
.

Let w ∈ Ω be an arbitrary vector. Since w = [w(1), · · · ,w(l)] where w(j) is the weight of the j-th
layer, we can always find a vector wj

kj
in wj

ε such that ‖w(j) −wj
kj
‖2 ≤ djdj−1ε/d. For brevity,

let jw ∈ [nε
j ] denote the index ofwj

kj
in ε-netwj

ε . Then letwkw = [wj
k1

; · · · ;wj
kj

; · · · ;wj
kl

]. This
means that we can always find a vector wkw such that ‖w − wkw‖2 ≤ ε. Accordingly, we can
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decompose
∥∥∥∇2Ĵn(w)−∇2J(w)

∥∥∥
op

as follows:∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op

=

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(w,x(i))− E(∇2f(w,x))

∥∥∥∥∥
op

=

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇f(wkw ,x(i))

)
+

1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

+ E(∇2f(wkw ,x))− E(∇2f(w,x))

∥∥∥∥∥
op

≤

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
op

+

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

∥∥∥∥∥
op

+

∥∥∥∥∥E(∇2f(wkw ,x))− E(∇2f(w,x))

∥∥∥∥∥
op
.

Here we also define four events E0, E1, E2 and E3 as

E0 =

{
sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≥ t
}
,

E1 =

 sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
op
≥ t

3

 ,

E2 =

 sup
jw∈[nεj ],j=[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

∥∥∥∥∥
op
≥ t

3

 ,

E3 =

{
sup
w∈Ω

∥∥E(∇2f(wkw ,x))− E(∇2f(w,x))
∥∥

op ≥
t

3

}
.

Accordingly, we have
P (E0) ≤ P (E1) + P (E2) + P (E3) .

So we can respectively bound P (E1), P (E2) and P (E3) to bound P (E0).

Step 1. Bound P (E1): We first bound P (E1) as follows:

P (E1) =P

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
2

≥ t

3

)
¬
≤3

t
E

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥∥∥∥
2

)

≤3

t
E

(
sup
w∈Ω

∥∥ 1
n

∑n
i=1

(
∇2f(w,x(i))−∇2f(wkw ,x(i))

)∥∥
2

‖w −wkw‖2
sup
w∈Ω
‖w −wkw‖2

)

≤3ε

t
E

 sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

∇3f(w,x(i))

∥∥∥∥∥
op


­
≤3ξε

t
,

where ¬ holds since by Markov inequality and ­ holds because of Lemma 17.

Therefore, we can set

t ≥ 6ξε

ε
.
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Then we can bound P(E1):

P(E1) ≤ ε

2
.

Step 2. Bound P (E2): By Lemma 2, we know that for any matrix X ∈ Rd×d, its operator norm
can be computed as

‖X‖op ≤
1

1− 2ε
sup
λ∈λε

|〈λ,Xλ〉| .

where λε = {λ1, . . . ,λkw} be an ε-covering net of Bd(1).

Let λ1/4 be the 1
4 -covering net of Bd(1) but it has only s nonzero entries. So the size of its ε-net is(

d
s

)(
3

1/4

)s
≤ exp (s log (12d)) .

Recall that we use jw to denote the index of wj
kj

in ε-net wj
ε and we have jw ∈ [nε

j ], (nε
j ≤

exp
(
sj log

(
3rd
ε

))
). Then we can bound P (E2) as follows:

P(E2)=P

(
sup

jw∈[nεj ],j=[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(wkw ,x(i))− E(∇2f(wkw ,x))

∥∥∥∥∥
2

≥ t

3

)

=P

(
sup

jw∈[nεj ],j=[l],λ∈λ1/4

2

∣∣∣∣∣
〈
λ,

(
1

n

n∑
i=1

∇2f(wkw ,x(i))− E
(
∇2f(wkw ,x)

))
λ

〉∣∣∣∣∣ ≥ t

3

)

≤ exp (s log (12d)) exp

 l∑
j=1

sj log

(
3rd

ε

) sup
jw∈[nεj ],j=[l],λ∈λ1/4

P

(∣∣∣∣∣ 1n
n∑
i=1

〈
λ,

(
∇2f(wkw ,x(i))−E

(
∇2f(wkw ,x)

))
λ

〉∣∣∣∣∣≥ t

6

)
.

Since by Lemma 20,
〈
λ,
(
∇2
wf(w,x)− E∇2

wf(w,x)
)
λ
〉

where λ ∈ Bd(1) is 8γ2τ2-sub-
Gaussian, i.e.

E
(
t
〈
λ,
(
∇2
wf(w,x)− E∇2

wf(w,x)
)
λ
〉)
≤ exp

(
8t2γ2τ2

2

)
.

Thus, 1
n

∑n
i=1

〈
λ,
(
∇2
wf(w,x)− E∇2

wf(w,x)
)
λ
〉

is 8γ2τ2/n-sub-Gaussian random variable. So
we can obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

〈
y,
(
∇2
wf(w,x)− E∇2

wf(w,x)
)
y
〉∣∣∣∣∣ ≥ t

6

)
≤ 2 exp

(
− nt2

72γ2τ2

)
.

Note d =
∑
j djdj−1. Then the probability of E2 is upper bounded as

P (E2) ≤ 2 exp

(
− nt2

72γ2τ2
+ s log

(
36d2r

ε

))
.

Thus, if we set

t ≥ γτ
√

72 (s log(36d2r/ε) + log(4/ε))

n
,

then we have

P (E2) ≤ ε

2
.
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Step 3. Bound P (E3): We first bound P (E3) as follows:

P (E3) =P
(

sup
w∈Ω

∥∥E(∇2f(wkw ,x))− E(∇2f(w,x))
∥∥

2
≥ t

3

)
≤P
(
E sup
w∈Ω

∥∥(∇2f(wkw ,x)−∇2f(w,x)
∥∥

2
≥ t

3

)
=P

(
E sup
w∈Ω

∥∥(∇2f(w,x)−∇2f(wkw ,x)
)∥∥

2

‖w −wkw‖2
sup
w∈Ω
‖w −wkw‖2 ≥

t

3

)

≤P
(
E sup
w∈Ω

∥∥∇3f(w,x)
∥∥

op ≥
t

3

)
≤P
(
ξε ≥ t

3

)
.

We set ε enough small such that ξε < t/3 always holds. Then it yields P (E3) = 0.

Step 4. Final result: To ensure P(E0) ≤ ε, we just set ε = 36rl2/n and

t≥max

(
6ξε

ε
, γτ

√
72 (s log(36rd2/ε)+log(4/ε))

n

)
=max

(
108ξr

nε
, c′4γτ

√
d log(nl)+log(4/ε)

n

)
.

Therefore, there exists such two universal constants cm′ and cm such that if n ≥ cm′ξ
2l2r2

γ2τ2ε2s log(d) log(1/ε) ,
then

sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≤cmγτ

√
s log(dn/l)+log(4/ε)

n

holds with probability at least 1− ε.

D.3 PROOFS OF MAIN THEORIES

D.3.1 PROOF OF THEOREM 4

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ‖w(j)‖2 ≤ r.
Assume thatw(j) has sj non-zero entries. Then we have

∑l
j=1 sj = s. So here we separately assume

wj
ε = {wj

1, · · · ,w
j
nεj
} is the djdj−1ε/d-covering net of the ball Bdjdj−1(r) which corresponds

to the weight w(j) of the j-th layer. Let nεj be the ε/l-covering number. By ε-covering theory in
(Vershynin, 2012), we can have

nε
j ≤

(
djdj−1

sj

)(
3r

djdj−1ε/(ld)

)sj
≤ exp

(
sj log

(
3rdjdj−1

djdj−1ε/d

))
= exp

(
sj log

(
3rd

ε

))
.

Let w ∈ Ω be an arbitrary vector. Since w = [w(1), · · · ,w(l)] where w(j) is the weight of the j-th
layer, we can always find a vector wj

kj
in wj

ε such that ‖w(j) −wj
kj
‖2 ≤ djdj−1ε/d. For brevity,

let jw ∈ [nε
j ] denote the index ofwj

kj
in ε-netwj

ε . Then letwkw = [wj
k1

; · · · ;wj
kj

; · · · ;wj
kl

]. This
means that we can always find a vector wkw such that ‖w − wkw‖2 ≤ ε. Accordingly, we can
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decompose
∥∥∥∇Ĵn(w)−∇J(w)

∥∥∥
2

as follows:∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2

=

∥∥∥∥∥ 1

n

n∑
i=1

∇f(w,x(i))− E(∇f(w,x))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)
+

1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

+ E(∇f(wkw ,x))− E(∇f(w,x))

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

∥∥∥∥∥
2

+

∥∥∥∥∥E(∇f(wkw ,x))− E(∇f(w,x))

∥∥∥∥∥
2

.

Here we also define four events E0, E1, E2 and E3 as

E0 =

{
sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≥ t
}
,

E1 =

{
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

≥ t

3

}
,

E2 =

{
sup

jw∈[nεj ],j=[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

∥∥∥∥∥
2

≥ t

3

}
,

E3 =

{
sup
w∈Ω

∥∥∥∥∥E(∇f(wkw ,x))− E(∇f(w,x))

∥∥∥∥∥
2

≥ t

3

}
.

Accordingly, we have
P (E0) ≤ P (E1) + P (E2) + P (E3) .

So we can respectively bound P (E1), P (E2) and P (E3) to bound P (E0).

Step 1. Bound P (E1): We first bound P (E1) as follows:

P (E1) =P

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

≥ t

3

)
¬
≤3

t
E

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥∥∥∥
2

)

≤3

t
E

(
sup
w∈Ω

∥∥ 1
n

∑n
i=1

(
∇f(w,x(i))−∇f(wkw ,x(i))

)∥∥
2

‖w −wkw‖2
sup
w∈Ω
‖w −wkw‖2

)

≤3ε

t
E
(

sup
w∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2

)
,

where ¬ holds because of Markov inequality. Then, we bound E
(

supw∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2

)
as

follows:

E
(

sup
w∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2

)
≤E

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(w,x)

∥∥∥∥∥
2

)
=E

(
sup
w∈Ω

∥∥∇2f(w,x)
∥∥

2

)
¬
≤ ς,

where ¬ holds since by Lemma 17, we have∥∥∇2
wf(w,x)

∥∥
op ≤

∥∥∇2
wf(w,x)

∥∥
F
≤ς,
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where ς =
√
cs1crc

2
dl

4 in which cd = maxi di and cr = max

(
r2

16 ,
(
r2

16

)l−1
)

. Therefore, we have

P (E1) ≤ 3ςε

t
.

We further let
t ≥ 6ςε

ε
.

Then we can bound P(E1):
P(E1) ≤ ε

2
.

Step 2. Bound P (E2): By Lemma 1, we know that for any vector x ∈ Rd, its `2-norm can be
computed as

‖x‖2 ≤
1

1− ε
sup
λ∈λε

〈λ,x〉 .

where λε = {λ1, . . . ,λkw} be an ε-covering net of Bd(1).

Let λ1/2 be the 1
2 -covering net of Bd(1) but it has only s nonzero entries. So the size of its ε-net is(

d
s

)(
3

1/2

)s
≤ exp (s log (6d)) .

Recall that we use jw to denote the index of wj
kj

in ε-net wj
ε and we have jw ∈ [nε

j ], (nε
j ≤

exp
(
sj log

(
3rd
ε

))
. Then we can bound P (E2) as follows:

P (E2) =P

(
sup

jw∈[nεj ],j=[l]

∥∥∥∥∥ 1

n

n∑
i=1

∇f(wkw ,x(i))− E(∇f(wkw ,x))

∥∥∥∥∥
2

≥ t

3

)

=P

(
sup

jw∈[nεj ],j=[l],λ∈λ1/2

2

〈
λ,

1

n

n∑
i=1

∇f(wkw ,x(i))− E (∇f(wkw ,x))

〉
≥ t

3

)

≤ exp (s log(6d)) exp

 l∑
j=1

sj log

(
3rd

ε

) sup
jw∈[nεj ],j=[l],λ∈λ1/2

P

(
1

n

n∑
i=1

〈
λ,

∇f(wkw ,x(i))− E (∇f(wkw ,x))

〉
≥ t

6

)
.

Since by Lemma 19, 〈y,∇f(w,x)〉 is 8β2τ2-sub-Gaussian, i.e.

E (〈λ,∇wf(w,x)− E∇wf(w,x)〉) ≤ exp

(
8β2τ2‖λ‖22

2

)
,

where β =
√

26

38 l(l + 2)cycrcd (lcr + 1) in which cy, cd and cr are defined in Lemma 16. Thus,
1
n

∑n
i=1 〈y,∇f(w,x)〉 is 8β2τ2/n-sub-Gaussian random variable. Thus, we can obtain

P

(
1

n

n∑
i=1

〈
y,∇f(wkw ,x(i))− E (∇f(wkw ,x))

〉
≥ t

6

)
≤ exp

(
− nt2

72β2τ2

)
.

Notice,
∑
j djdj−1 = d. In this case, the probability of E2 is upper bounded as

P (E2) ≤ exp

(
− nt2

72β2τ2
+ d log

(
18r

ε

))
.

Thus, if we set

t ≥ βτ
√

72 (s log(18d2r/ε) + log(4/ε))

n
,
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then we have
P (E2) ≤ ε

2
.

Step 3. Bound P (E3): We first bound P (E3) as follows:

P (E3) =P
(

sup
w∈Ω
‖E(∇f(wkw ,x))− E(∇f(w,x))‖2 ≥

t

3

)
=P
(

sup
w∈Ω

‖E (∇f(wkw ,x)−∇f(w,x)‖2)

‖w −wkw‖2
sup
w∈Ω
‖w −wkw‖2 ≥

t

3

)
≤P
(
εE sup

w∈Ω

∥∥∥∇2Ĵn(w,x)
∥∥∥

2
≥ t

3

)
¬
≤P
(
ςε ≥ t

3

)
.

where ¬ holds since by Lemma 17. We set ε enough small such that ςε < t/3 always holds. Then it
yields P (E3) = 0.

Step 4. Final result: To ensure P(E0) ≤ ε, we just set ε = 18r/n and

t ≥max

(
6ςε

ε
, βτ

√
72 (s log(18d2r/ε) + log(4/ε))

n

)

= max

(
108ςr

nε
, βτ

√
72 (s log(nl) + log(4/ε))

n

)
.

Note that ς = O(
√
lcdβ). Therefore, there exists a universal constant cy′ such that if n ≥

cy′cdl
3r2/(s log(d)τ2ε2 log(1/ε)), then

sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≤τ
√

512

729
cyl(l + 2) (lcr + 1) crcd

√
s log(dn/l)+log(4/ε)

n

holds with probability at least 1− ε, where cy , cd and cr are defined in Lemma 16.

D.3.2 PROOF OF THEOREM 5

Proof. Suppose that {w(1),w(2), · · · ,w(m)} are the non-degenerate critical points of J(w). So for
any w(k), it obeys

inf
i

∣∣∣λki (∇2J(w(k))
)∣∣∣ ≥ ζ,

where λki
(
∇2J(w(k))

)
denotes the i-th eigenvalue of the Hessian∇2J(w(k)) and ζ is a constant. We

further define a set D = {w ∈ Rd | ‖∇J(w)‖2 ≤ ε and infi |λi
(
∇2J(w(k))

)
| ≥ ζ}. According

to Lemma 4, D = ∪∞k=1Dk where each Dk is a disjoint component with w(k) ∈ Dk for k ≤ m and
Dk does not contain any critical point of J(w) for k ≥ m+ 1. On the other hand, by the continuity
of ∇J(w), it yields ‖∇J(w)‖2 = ε for w ∈ ∂Dk. Notice, we set the value of ε blow which is
actually a function related n.

Then by utilizing Theorem 4, we let sample number n sufficient large such that

sup
w∈Ω

∥∥∥∇Ĵn(w)−∇J(w)
∥∥∥

2
≤ β ,

ε

2

holds with probability at least 1− ε, where β = τ
√

512
729cyl(l + 2) (lcr + 1) crcd

√
s log(dn/l)+log(4/ε)

n .
This further gives that for arbitrary w ∈ Dk, we have

inf
w∈Dk

∥∥∥t∇Ĵn(w) + (1− t)∇J(w)
∥∥∥

2
= inf
w∈Dk

∥∥∥t(∇Ĵn(w)−∇J(w)
)

+∇J(w)
∥∥∥

2

≥ inf
w∈Dk

‖∇J(w)‖2 − sup
w∈Dk

t
∥∥∥∇Ĵn(w)−∇J(w)

∥∥∥
2

≥ ε
2
. (26)
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Similarly, by utilizing Lemma 21, let n be sufficient large such that

sup
w∈Ω

∥∥∥∇2Ĵn(w)−∇2J(w)
∥∥∥

op
≤ cmγτ

√
s log(dn/l)+log(4/ε)

n
≤ ζ

2

holds with probability at least 1− ε. Assume that b ∈ Rd is a vector and satisfies bT b = 1. In this
case, we can bound λki

(
∇2Ĵn(w)

)
for arbitrary w ∈ Dk as follows:

inf
w∈Dk

∣∣∣λki (∇2Ĵn(w)
)∣∣∣ = inf

w∈Dk
min
bT b=1

∣∣∣bT∇2Ĵn(w)b
∣∣∣

= inf
w∈Dk

min
bT b=1

∣∣∣bT (∇2Ĵn(w)−∇2J(w)
)
b+ bT∇2J(w)b

∣∣∣
≥ inf
w∈Dk

min
bT b=1

∣∣bT∇2J(w)b
∣∣− min

bT b=1

∣∣∣bT (∇2Ĵn(w)−∇2J(w)
)
b
∣∣∣

≥ inf
w∈Dk

min
bT b=1

∣∣bT∇2J(w)b
∣∣− max

bT b=1

∣∣∣bT (∇2Ĵn(w)−∇2J(w)
)
b
∣∣∣

= inf
w∈Dk

inf
i
|λki
(
∇2f(w(k),x)

)
−
∥∥∥∇2Ĵn(w)−∇2J(w)

∥∥∥
op

≥ζ
2
.

This means that in each set Dk, ∇2Ĵn(w) has no zero eigenvalues. Then, combining this and
Eqn. (26), by Lemma 3 we know that if the population risk J(w) has no critical point in Dk, then
the empirical risk Ĵn(w) has also no critical point in Dk; otherwise it also holds. By Lemma 3, we
can also obtain that in Dk, if J(w) has a unique critical point w(k) with non-degenerate index sk,
then Ĵn(w) also has a unique critical point w(k)

n in Dk with the same non-degenerate index sk. The
first conclusion is proved.

Now we bound the distance between the corresponding critical points of J(w) and Ĵn(w). Assume
that in Dk, J(w) has a unique critical point w(k) and Ĵn(w) also has a unique critical point w(k)

n .
Then, there exists t ∈ [0, 1] such that for any z ∈ ∂Bd(1), we have

ε ≥‖∇J(w(k)
n )‖2

= max
zT z=1

〈∇J(w(k)
n ), z〉

= max
zT z=1

〈∇J(w(k)), z〉+ 〈∇2J(w(k) + t(w(k)
n −w(k)))(w(k)

n −w(k)), z〉

¬
≥
〈(
∇2J(w(k))

)2

(w(k)
n −w(k)), (w(k)

n −w(k))

〉1/2

­
≥ζ‖w(k)

n −w(k)‖2,

where ¬ holds since ∇J(w(k)) = 0 and ­ holds since w(k) + t(w
(k)
n − w(k)) is

in Dk and for any w ∈ Dk we have infi |λi
(
∇2J(w)

)
| ≥ ζ. Then if n ≥

cs max
(
cdl

3r2/(s log(d)τ2ε2 log(1/ε)), s log(d/l)/ζ2
)

where cs is a constant, then

‖w(k)
n −w(k)‖2 ≤

2τ

ζ

√
512

729
cyl(l + 2) (lcr + 1) crcd

√
s log(dn/l)+log(4/ε)

n

holds with probability at least 1− ε. The proof is completed.

D.3.3 PROOF OF THEOREM 6

Proof. Recall that the weight of each layer has magnitude bound separately, i.e. ‖w(j)‖2 ≤ r.
Assume thatw(j) has sj non-zero entries. Then we have

∑l
j=1 sj = s. So here we separately assume

wj
ε = {wj

1, · · · ,w
j
nεj
} is the djdj−1ε/d-covering net of the ball Bdjdj−1(r) which corresponds
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to the weight w(j) of the j-th layer. Let nεj be the ε/l-covering number. By ε-covering theory in
(Vershynin, 2012), we can have

nε
j ≤

(
djdj−1

sj

)(
3r

djdj−1ε/(ld)

)sj
≤ exp

(
sj log

(
3rdjdj−1

djdj−1ε/d

))
= exp

(
sj log

(
3rd

ε

))
.

Let w ∈ Ω be an arbitrary vector. Since w = [w(1), · · · ,w(l)] where w(j) is the weight of the j-th
layer, we can always find a vector wj

kj
in wj

ε such that ‖w(j) −wj
kj
‖2 ≤ djdj−1ε/d. For brevity,

let jw ∈ [nε
j ] denote the index ofwj

kj
in ε-netwj

ε . Then letwkw = [wj
k1

; · · · ;wj
kj

; · · · ;wj
kl

]. This
means that we can always find a vector wkw such that ‖w − wkw‖2 ≤ ε. Accordingly, we can
decompose

∣∣∣Ĵn(w)− J(w)
∣∣∣ as

∣∣∣Ĵn(w)− J(w)
∣∣∣= ∣∣∣∣∣ 1n

n∑
i=1

f(w,x(i))− E(f(w,x))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))−f(wkw ,x(i))

)
+

1

n

n∑
i=1

f(wkw ,x(i))−Ef(wkw ,x)+Ef(wkw ,x)−Ef(w,x)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))−f(wkw ,x(i))

)∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

f(wkw ,x(i))−Ef(wkw ,x)

∣∣∣∣∣+
∣∣∣∣∣Ef(wkw ,x)−Ef(w,x)

∣∣∣∣∣.
Then, we define four events E0, E1, E2 and E3 as

E0 =

{
sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣ ≥ t} ,

E1 =

{
sup
w∈Ω

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣∣∣∣ ≥ t

3

}
,

E2 =

{
sup

jw∈[nεj ],j=[l]

∣∣∣∣∣ 1n
n∑
i=1

f(wkw ,x(i))−E(f(wkw ,x))

∣∣∣∣∣≥ t

3

}
,

E3 =

{
sup
w∈Ω

∣∣∣∣∣E(f(wkw ,x))−E(f(w,x))

∣∣∣∣∣≥ t

3

}
.

Accordingly, we have
P (E0) ≤ P (E1) + P (E2) + P (E3) .

So we can respectively bound P (E1), P (E2) and P (E3) to bound P (E0).

Step 1. Bound P (E1): We first bound P (E1) as follows:

P (E1) =P

(
sup
w∈Ω

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣∣∣∣ ≥ t

3

)
¬
≤3

t
E

(
sup
w∈Ω

∣∣∣∣∣ 1n
n∑
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣∣∣∣
)

≤3

t
E

(
sup
w∈Ω

∣∣ 1
n

∑n
i=1

(
f(w,x(i))− f(wkw ,x(i))

)∣∣
‖w −wkw‖2

sup
w∈Ω
‖w −wkw‖2

)

≤3ε

t
E
(

sup
w∈Ω

∥∥∥∇Ĵn(w,x)
∥∥∥

2

)
,

where ¬ holds since by Markov inequality, for an arbitrary nonnegative random variable x, then we
have

P(x ≥ t) ≤ E(x)

t
.
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Now we only need to bound E
(

supw∈Ω

∥∥∥∇Ĵn(w,x)
∥∥∥

2

)
. Then by Lemma 16, we can bound it as

follows:

E
(

sup
w∈Ω

∥∥∥∇Ĵn(w,x)
∥∥∥

2

)
≤E

(
sup
w∈Ω

∥∥∥∥∥ 1

n

n∑
i=1

∇f(w,x(i))

∥∥∥∥∥
2

)
≤ α,

where α =
√

1
16cycd (1 + cr(l − 1)) in which cy , cd and cr are defined in Lemma 16.

Therefore, we have

P (E1) ≤ 3αε

t
.

We further let
t ≥ 6αε

ε
.

Then we can bound P(E1):
P(E1) ≤ ε

2
.

Step 2. Bound P (E2): Recall that we use jw to denote the index of wj
kj

in ε-net wj
ε and we have

jw ∈ [nε
j ], (nε

j ≤ exp
(
sj log

(
3rd
ε

))
. We can bound P (E2) as follows:

P (E2) =P

(
sup

jw∈[nεj ],j=[l]

∣∣∣∣∣ 1n
n∑
i=1

f(wkw ,x(i))− E(f(wkw ,x))

∣∣∣∣∣ ≥ t

3

)

≤ exp

 l∑
j=1

sj log

(
3rd

ε

) sup
jw∈[nεj ],j=[l]

P

(∣∣∣∣∣ 1n
n∑
i=1

f(wj ,x(i))− E(f(wj ,x))

∣∣∣∣∣ ≥ t

3

)
.

Since when the activation functions are sigmoid functions, the loss f(w,x) is α-Lipschitz. Besides,
we assume x to be a vector of i.i.d. Gaussian variables fromN (0, τ2). Then by Lemma 25, we know
that the variable f(x)− Ef(x) is 8α2τ2-sub-Gaussian. Thus, we have

P (|f(x)− Ef(x)| > t) ≤ 2 exp

(
− t2

2α2τ2

)
, (∀t ≥ 0),

where α =
√

1
16cycd (1 + cr(l − 1)) in which cy, cd and cr are defined in Lemma 16. Thus,

1
n

∑n
i=1 f(wj ,x(i))−E(f(wj ,x)) is 8α2τ2/n-sub-Gaussian random variable. Thus, we can obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

f(wj ,x(i))− E(f(wj ,x))

∣∣∣∣∣ ≥ t

3

)
≤ 2 exp

(
− nt2

18α2τ2

)
.

Notice
∑l
j=1 sj = s. In this case, the probability of E2 is upper bounded as

P (E2) ≤ 2 exp

(
− nt2

18α2τ2
+ s log

(
3dr

ε

))
.

Thus, if we set

t ≥ ατ
√

18 (s log(3dr/ε) + log(4/ε))

n
,

then we have
P (E2) ≤ ε

2
.

Step 3. Bound P (E3): We first bound P (E3) as follows:

P (E3) =P
(

sup
w∈Ω
|E(f(wkw ,x))− E(f(w,x))| ≥ t

3

)
=P
(

sup
w∈Ω

|E (f(wkw ,x)− f(w,x))|
‖w −wkw‖2

sup
w∈Ω
‖w −wkw‖2 ≥

t

3

)
≤P
(
εE sup

w∈Ω
‖∇Jw(w,x)‖2 ≥

t

3

)
¬
≤P
(
αε ≥ t

3

)
,
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where ¬ holds since by Lemma 16, for arbitrary x and w ∈ Ω, we have ‖∇wf(w,x)‖2 ≤ α. We
set ε enough small such that αε < t/3 always holds. Then it yields P (E3) = 0.

Step 4. Final result: Notice, we have 6αε
ε ≥ 3αε. To ensure P(E0) ≤ ε, we just set ε = 3r/n and

t≥max

(
6αε

ε
, ατ

√
18 (s log(3dr/ε) + log(4/ε))

n

)
=max

(
18αr

nε
, ατ

√
18 (s log(nd)+log(4/ε))

n

)
.

Therefore, if n ≥ 18l2r2/(s log(d)τ2ε2 log(1/ε)), then

sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣ ≤ τ√9

8
cycd (1 + cr(l − 1))

√
s log(nd/l) + log(4/ε)

n

holds with probability at least 1− ε, where cy , cd, and cr are defined as

‖v(l) − y‖22 ≤ cy < +∞, cd = max(d0,d1, · · · ,dl) and cr = max

(
r2

16
,

(
r2

16

)l−1
)
.

The proof is completed.

D.3.4 PROOF OF COROLLARY 2

Proof. By Lemma 5, we know εs = εg. Thus, the remaining work is to bound εs. Actually, we can
have∣∣∣∣∣∣ES∼D,A,(x′

(j)
,y′

(j)
)∼D

1

n

n∑
j=1

(
fj(w

j
∗;x
′
(j),y

′
(j))−fj(w

n;x′(j),y
′
(j))
)∣∣∣∣∣∣ ≤ES∼D

(
sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣)

≤ sup
w∈Ω

∣∣∣Ĵn(w)− J(w)
∣∣∣

≤εn.

Thus, we have εg = εs ≤ εn. The proof is completed.

D.4 PROOF OF OTHER LEMMAS

D.4.1 PROOF OF LEMMA 22

Proof. Since G(u(i)) is a diagonal matrix and its diagonal values are upper bounded by σ(u
(i)
h )(1−

σ(u
(i)
h )) ≤ 1/4 where u(i)

h denotes the h-th entry of u(i), we can conclude

‖G(u(i))M‖2F ≤
1

16
‖M‖2F and ‖NG(u(i))‖2F ≤

1

16
‖N‖2F .

Note that Pk is a matrix of size d2
k × dk whose ((s− 1)dk + s, s) (s = 1, · · · ,dk) entry equal to

σ(u
(k)
s )(1− σ(u

(k)
s ))(1− 2σ(u

(k)
s )) and rest entries are all 0. This gives

σ(u(k)
s )(1− σ(u(k)

s ))(1− 2σ(u(k)
s )) =

1

3
(3σ(u(k)

s ))(1− σ(u(k)
s ))(1− 2σ(u(k)

s ))

≤1

3

(
3σ(u

(k)
s ) + 1− σ(u

(k)
s ) + 1− 2σ(u

(k)
s )

3

)3

≤23

34
.

This means the maximal value in Pk is at most 23

34 . Consider the structure in Pk, we can obtain

‖PkM‖2F ≤
26

38
‖M‖2F and ‖NPk‖2F ≤

26

38
‖N‖2F .
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As forBs:t, we have
‖Bs:t‖2F ≤‖As‖2F ‖As+1‖2F · · · ‖At‖2F

=
∥∥∥(W s)TG(u(s))

∥∥∥2

F

∥∥∥(W (s+1))TG(u(s+1))
∥∥∥2

F
· · ·
∥∥∥(W (t))TG(u(t))

∥∥∥2

F

≤ 1

16t−s+1

∥∥∥W (s)
∥∥∥2

F

∥∥∥W (s+1)
∥∥∥2

F
· · ·
∥∥∥W (t)

∥∥∥2

F

=
1

16t−s+1
Ds:t.

Since the `2-norm of each w(j) is bounded, i.e. ‖w(j)‖2 ≤ r, we can obtain
1

16t−s+1
Ds:t≤

1

16t−s+1
r2(t−s+1) =

(r
4

)2(t−s+1)

,cst.

Now we prove the final result. According to the property of Kronecker product that for any matrices
A,B andX of proper sizes, vec (AXB) = (BT ⊗A)vec (X), we have

vec
(
MNT

)
= (N ⊗ I)vec (M) = (N ⊗ I)m.

This further yields

‖(N ⊗ I)m‖2F = ‖vec
(
MNT

)
‖2F = ‖MNT ‖2F ≤ ‖M‖

2
F ‖N‖

2
F .

By similar way, we can obtain

‖(I ⊗N)m‖2F ≤ ‖M‖
2
F ‖N‖

2
F .

The proof is completed.

D.4.2 PROOF OF LEMMA 23

Proof. By utilizing the chain rule in Eqn. (24) in Sec. D.2.1, we can easily compute ∂f(w,x)
∂u(i) and

∂f(w,x)
∂v(i) as follows:

∂f(w,x)

∂u(i)
= G(u(i))Ai+1 · · ·Al(v

(l) − y) = G(u(i))Bi+1:l(v
(l) − y)

and
∂f(w,x)

∂v(i)
= Ai+1 · · ·Al(v

(l) − y) = Bi+1:l(v
(l) − y).

Therefore, we can further obtain
∂f(w,x)

∂w(j)

=vec
((

G(u(j))Aj+1Aj+2 · · ·Al(v
(l) − y)

)
(v(j−1))T

)
=vec

((
G(u(j))Aj+1Aj+2 · · ·Ai−1(W (i))T

)(
G(u(i))Ai+1 · · ·Al(v

(l) − y)
)

(v(j−1))T
)

=
(
v(j−1)⊗

(
G(u(j))Aj+1Aj+2 · · ·Ai−1(W (i))T

))
vec

(
G(u(i))Ai+1 · · ·Al(v

(l) − y)
)

=
(
v(j−1) ⊗

(
G(u(j))Aj+1Aj+2 · · ·Ai−1(W (i))T

))(∂f(w,x)

∂u(i)

)
.

Note that we have ∂f(w,x)
∂w(j)

= ∂u(i)

∂w(j)

(
∂f(w,x)
∂u(i)

)
. This gives

∂u(i)

∂w(j)
= (v(j−1))T ⊗

(
G(u(j))Bj+1:i−1(W (i))T

)T
∈ Rdi×djdj−1 (i > j).

When i = j, we have
∂u(i)

∂w(i)
= (v(i−1))T ⊗ Idi ∈ Rdi×didi−1 .

Similarly, we can obtain
∂v(i)

∂w(j)
=(v(j−1))T⊗

(
G(u(j))Aj+1Aj+2 · · ·Ai

)T
=(v(j−1))T⊗

(
G(u(j))Bj+1:i

)T
∈Rdi×djdj−1 (i≥j).

The proof is completed.
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D.4.3 PROOF OF LEMMA 24

Proof. By Lemma 23, we have

∂f(w,x)

∂u(i)
= G(u(i))Bi+1:l(v

(l) − y) and
∂f(w,x)

∂v(i)
= Bi+1:l(v

(l) − y).

Therefore, we can further obtain

∂f(w,x)

∂u(1)
=G(u(1))A2 · · ·Al(v

(l) − y)

=G(u(1))A2 · · ·Aj−1(W j)TG(u(j))Aj+1 · · ·Al(v
(l) − y)

=
(
G(u(1))A2 · · ·Aj−1(W j)T

)(∂f(w,x)

∂u(j)

)
.

Note that we have ∂f(w,x)
∂u(1) =

(
∂u(j)

∂u(1)

)T (
∂f(w,x)
∂u(j)

)
. This gives

∂u(j)

∂u(1)
=
(
G(u(1))A2 · · ·Aj−1(W j)T

)T
=
(
G(u(1))B2:j−1(W j)T

)T
∈ Rdj×d1 (j > 1).

Similarly, we can obtain

∂v(j)

∂u(1)
=
(
G(u(1))A2 · · ·Aj

)T
=
(
G(u(1))B2:j

)T
∈ Rdj×d1 (j > 1).

The proof is completed.
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