
CLASSIC: A platform for high throughput mapping of genetic design spaces in mammalian cells and 
ML guided prediction of gene circuit behavior 

ABSTRACT 
Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic ele-
ments. However, because these approaches only interrogate short sequences, it remains challenging to perform high 
throughput (HT) assays on constructs containing combinations of multiple sequence elements arranged across multi-kb 
length scales. Overcoming this barrier could accelerate genetic design. For example, by screening diverse gene circuit 
designs, “composition-to-function” mappings could be created that provide insight into genetic part composability. Here, we 
introduce CLASSIC, a novel genetic screening platform that combines long- and short-read next-generation sequencing 
(NGS) modalities to quantitatively assess pools of constructs of arbitrary length containing diverse part compositions. We 
show that CLASSIC can measure expression profiles of >105 drug-inducible gene circuit designs (from 6-9 kb) in a single 
experiment in human cells. As we show, with a dataset of this size, it is possible to train machine learning (ML) models that 
not only predict the behavior of circuits from unmeasured regions of circuit design space, but also can be used as based 
models to expand design space mapping through an iterative active learning process. Furthermore, we show that by map-
ping entire circuit design landscapes, we gain critical insight into underlying circuit design and part composability principles 
that extend our understanding beyond standard biophysical models. Overall, our work shows that the expanded experi-
mental throughput offered by CLASSIC dramatically augments the pace and scale of genetic design and establishes an 
experimental basis for AI-driven design of complex genetic systems. 
INTRODUCTION. While cellular regulation is understood as a collection of interacting modules, a predictive understanding 
of how these modules interact within and across organizational scales to quantitatively specify a functional output remains 
elusive. Incomplete understanding of functional composability also presents a challenge for designed genetic systems. For 
example, in gene circuits, where DNA-encoded “parts” are combined together to specify novel regulatory relationships, a 
priori design of precise input/output behavior is non-trivial. Regulatory interactions within a gene circuit must be carefully 
tuned before the right composition parts that support a desired circuit behavior are identified1. Further, as parts must work 
within a crowded intracellular environment2, incidental molecular coupling can occur between parts and with host cell ma-
chinery. Because these context-dependent interactions are difficult to predict, they can confound circuit design, making it a 
challenge to achieve a desired behavior. 

Profiling an entire circuit design landscape in a single experiment with HT screening based approaches could enable 
rapid identification of circuit variants with desired behaviors. This could also facilitate the development of ML/AI models that 
are capable of inferring context-specific part function or forward predicting circuit behavior. HT screening approaches that 
utilize short-read NGS as a readout3,4 have been used to generate detailed sequence-to-function mappings for multiple 
genetic part classes, including promoters4, terminators5, transcription factors (TFs)6, nucleic acid switches7, and receptors8. 
However, high-depth functional profiling of libraries of DNA constructs long enough (>1 kb) to encode entire circuits can be 
costly and technically challenging. 

To overcome this challenge, we devised an approach9 that combines long-read nanopore (ONT) and short-read NGS 
(Illumina) (Fig. 1). In this approach, libraries are generated via pooled part assemblies that incorporate semi-random bar-
codes. Nanopore sequencing is used to rapidly and inexpensively assess part composition and create a composition-to-
barcode index. The library is then introduced into cells, binned based on expression phenotype, and analyzed by short-read 
sequencing to produce a barcode-to-phenotype index. A map matching construct composition to phenotype can then be 
revealed by comparing the two indices. Using this technique, which we refer to as CLASSIC9 (combining long- and short-
range sequencing to investigate genetic complexity), it is possible to obtain high-depth phenotypic expression data for large 
libraries (>106) of part compositions of arbitrary length using standard pheno-
typic selection or flow sorting experiments. To demonstrate the performance 
capabilities of CLASSIC, we created a library of >105 drug-inducible circuit de-
signs in a single experiment (Fig. 2), simultaneously varying multiple catego-
ries of parts within the 2-gene circuit. This represents the largest gene circuit 
library analyzed to date. The abundance of data we gathered with this experi-
ment enabled us to train an ML model (deep neural network) that could not 
only accurately predict unmeasured circuit configurations, but could be used 
as a base model to map additional categories of genetic parts through iterative 
fine-tuning experiments. Using this active learning process, it was possible for 
CLASSIC to traverse through an expansive genetic design space (~107), ena-
bling us to rapidly converge on regions of desirable circuit function. 
RESULTS. The circuit we analyzed consisted of two genes: one that encoded 
a synthetic zinc-finger (ZF)-based transcription factor (synTF) with appended 
activation domains (ADs), and reporter gene harboring synTF binding motifs 
(BMs) upstream of a minimal promoter driving GFP expression (Fig. 2A). The inclusion of an ERT2 domain in the synTF 
renders it responsive to induction with 4-hydroxy tamoxifen (4-OHT). Diversification of the circuit design across 10 inde-
pendent part categories resulted in an overall circuit design space of 165,888 compositions. Long-read nanopore (ONT) 
sequencing of the pooled library to index barcode sequences to circuit identity yielded assignments for 95.3% of total com-
positions, with no observable bias from the library construction process (Fig. 2B, left). We integrated this library into 

 
Fig 1: Overview of the CLASSIC workflow for 
high throughput screening of design spaces 



HEK293T cells and sorted un-induced and 4-OHT-induced populations separately 
into 8 bins based on their GFP fluorescence levels. Following Illumina NGS analysis 
of each bin, a total of 121,292 (73% of design space) compositions were identified, 
and basal, induced, and fold-change expression values for each variant were com-
puted. Fold-change values derived from CLASSIC measurements demonstrated ex-
cellent overall agreement (MAE=0.15) (Fig. 2B, right) with randomly isolated library 
members directly measured  by flow cytometry (n = 40). These results argue that our 
CLASSIC workflow can be used to make large-scale experimental measurements of 
circuit behavior with a degree of quantitative accuracy comparable to the measure-
ment of individual circuits. 

To capture the behavior of compositions that were unmeasured by CLASSIC, 
we encoded circuit part categories as features and trained a deep neural network 
model to predict the basal and induced expression of all circuits, and observed ex-
cellent predictive 
power (r2 = 0.86 
and 0.88 respec-
tively, Fig. 3 left). 
This allowed us 
to complete the 
design space 

with predictions for all 166k library members (Fig. 3, mid-
dle). Using the trained model, we made functional pre-
dictions for 96 circuits from across of fold-change behav-
ior space, constructing and testing each individual to val-
idate model accuracy. The model showed excellent con-
cordance with individual variants, particularly for those in 
the (HFC) region (>25 fold induction in gene expression, Fig 3, middle inset). Statistical analysis of the completed design 
space revealed molecular rules underpinning circuit design, including the non-intuitive coupling between different part cat-
egories to produce HFC behavior. Additionally, clustering and UMAP projection10 revealed several distinct families of part 
compositions were capable of supporting HFC circuit behavior (Fig 3, right). These results show that CLASSIC can furnish 
data capable of training an ML model with excellent predicative power. We further validated the ability to add novel parts to 
the design space and fine tune our model to capture the behavior of these new parts and expand the design space to >106 
circuits (results not shown). 
METHODS. CLASSIC gene circuit library assembly uses a custom hierarchical cloning scheme involving pooled assembly 
of part-containing “input” plasmids that combinatorially associate to libraries of yield diverse part combinations. Final multi-
gene assemblies also incorporate a BFP gene containing barcode sequences. Circuit pools are then genomically integrated 
at single copy into HEK293T cells using a bacteriophage recombinase. Cells are then expanded, sorted into bins according 
to GFP intensity, and then RNA extracted and converted to cDNA for Illumina sequencing to quantitate barcode abundance 
across bins and compute circuit output. Nanopore sequencing performed on the library was analyzed via a custom sequence 
analysis pipeline. Data from both sequencing modalities were then combined to assign phenotype to circuit identities by 
comparing the barcode sequences from the two modes. For the ML model, data values were one-hot encoded to produce 
a 4 x 10 matrix for each circuit (number of parts x number of features in circuit). Using this matrix as an input, and expression 
in both basal and induced conditions as an output, we trained a fully connected neural network using the pytorch package 
in python. MSE was used as the loss function, and a randomly selected validation set was used to monitor training progress. 
Part-coupling was quantified by computing the pairwise mutual information between all pairs of part categories.  
DISCUSSION. This work establishes the feasibility of combining long- and short-read NGS to perform massively parallel 
quantitative profiling of multi-kb length-scale genetic part assemblies in human cells. By enabling HT profiling of diverse 
combinations of genetic elements, CLASSIC holds potential as an approach for exploring the emergence of function from 
genetic composition across a range of organizational scales and phylogenetic contexts, including for viruses, bacterial op-
erons, and chromatin domains. As our data demonstrate, this approach significantly expands the scope of inquiry for syn-
thetic biology. We showed that data acquired using CLASSIC can be used to train ML models to accurately make predictions 
for out-of-sample circuit behavior and reveal design rules that may be non-intuitive and challenging to capture using bio-
physical modeling alone. While extensive recent work has used ML approaches to develop sequence-to-function models 
for various classes of genetic parts11-13 our work serves as a critical starting point for developing ML/AI-based models of 
gene circuit function that use genetic part compositions as learned features. While our current work has focused on mapping 
a design space of 105 compositions, it may be possible to create predictive models for more complex circuits with far more 
expansive design spaces by using data acquired with CLASSIC to train high capacity deep-learning algorithms (e.g., trans-
formers) which require much larger datasets than currently exist. Such approaches could work in black-box fashion, without 
the incorporation of regulatory or biophysical priors, or synergistically with existing mechanistic frameworks to create inter-
pretable models that provide deeper insights into genetic design. 
 

 
Fig 3: ML model trained on CLASSIC data to model the entire genetic 
design landscape 

 
Fig 2: 105-member library construction 
and measurement with CLASSIC 
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