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Figure 1: Prediction results of our PartCLIPSeg for unseen categories in the Pascal-Part-116 [7, 46]
validation set. A “dog” is unseen during training. The final prediction of PartCLIPSeg utilizes (b)
object-level context and (c) generalized parts, incorporating disjoint activation among (e)–(i) parts,
and enhancing activation for smaller parts (e.g., (h) “nose”).

Abstract

Open-vocabulary part segmentation (OVPS) is an emerging research area focused
on segmenting fine-grained entities using diverse and previously unseen vocabu-
laries. Our study highlights the inherent complexities of part segmentation due to
intricate boundaries and diverse granularity, reflecting the knowledge-based nature
of part identification. To address these challenges, we propose PartCLIPSeg, a
novel framework utilizing generalized parts and object-level contexts to mitigate
the lack of generalization in fine-grained parts. PartCLIPSeg integrates competitive
part relationships and attention control, alleviating ambiguous boundaries and
underrepresented parts. Experimental results demonstrate that PartCLIPSeg outper-
forms existing state-of-the-art OVPS methods, offering refined segmentation and an
advanced understanding of part relationships within images. Through extensive ex-
periments, our model demonstrated a significant improvement over the state-of-the-
art models on the Pascal-Part-116, ADE20K-Part-234, and PartImageNet datasets.
Our code is available at https://github.com/kaist-cvml/part-clipseg.
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1 Introduction

The pursuit of understanding parts and multi-granularity in computer vision [7, 13, 21] mirrors the
innate complexities of animal instincts. For example, a “cheetah” instinctively targets an “impala’s
neck” during a hunt, demonstrating its ability to distinguish specific parts. This ability extends to
applications such as robot commands [44], fine-grained controls on image editing [31], and more
sophisticated image generation [45]. Part segmentation aims to mimic this ability by recognizing
intricate details (e.g., parts) within objects, going beyond simple object-level segmentation to achieve
detailed and diverse entity recognition.

Recognizing parts is more challenging than recognizing whole objects due to their complexity and
diversity. Parts often have ambiguous boundaries not only defined by visual cues but also require a
broader spectrum of contextual information, reflecting their knowledge-based nature. For example,
the “head” of a “dog” may include only the “face” or also the “neck” depending on the annotators’
perspective [7, 21].

To address difficulties in part segmentation, Open-Vocabulary Part Segmentation (OVPS) [40, 44,
46] has evolved by leveraging the knowledge of powerful Vision-Language Models (VLMs) like
CLIP [38] or ALIGN [24]. Especially, it aims to achieve adaptive recognition and processing of
previously unseen categories with the aid of pre-trained VLMs, pushing the boundaries of vocabularies
in traditional part segmentation. By utilizing Oracle supervision of base classes during training,
recent studies in OVPS exploit part-level knowledge of base classes to generalize to novel classes.
Recently, VLPart [40] uses DINO [5] features to map correspondences between base and novel
classes and creates pseudo labels for the novel categories. OV-PARTS [46] addresses the ambiguity
of part boundaries by introducing object mask prompts and transferring knowledge of base class
through a few-shot approach. These methods successfully extract knowledge from VLMs and extend
it to novel classes, achieving significant performance improvements in open-vocabulary settings.

(a) Lack of generalization (b) Ambiguous boundaries (c) Missing underrepresented part

Figure 2: Limitations of existing OVPS methods in predicting unseen categories. (a) Lack of
generalization: Classification of a “dog’s parts” involving categories like “cats” and “sheep”, “dog’s
tail” misclassified as “sheep’s ear”. (VLPart [40]) (b) Ambiguous boundaries: Vague boundary output
of “aeroplane’s body”. (c) Missing underrepresented parts: Neglecting parts such as “beak” and “leg”.
(CLIPSeg [32, 46]).

However, through empirical analysis of existing OVPS methods, we observed several common
limitations in Figure 2. (Lack of generalization in (a)) Despite understanding part-level information,
they often misidentify parts at the object level, e.g., a “dog’s leg” as a “cat’s leg”. Also, part-level
misclassification occurs as the knowledge of parts in the base class fails to generalize to a novel class,
e.g., “dog’s tail” as a “sheep’s ear”. (Ambiguous boundaries of parts in (b)) They fail to maintain
non-overlapping relationships between parts, frequently resulting in overlaps, e.g., an “airplane’s
wing” overlapping with its “body” or the presence of empty spaces where no part is predicted.
(Missing underrepresented parts in (c)) They ignore small and less frequent parts, causing prediction
bias based on part size.

To overcome these limitations, we propose a novel framework called PartCLIPSeg, which consists
of three main components. First, we devise generalized parts with object-level contexts to address
the lack of generalization issue as the upper side of Figure 1. It explicitly obtains object-level and
part-level pseudo-labels from VLMs and trains the OVPS model to satisfy both types of supervision.
This guides the model to learn object boundaries while recognizing both part and object-level classes.
Then, we suggest an attention control for minimizing the overlap between predicted parts, ensuring
that parts are clearly separated as the lower side of Figure 1. In this way, we effectively leverage
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internal part information to learn ambiguous part boundaries. Finally, we enhance the activation
related to certain parts by normalizing the activation scale of CLIP’s self-attention information. It
prevents small and less frequent areas from being ignored in pseudo-labels. This strategy ensures
that the smallest granularity levels are retained in the final prediction. Through these three modules,
PartCLIPSeg effectively addresses the challenges of existing OVPS methods and achieves robust
multi-granularity segmentation. As a result, the proposed method achieves significant improvements
in mIoU for both unseen and the harmonic mean when compared to previous state-of-the-art methods
on Pascal-Part-116, ADE20K-Part-234, and PartImageNet in both Pred-All and Oracle-Obj settings.

2 Related Work

Open-Vocabulary Semantic Segmentation. Open-vocabulary [19, 55] semantic segmentation
(OVSS) goes beyond traditional semantic segmentation, which is restricted to predefined categories,
by enabling predictions for unseen classes. Pioneering works focused on aligning predefined text
embeddings with pixel-level visual features [4, 48, 56]. By leveraging large-scale Vision-Language
Models (VLMs) like CLIP [38] and ALIGN [24], OVSS enables zero-shot segmentation through
rich multi-modal features learned from extensive image-text pairs. MaskCLIP [58] modified CLIP’s
image encoder to directly handle visual and text features for segmenting novel classes. Some works
proposed two-stage strategy [15, 16, 18, 20, 29, 30, 51, 52]: first, models generate class-agnostic
mask proposals [9, 10]; then, a pre-trained VLM predicts the category for each region. Some
studies have introduced diffusion models to improve mask generation quality [51] or fine-tuned
CLIP to enhance classification capabilities [20, 29]. Other studies have adopted a single-stage
framework [11, 27, 32, 49, 54, 59]. They use pre-trained CLIP models to align pixel-level visual
features with text features. CLIPSeg [32] adds a transformer-based pixel decoder with a FiLM [17]
module to fuse multi-modal features. ZegCLIP [59] enhances segmentation by incorporating learnable
tokens. SAN [53] adopted a side adapter network for a CLIP-aware end-to-end approach to predict
proposal-wise classification. FC-CLIP [54] uses a frozen convolutional CLIP to predict class-agnostic
masks and classifies using mask-pooled features [54]. CAT-Seg [11] and SED [49] generate pixel-
level cost maps and refine them for segmentation.

Part Segmentation. Part segmentation aims to identify the individual parts of objects, a task that
is more complex and costly due to the smaller and more diverse nature of parts compared to whole
objects. To tackle this, various datasets like Pascal-Part [7], PartImageNet [21], ADE20k-Part [57],
Cityscapes-Panoptic-Part [13], and PACO [2] provide diverse and detailed part annotations. Earlier
studies [7, 12, 22, 23, 43] used self-supervised constraints and contrastive settings for effective
part-level entity segmentation. Recent studies extended this to open-vocabulary scenarios [35, 40, 46],
opening new avenues for handling diverse parts. By leveraging class-agnostic detectors [35] and
Vision-Language Models like CLIP [40, 46], part segmentation has extended its generalization ability
to unseen parts. Our work builds upon and extends methodologies from these studies.

3 Methodology

As illustrated in Figure 2, we identified three primary challenges of open-vocabulary part segmentation
(OVPS): lack of generalization, overlapping parts, and missing underrepresented parts. Recognizing
object-specific parts (such as “dog’s torso”) cannot be determined solely by looking at each part in
isolation; it is imperative to consider both generalized part information and the overall context of the
object. Furthermore, some parts may have overlapping meanings across different granularity labels
(e.g., “eye”, “face”, and “head”). This implies that predictions should consider direct guidance for
each part as well as the relationships between different parts. These intricate spatial and functional
dependencies between parts are crucial for achieving a holistic understanding and precise predictions
in fine-grained entity segmentation tasks.

Based on this motivation, we propose a novel OVPS method, PartCLIPSeg. This method leverages
generalized part information combined with object-level context to tackle the lack of generalization
problem (see Section 3.2). Also, we directly minimize the overlap among part predictions to improve
the part boundaries (see Section 3.3.1). Finally, we normalize the scale of attention activation from
various parts for handling missing underrepresented parts (see Section 3.3.2). The overall architecture
of our method is shown in Figure 3.
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Figure 3: The overall architecture of PartCLIPSeg. The embeddings derived from the object
category name and the part category name are conditioned using the FiLM operation. Each embedding,
modified through attention control, is subsequently reconstructed to predict the final object-specific
part results.

3.1 Preliminary

OVPS aims to segment an image into a set of object-specific part categories Ctest
obj-part (e.g.,

“dog’s head,” “car’s front”) in the test set, where the image is I ∈ RH×W×3, and H and W are the
height and width. During training, image-mask pairs {(Ik,Mk)} are used, consisting of images
Ik and corresponding ground-truth mask Mk which only contains the object-specific part
categories Ctrain

obj-part (e.g., “cat’s head,” “bus’s front”) in the train set.

Zero-Shot Part Segmentation. Open-vocabulary is a generalized zero-shot task, allowing the
zero-shot segmentation protocol to evaluate zero-shot part segmentation performance. In this setting,
train and test category names are divided into seen (base) and unseen (novel) sets, respectively, with
disjoint object-specific category names;

{
Cunseen

obj-part ∩Cseen
obj-part = ∅

}
.

Cross-Dataset Part Segmentation. In this setting, the model is trained on one dataset and evaluated
on another without fine-tuning. This means that the category names of the train and test sets come
from different datasets, denoted as Ctrain

obj-part ̸= Ctest
obj-part. Considering the domain gap between the

datasets, such as differences in granularity, this setting is more challenging.

3.2 Generalized Parts with Object-level Contexts

To address the problem of a lack of generalization, we propose leveraging generalized parts with
object-level contexts. The concept of generalized parts involves identifying and utilizing common
structural components that are shared across different object-level categories. For instance, many
animals have parts like “head” or “torso” which, although functionally and visually distinct, may share
certain underlying characteristics. By introducing generalized parts from object-specific parts, our
PartCLIPSeg can efficiently recognize and segment these object-specific parts across diverse object
classes, significantly enhancing the model’s ability to generalize from seen to unseen categories.

Although generalized parts help distinguish the part-level categories, the visual information of a part
may not suffice for accurately classifying their object-level categories. For instance, predicting the
“leg” part of an animal can be challenging to identify when solely examining the part as it may not
clearly indicate to which animal it belongs. For this reason, there have been attempts to incorporate
object-level guidance [33, 40, 46] in part segmentation. However, object-level guidance without a
generalized part may lose contextual information and miss hierarchical relationships.

By integrating object contexts with generalized parts, PartCLIPSeg employs object-level guidance
that captures the holistic essence of the object to which parts belong. This integration allows for a
more precise understanding and classification of parts, improving the overall performance of OVPS.

Object and Part Embedding Generation. We modified the architecture of CLIPSeg [32, 46], which
adopted CLIP [38] encoder-decoder architecture for semantic segmentation. However, it is worth
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noting that our approach of utilizing generalized parts with object-level context is orthogonal to other
previously proposed object-level segmentation methods [5, 26, 28, 39].

The proposed approach begins by parsing an object-specific part category name, cobj-part ∈ Cobj-part,
into separate components: an object category name (cobj) and a generalized part category name (cpart),
e.g., “cat” and “torso”. Then, the CLIP text encoder, CLIP∗

T (·), is used to transform these category
names into their respective CLIP embeddings (eTobj and eTpart). It will condition the image features, eI ,
derived from the CLIP image encoder, CLIP∗

I(·) as:

eT[obj | part] = CLIP∗
T (c[obj | part]), e

I = CLIP∗
I(I), (1)

where ∗ denotes frozen pre-trained models. By using Feature-wise Linear Modulation (FiLM)
[36, 42], each category name embeddings respectively modulate the image features as:

eI[obj | part] = eI ⊕ FiLM(eT[obj | part]), (2)

where ⊕ is an element-wise sum. FiLM is an adaptive affine transformation widely used for multi-
modal or conditional tasks. It helps retrieve adequate conditioning for the image features. The
modulated image features, eI[obj | part], corresponding to each object and part category name, pass
through a decoder module. The decoder module will be discussed in detail in Section 3.3. They then
proceed through a transposed convolution model. Finally, the output mask of the object ŝo and part ŝp
are evaluated with ground-truth mask of objects, so, and parts, sp. Oracle supervision for the object
and parts mask is simply computed from a combination of object-specific parts annotations: s ∈ M.

Object-specific Part Construction. We utilize previously computed generalized part embeddings
(eIpart, e

T
part) and object embeddings (eIobj, e

T
obj) to reconstruct object-specific part embeddings. This

process involves separate operations on modulated image features and category name embeddings.

Initially, we project the concatenated results of the object category name with the generalized part
category name. This is to synthesize the embeddings for the target object-specific part category
name. The approach ensures that the resultant embeddings are highly representative of parts and
contextually relevant. The equivalent operation is applied to both object-level image features and
part-level image features to generate object-specific image features as:

e
[T |I]
obj-part = Proj(

[
e
[T |I]
obj | e[T |I]

part

]
). (3)

The resulting object-specific part embeddings are further refined by a FiLM process. Combined
with the respective object-specific image features, final modulated object-specific part embeddings,
eobj-part is computed as:

eobj-part = eIobj-part ⊕ FiLM(eTobj-part). (4)

These embeddings are then processed through a deconvolution layer to produce the final segmentation
masks s ∈ M. This step ensures that the embeddings are precisely aligned to enhance the definition
and accuracy of the object-specific part masks. It effectively bridges the gap between object and
part-level categorical information with object-specific parts information.

Object, Part, and Object-specific Part Mask Supervision. The mask supervision is provided for
three distinct categories: object-specific parts, objects, and generalized parts. This multi-faceted
supervision enables our model to effectively disentangle generalized parts from objects, thereby
facilitating a more nuanced learning process for OVPS. This disentanglement is crucial for the model
to accurately recognize and differentiate between various object categories and their corresponding
parts. It enhances the model’s ability to handle complex segmentation tasks with unseen object-
specific parts. The overall mask guidance loss can be defined as follows:

Lmask =

|Cobj-part|+1∑
i=1

BCE(si, ŝi)︸ ︷︷ ︸
object-specific part

+λobj

|Cobj|+1∑
i=1

BCE(soi , ŝ
o
i )︸ ︷︷ ︸

object guidance

+λpart

|Cpart|∑
i=1

BCE(spi , ŝ
p
i )︸ ︷︷ ︸

generalized part guidance

, (5)

where |Cobj-part|+ 1 and |Cobj|+ 1 are for uncategory (or background) prediction. The disentangled
object and part generalization with object-specific parts guidance provides a clue to the lack of
generalization problem.
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Figure 4: Example of attention control using separation and enhance losses. The proposed method
manipulates attention maps to accurately identify and segment small parts.

3.3 Attention Control for Ambiguity and Omission

In this subsection, we address the previously mentioned challenges: (1) ambiguity in part boundaries
and (2) omission of small or infrequently appearing parts. The main reason for these challenges
is the incomplete guidance from knowledge-based, multi-granularity characteristics of parts. To
overcome these, we adopt unsupervised methods traditionally used in fine-grained recognition and
part discovery studies [7, 12, 43]. Specifically, we utilize approaches for adjusting self-attention
activation inspired by the recent diffusion methods [6, 25, 41].

We assume that the distribution of self-attention activation maps for visual tokens belonging to the
same object-specific part mask should exhibit inter-similarity characteristics [41], implying similar
distributions. To this end, we first compute the average self-attention map AMc for each object-
specific part mask Mc, where c ∈ Cobj-part represents an object-specific part category. This is done
by summing the self-attention activation maps from channels specifically corresponding to object
cobj and part cpart, across all spatial tokens (h,w) within the mask, as follows:

AMc =
1

|Mc|
∑

(h,w)∈Mc

(
Acobj [h,w, :, :] +Acpart [h,w, :, :]

)
. (6)

Subsequently, the self-attention map AMc for the object-specific part mask is refined through min-
max normalization, followed by the application of a Gaussian filter to smooth the initial activation as
in [6, 50]. Therefore, the dimensions of both the original and normalized self-attention maps for the
object-specific part masks are as follows: AMc ,Anorm

Mc
∈ RH×W .

3.3.1 Minimizing Part Overlaps for Ambiguity

In the self-attention of the decoder layers, competition between object-specific parts helps define
boundaries that cannot be sufficiently established by supervision alone. Using the previously obtained
normalized attention map, our method generates parts with minimized intersections, inspired by
[1, 3, 25, 37, 47]. This approach effectively mitigates the ambiguity issue in part boundaries.
Specifically, the normalized attention activation map Anorm

Mc
is first binarized based on an arbitrary

threshold γ as:
BMc(h,w) = 1{Anorm

Mc
(h,w)≥γ}, (7)

where BMc denotes binarized attention map for part mask Mc. From now on, Cobj-part is simply
denoted as C. The separation loss Lsep, which indicates the degree of intersection between object-
specific parts, is as follows:

Lsep =
1

|C|

∣∣∣∣∣
{
(h,w) |

∑
c∈C BMc(h,w) > 1

}{
(h,w) |

∑
c∈C BMc(h,w) ≥ 1

}∣∣∣∣∣ , (8)

where separating activation mitigates the challenge of ambiguous boundaries between parts.

3.3.2 Enhancing Part Activation for Omission

To address the omission problem, we employ a method inspired by attention controls in modern
diffusion-based approaches [3, 6]. This approach enhances the activation within the self-attention
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activation map to enhance underrepresented parts before normalization. Specifically, for each object-
specific part mask, the maximum value within the attention map is identified. Subsequently, among
all object-specific parts, the minimum activation of the part with the maximum value is enhanced as:

Lenh = 1−min
c∈C

(
max

(h,w)∈Mc

AMc [h,w]

)
, (9)

thereby boosting its representational efficacy. In this way, the enhancement loss Lenh provides
sufficient guidance for small or infrequently occurring parts, effectively mitigating the omission
problem.

The training objective for PartCLIPSeg integrates three key loss components as:

Lall = Lmask + λsepLsep + λenhLenh, (10)

where (1) Lmask for generalized parts with object-level context, (2) Lsep for addressing ambiguous
boundaries, (3) Lenh for handling missing underrepresented parts, and λsep and λenh are hyperparme-
ters.

4 Experiments

4.1 Experimental Setups

Datasets. We evaluate our method on three part segmentation datasets: Pascal-Part-116 [7, 46],
ADE20K-Part-234 [46, 57], and PartImageNet [21]. Pascal-Part-116 [7, 46] consists of 8,431 training
images and 850 test images. It is a modified version of PascalPart [7] by removing direction indicators
for certain part classes and merging them to avoid overly complex part definitions. This dataset
contains a total of 116 object part classes across 17 object categories. ADE20K-Part-234 [46, 57]
consists of 7,347 training images and 1,016 validation images. It provides instance-level object mask
annotations along with their corresponding part mask annotations, including 44 objects and 234
parts. PartImageNet [21] contains 16k training images and 2.9k validation images, segmented into
158 object classes from ImageNet [14] and organizes them into 11 super-categories. For this study,
we select 40 object classes that represent common categories to assess cross-dataset performance
effectively. More details about the datasets can be found in the supplementary materials.

Evaluation Protocols. We use two evaluation protocols for the performance of OVPS: (1) Pred-All
setting, where the ground truth object-level mask and object class are not provided, and (2) Oracle-
Obj setting, where the ground truth object-level mask and object class are known. In particular, the
Pred-Obj setting in OV-PARTS [46] uses predicted masks from the off-the-shelf segmentation model.
In contrast, our Pred-All setting is a more challenging and practical setting because it does not rely
on additional predicted masks or foundation models but solely uses the predicted object masks from
the proposed model. For both evaluation protocols, we used mean Intersection over Union (mIoU) as
an evaluation metric, which is widely used to measure segmentation performance. Additionally, we
utilized the harmonic mean of the results from the seen and unseen categories as the final evaluation
metric.

Implementation Details. We build upon CLIPSeg [32, 46], a CLIP-based encoder-decoder model.
The implementation details can be found in the supplementary material.

4.2 Performance Evaluation

Zero-Shot Part Segmentation. We compare our PartCLIPSeg to previous methods [11, 32, 46, 52]
on three OVPS benchmarks [7, 57]. As shown in Table 1, PartCLIPSeg consistently outperforms
previous approaches by significant margins on Pascal-Part-116, demonstrating its zero-shot ability,
with performance improvements of 3.94% in the Pred-All setting and 3.55% in the Oracle-Obj setting.
The more challenging ADE20K-Part-234 dataset, which is a fine-grained segmentation dataset, further
highlights the effectiveness of PartCLIPSeg. As shown in Table 2, PartCLIPSeg achieves a harmonic
mean mIoU of 11.38% in the Pred-All setting, outperforming the best-performing baseline by 7.85%.
In the Oracle-Obj setting, it achieves 38.60%, which is 4.45% higher than the best baseline. Notably,
PartCLIPSeg shows significant performance improvement in unseen categories, demonstrating its
strong generalizability. Considering that performance in unseen categories is crucial in a zero-shot
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Table 1: Comparison of zero-shot performance with state-of-the-art methods on Pascal-Part-116.

Method Backbone Pred-All Oracle-Obj

Seen Unseen Harmonic Seen Unseen Harmonic

ZSSeg+ [52] ResNet-50 38.05 3.38 6.20 54.43 19.04 28.21
VLPart [40] ResNet-50 35.21 9.04 14.39 42.61 18.70 25.99
CLIPSeg [32, 46] ViT-B/16 27.79 13.27 17.96 48.91 27.54 35.24
CAT-Seg [11, 46] ViT-B/16 28.17 25.42 26.72 36.20 28.72 32.03

PartCLIPSeg (Ours) ViT-B/16 43.91±0.45 23.56±0.21 30.67±0.09 50.02±0.51 31.67±0.29 38.79±0.13
(+3.94) (+3.55)

1 The best score is bold and the second-best score is underlined. The standard error of an average of 5 results is reported.
These are the same for all experiments.

Table 2: Comparison of zero-shot performance with state-of-the-art methods on ADE20K-Part-234.

Method Backbone Pred-All Oracle-Obj

Seen Unseen Harmonic Seen Unseen Harmonic

ZSSeg+ [52] ResNet-50 32.20 0.89 1.74 43.19 27.84 33.85
CLIPSeg [32, 46] ViT-B/16 3.14 0.55 0.93 38.15 30.92 34.15
CAT-Seg [11, 46] ViT-B/16 7.02 2.36 3.53 33.80 25.93 29.34

PartCLIPSeg (Ours) ViT-B/16 14.15±0.51 9.52±0.13 11.38±0.10 38.37±0.14 38.82±0.31 38.60±0.08
(+7.85) (+4.45)

Table 3: Comparison of zero-shot performance with state-of-the-art method on PartImageNet.

Method Backbone Pred-All Oracle-Obj

Seen Unseen Harmonic Seen Unseen Harmonic

CLIPSeg [32, 46] ViT-B/16 32.39 12.27 17.80 53.91 37.17 44.00
PartCLIPSeg (Ours) ViT-B/16 38.82±0.74 19.47±0.45 25.94±0.32 56.26±0.29 51.65±0.62 53.85±0.37

(+8.14) (+9.85)

scenario, these results are significant despite some performance degradation in seen categories. We
also evaluated PartCLIPSeg on PartImageNet. According to Table 3, PartCLIPSeg shows a notable
improvement over CLIPSeg.

We present the segmentation results of PartCLIPSeg in comparison to state-of-the-art open-vocabulary
part segmentation methods [11, 32, 40] on Pascal-Part-116. Specifically, we focus on qualitative
performance on unseen categories such as “dog”, “sheep”, “car”, and “bird”. As shown in Figure 5
for the Pred-All and Figure 6 for the Oracle-Obj setting, the proposed method effectively segments
target parts regardless of the need for predefined masks during inference. Notably, PartCLIPSeg
excels at identifying smaller, often overlooked part classes such as “eye”, “tail”, and “headlight”.
Additionally, our method effectively segments multiple objects and their respective parts, a challenge
for other methods, demonstrating the effectiveness of PartCLIPSeg in zero-shot part segmentation.
Its improved performance on unseen categories and higher accuracy in challenging environments
highlight the robustness and generalization capabilities of PartCLIPSeg. Consistent improvements
on Pascal-Part-116, ADE20K-Part-234, and PartImageNet demonstrate that PartCLIPSeg sets a new
standard in open-vocabulary part segmentation.

Cross-Dataset Part Segmentation.

Table 4 validated the efficacy of our approach in a cross-dataset setting, where category names,
annotation style, and granularity of mask may vary. Additionally, unlike zero-shot situations within
the same dataset, there are differences in the types and diversity of parts. Initially, we trained our
model on PartImageNet and ADE20K-Part-234 respectively. Subsequent tests on Pascal-Part-116
[7, 46] showed that PartCLIPSeg outperforms CLIPSeg in both the Pred-All and Oracle-Obj settings,
confirming our method’s superiority on generalization in different datasets.

Table 4: Cross-dataset performance.

Method Pred-All Oracle-Obj

PartImageNet → Pascal-Part-116

CLIPSeg [32, 46] 11.72 14.87
PartCLIPSeg (Ours) 14.74 19.86

(+3.02) (+4.99)

ADE20K-Part-234 → Pascal-Part-116

CLIPSeg [32, 46] 5.41 17.82
PartCLIPSeg (Ours) 10.37 17.94

(+4.96) (+0.12)

Table 5: Impact of attention control losses.
Loss Pred-All Oracle-Obj

Lsep Lenh Seen Unseen Harmonic Seen Unseen Harmonic

Pascal-Part-116

✘ ✘ 43.86 21.89 29.20 49.09 31.26 38.20
✔ ✘ 44.01 23.18 30.37 50.37 31.45 38.72
✔ ✔ 43.91 23.56 30.67 50.02 31.67 38.79

ADE20K-Part-234

✘ ✘ 10.86 8.33 9.43 37.39 36.49 36.93
✔ ✘ 12.78 9.38 10.82 39.46 36.04 37.67
✔ ✔ 14.15 9.52 11.38 38.37 38.82 38.60
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(a) Ground-truth (b) VLPart [40] (c) CLIPSeg [38, 46] (d) CAT-Seg [11, 46] (e) PartCLIPSeg (Ours)

Figure 5: Qualitative results of zero-shot part segmentation on Pascal-Part-116 in Pred-All setting.
Annotations for unseen categories (bird, car, dog, sheep, etc.) are not included in the train set.

Table 6: Performance on mean Boundary IoU
(↑) on Pascal-Part-116 in Oracle-Obj setting.

Method Seen Unseen Harmonic

ZSSeg+ [52] 33.01 26.76 29.56
CLIPSeg [32, 46] 34.67 32.20 33.39
CAT-Seg [11, 46] 34.17 30.14 32.03
PartCLIPSeg (Ours) 36.15 39.07 37.55

Table 7: Impact of PartCLIPSeg for small parts on
Pascal-Part-116 in Oracle-Obj setting. (mIoU)

Part: “eye” bird cat cow dog sheep person

CLIPSeg [32, 46] 3.33 18.77 3.65 16.05 0.00 15.30
PartCLIPSeg (Ours) 1.95 31.01 28.16 32.79 0.67 29.16

Part: “neck” bird cat cow dog sheep person

CLIPSeg [32, 46] 19.09 6.57 0.78 8.12 8.47 30.93
PartCLIPSeg (Ours) 32.51 12.00 2.75 16.37 18.80 50.71

Part: “leg” bird cat cow dog sheep person

CLIPSeg [32, 46] 19.61 38.62 27.85 39.34 52.63 52.67
PartCLIPSeg (Ours) 31.12 44.82 63.78 41.55 54.73 55.35

4.3 Ablation Study

In this section, we analyze the impact of each training loss on PartCLIPSeg. We focus on the roles of
the separation and enhancement losses, examining how they contribute to improved segmentation
accuracy.

Separation & Enhancement Losses. We conducted an ablation study to investigate the effect of the
separation loss Lsep and the enhancement loss Lenh on the performance of PartCLIPSeg in Table 5.
On Pascal-Part-116, eliminating both losses resulted in a lower harmonic mean of 29.20 in Pred-All
and a harmonic mean of 38.20 in Oracle-Obj. Introducing Lsep without Lenh improved the harmonic
mean in both Pred-All and Oracle-Obj setups. Using both losses led to the highest harmonic means of
30.67 and 38.79, respectively. Similarly, for ADE20K-Part-234, employing both losses resulted in the
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(a) Ground-truth (b) VLPart [40] (c) CLIPSeg [38, 46] (d) CAT-Seg [11, 46] (e) PartCLIPSeg (Ours)

Figure 6: Qualitative results of zero-shot part segmentation on Pascal-Part-116 in Oracle-Obj setting.

best performance, with harmonic means of 19.63 in Pred-All and 38.60 in Oracle-Obj. These results
highlight the importance of both separation and enhancement losses in improving performance.

To verify the effectiveness of boundary creation of PartCLIPSeg, we examined an additional qualita-
tive metric, Boundary IoU [8]. The results demonstrated high Boundary IoU performance, confirming
that PartCLIPSeg effectively resolves ambiguous boundary issues as shown in Table 6.

Impact of PartCLIPSeg for Underrepresented Parts. We investigate the effect of the enhancement
loss Lenh on OVPS model performance, especially with respect to underrepresented parts. In Table 7,
we compare our PartCLIPSeg with CLIPSeg [32, 46] on small parts such as “eye”, “neck”, and “leg”
of animals in Pascal-Part-116. As shown in the table, PartCLIPSeg consistently outperforms CLIPSeg
with significant improvements in most cases. Notably, there is an impressive performance increase of
35.93%p for “cow’s leg”. These improvements highlight the effectiveness of the enhancement loss in
accurately segmenting small and intricate parts, demonstrating its crucial role in improving overall
performance.

5 Conclusion

In this study, we introduced PartCLIPSeg, a state-of-the-art OVPS method that addresses three
primary challenges in OVPS. PartCLIPSeg utilizes generalized parts and object-level guidance to
effectively solve identification issues. Then, it separates parts by minimizing their overlaps in attention
maps, thus learning ambiguous part boundaries. Additionally, we implemented an enhancement loss
function to improve the detection of underrepresented parts. Through extensive experimentation, we
have confirmed the superior performance of PartCLIPSeg.
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A Discussion

A.1 Limitations & Future Work

We share some limitations of our model and outline directions for future research. Our model is
based on semantic segmentation, which does not allow for the discrimination of individual parts as
instances. Consequently, parts such as “Paw 1” from Dog 1 and “Paw 2” from Dog 2 are assigned the
same label. We plan to address this limitation in our future work to enhance the model’s capability to
distinguish between similar parts from different instances.

Furthermore, we believe that adding more inductive biases related to the relationships between parts,
similar to key point detection which incorporates structural understanding, could yield higher-quality
results.

Currently, our focus has been on object-specific parts, essentially mapping different granularity of
vocabulary visually. Advanced methods could allow us to more effectively handle a broader variety
of input categories, further enhancing our model’s applicability and performance.

A.2 Social Impact

This study explores open-vocabulary part segmentation, a technique that expands segmentation
models to include fine-grained categories not encountered during training. The approach’s robust
nature allows for segmentation across various categories, proving invaluable for applications requiring
flexibility and adaptability.

Open-vocabulary part segmentation could greatly influence several advanced fields. In robotics, for
example, robots can precisely identify and handle a wide array of objects and components, essential
for tasks from manufacturing assembly lines to complex medical surgeries. This adaptability allows
robots to function in new settings without extensive retraining.

In healthcare, this technology enhances diagnostic processes by allowing for the segmentation of
novel anatomical structures in medical imaging. This could facilitate earlier disease detection by
identifying subtle, non-cataloged abnormalities essential for diagnosis.

In image editing, open-vocabulary part segmentation enables sophisticated manipulation by letting
editors modify image fine-grained components not predefined in their software. This is especially
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beneficial in the creative industries, where precise adjustments can improve output quality and foster
innovation.

Adopting open-vocabulary part segmentation promises to enhance the efficiency, accessibility, and
effectiveness of these technologies, particularly in handling real-world variability and unpredictability.

B Experimental Details

B.1 Datasets Details

B.1.1 Pascal-Part-116

In the Pascal-Part-116 dataset [7, 46], we target the following object-specific category names in
Table A1. Among these, “bird”, “car”, “dog”, “sheep”, and “motorbike” are designated as unseen
categories, encountered for the first time during inference in the zero-shot part segmentation setting.

Table A1: List of object-specific classes in Pascal-Part-116.

Object-specific Part Categories

aeroplane’s body aeroplane’s stern aeroplane’s wing aeroplane’s tail aeroplane’s engine
aeroplane’s wheel bicycle’s wheel bicycle’s saddle bicycle’s handlebar bicycle’s chainwheel
bicycle’s headlight bird’s wing bird’s tail bird’s head bird’s eye
bird’s beak bird’s torso bird’s neck bird’s leg bird’s foot
bottle’s body bottle’s cap bus’s wheel bus’s headlight bus’s front
bus’s side bus’s back bus’s roof bus’s mirror bus’s license plate
bus’s door bus’s window car’s wheel car’s headlight car’s front
car’s side car’s back car’s roof car’s mirror car’s license plate
car’s door car’s window cat’s tail cat’s head cat’s eye
cat’s torso cat’s neck cat’s leg cat’s nose cat’s paw
cat’s ear cow’s tail cow’s head cow’s eye cow’s torso
cow’s neck cow’s leg cow’s ear cow’s muzzle cow’s horn
dog’s tail dog’s head dog’s eye dog’s torso dog’s neck
dog’s leg dog’s nose dog’s paw dog’s ear dog’s muzzle
horse’s tail horse’s head horse’s eye horse’s torso horse’s neck
horse’s leg horse’s ear horse’s muzzle horse’s hoof motorbike’s wheel
motorbike’s saddle motorbike’s handlebar motorbike’s headlight person’s head person’s eye
person’s torso person’s neck person’s leg person’s foot person’s nose
person’s ear person’s eyebrow person’s mouth person’s hair person’s lower arm
person’s upper arm person’s hand pottedplant’s pot pottedplant’s plant sheep’s tail
sheep’s head sheep’s eye sheep’s torso sheep’s neck sheep’s leg
sheep’s ear sheep’s muzzle sheep’s horn train’s headlight train’s head
train’s front train’s side train’s back train’s roof train’s coach
tvmonitor’s screen

B.1.2 ADE20K-Part-234

In the ADE20K-Part-234 dataset [57], we target specific object categories listed in Table A2. The
dataset includes 44 object classes and detailed subdivisions into over 200 part categories. Notably,
“bench”, “bus”, “fan”, “desk”, “stool”, “truck”, “van”, “swivel chair”, “oven”, “ottoman”, and “kitchen
island” are identified as novel classes and are encountered for the first time during inference in our
zero-shot part segmentation setting.

B.1.3 PartImageNet

PartImageNet [21] is a dataset derived from ImageNet [14], consisting of approximately 24,000
images across 158 classes. Each class has annotations for parts. All classes belong to one of 11
superclasses, organized using the hierarchical information from WordNet [34].

Previous open-vocabulary part segmentation research [40] primarily used PartImageNet to evaluate
cross-dataset settings. In our study, we use PartImageNet not only for cross-dataset evaluation but
also to assess model performance in zero-shot settings specific to PartImageNet.

To measure more generalized performance, we select 40 classes out of the 158. We maintain the
proportion of existing superclasses as much as possible. For each superclass, at least 50% of the
categories are designated as seen categories, with the remaining being unseen categories. Therefore,
there are 25 seen classes and 15 unseen classes in our PartImageNet evaluation dataset.
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Table A2: List of object-specific classes in ADE20K-Part-234.

Object-specific Part Categories

person’s arm person’s back person’s foot person’s gaze person’s hand
person’s head person’s leg person’s neck person’s torso door’s door frame
door’s handle door’s knob door’s panel clock’s face clock’s frame
toilet’s bowl toilet’s cistern toilet’s lid cabinet’s door cabinet’s drawer
cabinet’s front cabinet’s shelf cabinet’s side cabinet’s skirt cabinet’s top
sink’s bowl sink’s faucet sink’s pedestal sink’s tap sink’s top
lamp’s arm lamp’s base lamp’s canopy lamp’s column lamp’s cord
lamp’s highlight lamp’s light source lamp’s shade lamp’s tube sconce’s arm
sconce’s backplate sconce’s highlight sconce’s light source sconce’s shade chair’s apron
chair’s arm chair’s back chair’s base chair’s leg chair’s seat
chair’s seat cushion chair’s skirt chair’s stretcher chest of drawers’s apron chest of drawers’s door
chest of drawers’s drawer chest of drawers’s front chest of drawers’s leg chandelier’s arm chandelier’s bulb
chandelier’s canopy chandelier’s chain chandelier’s cord chandelier’s highlight chandelier’s light source
chandelier’s shade bed’s footboard bed’s headboard bed’s leg bed’s side rail
table’s apron table’s drawer table’s leg table’s shelf table’s top
table’s wheel armchair’s apron armchair’s arm armchair’s back armchair’s back pillow
armchair’s leg armchair’s seat armchair’s seat base armchair’s seat cushion ottoman’s back
ottoman’s leg ottoman’s seat shelf’s door shelf’s drawer shelf’s front
shelf’s shelf swivel chair’s back swivel chair’s base swivel chair’s seat swivel chair’s wheel
fan’s blade fan’s canopy fan’s tube coffee table’s leg coffee table’s top
stool’s leg stool’s seat sofa’s arm sofa’s back sofa’s back pillow
sofa’s leg sofa’s seat base sofa’s seat cushion sofa’s skirt computer’s computer case
computer’s keyboard computer’s monitor computer’s mouse desk’s apron desk’s door
desk’s drawer desk’s leg desk’s shelf desk’s top wardrobe’s door
wardrobe’s drawer wardrobe’s front wardrobe’s leg wardrobe’s mirror wardrobe’s top
car’s bumper car’s door car’s headlight car’s hood car’s license plate
car’s logo car’s mirror car’s wheel car’s window car’s wiper
bus’s bumper bus’s door bus’s headlight bus’s license plate bus’s logo
bus’s mirror bus’s wheel bus’s window bus’s wiper oven’s button panel
oven’s door oven’s drawer oven’s top cooking stove’s burner cooking stove’s button panel
cooking stove’s door cooking stove’s drawer cooking stove’s oven cooking stove’s stove microwave’s button panel
microwave’s door microwave’s front microwave’s side microwave’s top microwave’s window
refrigerator’s button panel refrigerator’s door refrigerator’s drawer refrigerator’s side kitchen island’s door
kitchen island’s drawer kitchen island’s front kitchen island’s side kitchen island’s top dishwasher’s button panel
dishwasher’s handle dishwasher’s skirt bookcase’s door bookcase’s drawer bookcase’s front
bookcase’s side television receiver’s base television receiver’s buttons television receiver’s frame television receiver’s keys
television receiver’s screen television receiver’s speaker glass’s base glass’s bowl glass’s opening
glass’s stem pool table’s bed pool table’s leg pool table’s pocket van’s bumper
van’s door van’s headlight van’s license plate van’s logo van’s mirror
van’s taillight van’s wheel van’s window van’s wiper airplane’s door
airplane’s fuselage airplane’s landing gear airplane’s propeller airplane’s stabilizer airplane’s turbine engine
airplane’s wing truck’s bumper truck’s door truck’s headlight truck’s license plate
truck’s logo truck’s mirror truck’s wheel truck’s window minibike’s license plate
minibike’s mirror minibike’s seat minibike’s wheel washer’s button panel washer’s door
washer’s front washer’s side bench’s arm bench’s back bench’s leg
bench’s seat traffic light’s housing traffic light’s pole light’s aperture light’s canopy
light’s diffusor light’s highlight light’s light source light’s shade

We conduct the dataset evaluation as follows: Models are trained on a training dataset composed of
seen classes. Segmentation performance are then assessed on a validation dataset containing both
seen and unseen classes. Evaluations were conducted in both Pred-All and Oracle-Obj settings.

Table A3: List of selected object classes per superclass. We choose 40 object classes from 158
categories to evaluate performance on PartImageNet and in a cross-dataset setting. Object categories
that are both underlined and in bold represent the unseen classes, which are emphasized for their
unique characteristics within each superclass.

Superclass Object Categories

Quadruped tiger, giant panda, leopard, gazelle, ice bear, impala, golden retriever
Snake green mamba, Indian cobra
Reptile green lizard, Komodo dragon, tree frog, box turtle, American alligator
Boat yawl, pirate, schooner
Fish barracouta, goldfish, killer whale, tench
Bird albatross, goose, bald eagle
Car garbage truck, minibus, ambulance, jeep, school bus
Bicycle mountain bike, moped, motor scooter
Biped gorilla, orangutan, chimpanzee
Bottle beer bottle, water bottle, wine bottle
Aeroplane warplane, airliner
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(a) Ground Truth (b) Result from PartCLIPSeg (Oracle-Obj)

Figure A1: Example of part annotations in PartImageNet on our experiment.

B.2 Implementation Details

Our model implementation is based on the CLIPSeg [32] architecture, as described in the OV-
PARTS [46]. We utilized the pre-trained CLIP ViT-B/16 [38, 59] image encoder and text encoder for
our experiments.

The model is trained using the ADAMW optimizer with a base learning rate of 0.0001 over 20,000
iterations, with a batch size of 8 images. We employ a WarmupPolyLR learning rate scheduler to
manage the learning rate throughout the training process. To ensure model stability, we apply gradient
clipping with a maximum gradient norm of 0.01.

We save model parameters every 1,000 iterations during training. The best-performing parameters
are selected based on the highest validation evaluation scores. For example, the evaluation result
on the Pascal-Part-116 dataset in the Oracle-Obj setting is derived from the checkpoint saved at the
5,000-step mark, which yields the best validation performance.

We evaluated several baseline methods—ZSSeg+, CLIPSeg [32], and CAT-Seg [11]—which are
fine-tuned on our datasets. ZSSeg+ is a modified version of ZSseg [52], utilizing different fine-tuning
methods according to [46]. It employs a ResNet-101 backbone and Compositional Prompt Tuning
based on CoOp.

CLIPSeg and CAT-Seg models are pre-trained on object datasets; however, we fine-tuned these
models on each part-level dataset. CAT-Seg, based on ResNet-101 and using ViT-B/16 as CLIP’s
visual encoder, achieved comparable performance by computing cost volumes and subsequently
applying cost aggregation—a process that enhances segmentation by aggregating matching costs
between image features. Specifically, CAT-Seg uses the frozen upsampling decoder but fine-tuned
CLIP’s image and text encoders. Conversely, we fine-tune the CLIPSeg decoder to better identify
small segments and define clear boundaries. CLIPSeg, based on the ViT-B/16 architecture, is fine-
tuned on the visual adapter, text embeddings, and transformer decoder to enhance its segmentation
capabilities.

B.3 Computational Resource

Table A4: Computational resources on Pascal-
Part-116 with batch size 8.

Method Params Memory

ZSSeg+ [52] 191.6 M 11.1 G
CLIPSeg [32, 46] 151.7 M 25.5 G
CAT-Seg [11] 180.6 M 29.0 G
PartCLIPSeg 152.4 M 24.4 G

All our experiments are conducted on 8 × NVIDIA
A6000 GPUs.

As shown in Table A4, PartCLIPSeg offers advan-
tages in both the number of parameters and mem-
ory consumption compared to other baselines on the
Pascal-Part-116 dataset. With 152.4 million param-
eters, it is more efficient than ZSSeg+ and CAT-Seg,
and comparable to CLIPSeg. In terms of GPU mem-
ory usage, PartCLIPSeg requires 24.4 GB, which is
lower than both CAT-Seg and CLIPSeg.

For PartCLIPSeg, although the number of parameters is larger than CLIPSeg because of computations
related to attention control, there is an advantage in not having to maintain weights for each object-
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specific part due to the use of generalized parts. These efficiencies become more pronounced
as the number of generalized parts shared among object classes increases. By leveraging shared
representations for generalized parts, PartCLIPSeg reduces redundancy and memory requirements.
This makes our model particularly advantageous in datasets where object classes have many common
parts, leading to more efficient training and inference without compromising performance.

C Additional Quantitative Evaluation

Table A5: Recall performance on Pascal-Part-
116 under the Oracle-Obj setting.

Method Seen Unseen Harmonic

ZSSeg+ [52] 65.47 32.13 43.10
CLIPSeg [32, 46] 55.71 43.35 48.76
CAT-Seg [11] 56.00 43.20 48.77
PartCLIPSeg (w/o Lsep + Lenh) 58.97 46.47 51.98
PartCLIPSeg (w/ Lsep + Lenh) 58.46 47.93 52.67

Table A6: Recall performance on ADE20K-Part-
234 under the Oracle-Obj setting.

Method Seen Unseen Harmonic

ZSSeg+ [52] 55.78 40.71 47.07
CLIPSeg [32, 46] 49.59 48.11 48.84
CAT-Seg [11] 43.48 39.87 41.60
PartCLIPSeg (w/o Lsep + Lenh) 51.64 50.99 51.31
PartCLIPSeg (w/ Lsep + Lenh) 53.31 51.52 52.40

In this section, we present an additional evaluation metric that focuses on specific challenges within
the Open-Vocabulary Part Segmentation (OVPS) task as shown in Figure 2. The Recall metric is
used to assess how well the model captures underrepresented parts, addressing the challenge of
underrepresented parts. Higher values in recall indicate that the model effectively captures these
seldom-occurring parts, thereby addressing the challenge of underrepresented parts in OVPS.

PartCLIPSeg consistently achieves higher recall on both seen and unseen classes across both datasets
as shown in Tables A5 and A6. The improved harmonic mean indicates that our model is more
effective at identifying underrepresented parts, thereby addressing one of the core challenges in
OVPS.

We further analyze the impact of the attention control losses Lsep and Lenh on the recall. By
comparing the recall metric with and without these losses, we assess their effectiveness in enhancing
the representation of seldom-occurring parts. From Tables A5 and A6, we observe that incorporating
the attention control losses enhances the model’s performance on unseen classes, which often include
underrepresented parts. The increases in harmonic mean suggest that the attention control losses help
the model to better capture these seldom-occurring or small parts.

D Additional Ablation

D.1 Impact of Object-Level and Part-Level Guidance

Table A7: Ablation on λobj, λpart, and attention control on Pascal-Part-116 in Oracle-Obj setting.

λobj λpart Lsep + Lenh Seen Unseen Harmonic mIoU

0.0 0.0 ✔ 48.36 29.42 36.58
1.0 0.0 ✔ 48.61 31.28 38.07
0.0 1.0 ✔ 48.94 31.68 38.46
1.0 1.0 ✘ 49.09 31.26 38.20
1.0 1.0 ✔ 50.02 31.67 38.79

We conduct additional experiments to verify the impact of object-level and part-level label guidance
on model performance as shown in Table A7. Specifically, we vary the weights λobj and λpart
in Equation (5), setting each to 0 or 1, to assess the influence of object-level and part-level supervision
on the overall performance. Additionally, we evaluate the effect of the attention control losses, Lsep
and Lenh, by including or excluding them.

As shown in Table A7, both object-level and part-level guidance positively impact model performance
on the Pascal-Part-116 dataset under the Oracle-Obj setting. When neither object-level nor part-level
supervision is applied, the harmonic mean is 36.58. Introducing object-level guidance alone increases
the harmonic mean IoU to 38.07, while part-level guidance alone raises it to 38.46. Combining both
guidances yields the best performance with a harmonic mean IoU of 38.79.
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sheep’s neck sheep’s neck

Figure A2: Comparison of results using only Lsep (top) with both Lsep and Lenh (bottom). The
heatmap illustrates attention activation for the “sheep’s neck” class.

Table A8: Effect of varying threshold γ on Pascal-Part-116 in Oracle-Obj setting.

Threshold (γ) Seen Unseen Harmonic mIoU

0.1 47.34 32.24 38.35
0.2 47.45 32.20 38.37
0.3 50.02 31.67 38.79
0.4 51.10 31.18 38.73
0.5 48.71 31.16 38.01

Additionally, removing the attention control losses Lsep and Lenh while keeping both λobj and λpart
at 1.0 results in a lower Harmonic mean of 38.20. This indicates that the attention control losses
contribute to better distinguishing between seen and unseen classes.

D.2 Qualitative Ablation on Attention Control Losses

The separation loss reduces the overlap between different parts, while the enhancement loss strength-
ens the activation of underrepresented parts. As shown in Figure A2, when only the separation loss
Lsep is applied (top), smaller parts adjacent to larger parts may be diminished. Specifically, “sheep’s
neck” is not properly highlighted because minimizing the intersection can cause larger parts, such
as the “sheep’s torso” and “sheep’s head”, to overshadow smaller ones. When both losses Lsep
and Lenh are utilized (bottom), the model accurately segments the small part—“sheep’s neck”—as
the enhancement loss boosts its representation, preventing it from being overwhelmed by larger
neighboring parts.

This demonstrates that the separation and enhancement losses complement each other. Their combined
use is essential to effectively distinguish and represent both large and small parts within an object,
leading to improved segmentation performance.

D.3 Ablation on the Hyperparameter in Attention Control

To evaluate the sensitivity of our method to the hyperparameter threshold γ in Equation (8), we
conducted experiments on the Pascal-Part-116 dataset under the Oracle-Obj setting. We varied γ
from 0.1 to 0.5 and measured the performance in terms of mIoU for seen and unseen classes, as well
as the harmonic mean.

As shown in Table A8, our method is robust to the choice of γ within the range of 0.1 to 0.5. The
harmonic mean remains relatively stable, with the best performance achieved at γ = 0.3. While
there is a slight variation in performance across different values of γ, the changes are not significant,
indicating that our method does not heavily depend on the exact value of this hyperparameter.
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E Additional Qualitative Results and Qualitative Analysis

E.1 CLIP Embedding

Figure A3: The t-SNE visualization of text embeddings from a pre-trained CLIP model on the classes
of the Pascal-Part-116 dataset.

The t-SNE visualization of text embeddings from a pre-trained CLIP [38, 32, 58] model on the Pascal-
Part-116 dataset [7, 46] reveals intriguing insights into the model’s understanding of categories.
Notably, similar classes such as “cats” and “dogs” are clustered closely within the embedding space.
This proximity indicates a shared semantic space for categories that are visually or contextually
related.

Additionally, we observed that object-specific parts sharing generalized parts, such as “car’s license
plate” and “bus’s license plate”, are also positioned near each other. This clustering suggests
that the CLIP recognizes and leverages common parts across different objects that share common
characteristics. Further analysis shows that object-specific classes containing parts like “muzzle“
and “paw“ are distributed in similar regions of the space. This consistency across different object
categories emphasizes the CLIP’s ability to generalize part-level features effectively.

Leveraging CLIP’s text embeddings provides a significant zero-shot capability in the visual domain.
This capability can be extended to part-level categories, demonstrating the potential for sophisticated
unsupervised or zero-shot learning approaches in fine-grained object and part recognition tasks.
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E.2 Additional Qualitative Results

E.2.1 Oracle-Obj Setting

Figure A4: Comparison of VLPart, CLIPSeg, CAT-Seg, and our model on the Pascal-Part-116 dataset
in Oracle-Obj setting.
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E.2.2 Pred-All Setting

Figure A5: Comparison of VLPart, CLIPSeg, CAT-Seg, and our model on the Pascal-Part-116 dataset
in Pred-All setting.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope in Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations & future works are included at supplementary materials.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The anonymized repository of our implementation and instructions of repro-
duction are provided. (in the abstract section)
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The anonymized repository of our implementation and instructions of repro-
duction are provided. (in the abstract section)

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting and details are provided in section 4 and supplemen-
tary materials. Also, the anonymized repository of our implementation and reproduction
instructions are provided. (URL is in the abstract section)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard error of an average of 5 results is reported in Section 4 of the
proposed model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental resources, setting and details are provided in section 4
and supplementary materials. Also, the anonymized repository of our implementation and
reproduction instructions are provided. (URL is in the abstract section)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: -

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader of impact is discussed in supplementary materials.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited previous works and codes in section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The anonymized repository of our implementation and reproduction instruc-
tions are provided. (URL is in the abstract section)
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines: [NA]

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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