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ABSTRACT

Diffusion Probabilistic Models (DPMs) have demonstrated substantial promise
in image generation tasks but heavily rely on the availability of large amounts of
training data. Previous works, like GANs, have tackled the limited data problem
by transferring pre-trained models learned with sufficient data. However, those
methods are hard to be utilized in DPMs since the distinct differences between
DPM-based and GAN-based methods, showing in the unique iterative denoising
process integral and the need for many timesteps with no-targeted noise in DPMs.
In this paper, we propose a novel DPMs-based transfer learning method, TAN,
to address the limited data problem. It includes two strategies: similarity-guided
training, which boosts transfer with a classifier, and adversarial noise selection
which adaptively chooses targeted noise based on the input image. Extensive
experiments in the context of few-shot image generation tasks demonstrate that our
method is not only efficient but also excels in terms of image quality and diversity
when compared to existing GAN-based and DDPM-based methods.

1 INTRODUCTION

Generative models, such as GANs (Brock et al., 2018; Khan et al., 2022), VAEs (Kingma & Welling,
2013; Rezende et al., 2014), and autoregressive models (Van den Oord et al., 2016; Chen et al., 2018;
Grill et al., 2020), have made remarkable successes in various fields across images (Brock et al., 2018;
Razavi et al., 2019), text (Brown et al., 2020), and audio (Dhariwal et al., 2020; Oord et al., 2016) by
utilizing vast amounts of unlabeled data for training. Diffusion probabilistic models (DPMs) (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal, 2021), which are designed to replicate data
distributions by learning to invert multi-step noise procedures, have recently experienced significant
advancements, enabling the generation of high-definition images with broad diversity. Although
DPMs have emerged as a potent tool for image generation with remarkable results in terms of both
quality and diversity, modern DPMs heavily rely on extensive amounts of data to train the large-scale
parameters of their networks (Cao et al., 2022). This dependency can lead to overfitting and a failure
to generate diverse, high-quality images with limited training data. Unfortunately, gathering sufficient
data is not always feasible in certain situations.

Transfer learning can be an effective solution to this challenge, as it applies knowledge from a
pre-trained generative model trained on a large dataset to a smaller one. The fundamental idea is
to begin training with a source model that has been pre-trained on a large dataset, and then adapt
it to a target domain with limited data. Several techniques have been proposed in the past to adapt
pre-trained GAN-based models (Wang et al., 2018; Karras et al., 2020a; Wang et al., 2020; Li et al.,
2020) from large-scale source datasets to target datasets using a limited number of training samples.
Typically, methods for few-shot image generation either enhance the training data artificially using
data augmentation to prevent overfitting (Zhang et al., 2018; Karras et al., 2020a), or directly evaluate
the distance between the processed image and the target image (Ojha et al., 2021; Zhao et al., 2022).

Nevertheless, applying prior GAN-based techniques to DPMs is challenging due to the differences
in training processes between GAN-based and DPM-based methods. GANs can quickly generate a
final processed image from latent space, while DPMs only predict less noisy images at each step and
request large timesteps to generate a high-quality final image. Such an iterative denoising process
poses two challenges when transferring diffusion models. The first challenge is that the transfer
direction needs to be estimated on noisy images. The single-pass generation of GANs allows them
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Figure 1: Two sets of images generated from corresponding fixed noise inputs at different stages of
fine-tuning DDPM from FFHQ to 10-shot Sunglasses. The perceptual distance (LPIPS Zhang et al.
(2018)) with the training target image is shown on each generated image. When the bottom image
successfully transfers to the target domain, the top image has already suffered from overfitting.

to directly compare the generated clean images with the target image (Li et al., 2020; Ojha et al.,
2021; Zhao et al., 2022), which is not easily applicable to diffusion models. The current DPM-based
few-shot method, DDPM pairwise adaptation (DDPM-PA) (Zhu et al., 2022), substitutes the high-
quality real final image with the predicted blurry final at the intermediate timestep to address this
issue. However, comparing the target image with the blurry image can be problematic and inaccurate,
as the predicted image may not accurately represent the domain of generated images. It leads to the
production of DDPM-PA final images that are fuzzy and distorted. Moreover, even if the transfer
direction can be available, we still face a more fundamental second challenge resulting from the noise
mechanism in diffusion models. The diffusion and denoising process utilize fully random Gaussian
noise, which is independent of the input image and makes no assumption of it. We observe that such
non-targeted noise imposes unbalanced effects on different images, leading to divergent transferring
pace in terms of training iteration needed. As demonstrated in Figure 1, when one image (below)
is just successfully transferred from the source domain to the target domain, another image (above)
may have severely overfit and become too similar to the target image. Such normally distributed
noise may also necessitate an extensive number of iterations to transfer, especially when the gradient
direction is noisy due to limited images.

In this paper, to handle the challenge of transferring direction estimation for diffusion models, we
propose to leverage a similarity measurement to estimate the gap between the source and the target,
which circumvents the necessity of comparing individual images. Building upon this, we introduce a
similarity-guided training approach to fine-tune the pre-trained source model to the target domain. It
employs a classifier to estimate the divergence between the source and target domains, leveraging
existing knowledge from the source domain to aid in training the target domain. This method not
only helps in bridging the gap between the source and target domains for diffusion models but
also addresses the unstable gradient direction caused by limited target data in the few-shot setting
by implicitly comparing the sparse target data with the abundant source data. More importantly,
to tackle the challenge of non-targeted noise in diffusion models, we propose a novel min-max
training process, i.e., adversarial noise selection, to dynamically choose the noise according to the
input image. The adversarial noise scheme enhances few-shot transfer learning by minimizing the
“worse-case” Gaussian noise which the pre-trained model fails to denoise on the target dataset. This
strategy also significantly reduces the training iterations needed and largely improves the efficiency
of the transfer learning for diffusion models. Our adversarial strategy with similarity measurement
excels in few-shot image generation tasks, speeding up training, achieving quicker convergence, and
creating images fitting the target style while resembling source images. Our Experiments on few-shot
image generation tasks demonstrate our method surpasses existing GAN-based and DDPM-based
techniques, offering superior quality and diversity.

2 RELATED WORK

2.1 DIFFUSION PROBABILISTIC MODELS

Ho et al. (2020) has been leveraged as an effective generative model that circumvents the adversarial
training inherent in GANs (Goodfellow et al., 2020). DDPMs, by enabling the diffusion reverse
process, are capable of reconstructing images. However, due to their extensive iterative time steps,
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DDPMs are subject to the challenge of high computational time. DDIM (Song et al., 2020) addresses
this issue by "implicating" the model, which allows it to function with far fewer iterations and
dramatically reduces the inference time compared to DDPM. Conversely, a fresh approach to the
diffusion model is the score-based model via SDE, wherein the diffusion and the denoising processes
are both modeled by SDEs. Song & Ermon (2019) initially proposed the generation of samples from
latent noise via the Dynamic Langevin Sampling method. For fast high-quality, high-resolution image
generation, Latent Diffusion Models (LDMs) (Rombach et al., 2022) propose an advanced machine
learning methodology by gradually transforming a random noise into the target image through a
diffusion process that uses latent space representations.

2.2 FEW-SHOT IMAGE GENERATION

Existing practices predominantly adopt an adaptation pipeline where a foundational model is pre-
trained on a large source domain, and then adjusted to a smaller target domain. In contrast, few-shot
image generation strives to envision new and diverse examples while circumventing overfitting to the
limited training images. FreezeD (Mo et al., 2020) addresses overfitting by locking parameters in the
high-resolution layers of the discriminator. EWC (Li et al., 2020) utilizes elastic weight consolidation,
making it difficult to modify essential weights that possess high Fisher information values. CDC
(Ojha et al., 2021) introduces a cross-domain consistency loss and patch-level discrimination to
forge a connection between the source and target domains. DCL (Zhao et al., 2022) uses contrastive
learning to distance the generated samples from actual images and maximize the similarity between
corresponding image pairs in source and target domains. The DDPM-PA (Zhu et al., 2022) adopts
a similar approach to CDC for adapting models pre-trained on extensive source domains to target
domains. GAN-based methods, like CDC and DCL, require the final generated image during training.
In contrast, DPMs’ training process aims to predict the next stage of noised images and can only
yield a blurry predicted image during the training stage.

3 PRELIMINARY

Gaussian diffusion models are used to approximate the data distribution x0 ∼ q(x0) by pθ(x0). The
distribution pθ(x0) is modeled in the form of latent variable models. According to (Ho et al., 2020),
the diffusion process from a data distribution to a Gaussian distribution with variance βt ∈ (0, 1) for
timestep t can be expressed as:

q(xt|x0) = N (xt; ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ ,

where αt := 1 − βt, ᾱt :=
∏t
i=0 (1− βi) and ϵ ∼ N (0, I). Ho et al. (2020) trains a U-Net (Ron-

neberger et al., 2015) model parameterized by θ to fit the data distribution q(x0) by maximizing the
variational lower-bound. The DDPM training loss with model ϵθ(xt, t) can be expressed as:

Lsample(θ) := Et,x0,ϵ ∥ϵ− ϵθ(xt, t)∥2 . (1)

Based on (Song et al., 2020), the reverse process of DDPM and DDIM at timestep t can be expressed
as:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)

ᾱt

)
︸ ︷︷ ︸

predicted x0

+
√
1− ᾱt−1 − σ2

t · ϵθ(xt, t)︸ ︷︷ ︸
direction pointing to xt

+ σtϵt︸︷︷︸
random noise

,

where σt = η
√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1 and η = 0 (Song et al., 2020) or η = 1 (Ho

et al., 2020) or η =
√
(1− ᾱt)/(1− ᾱt−1) (Ho et al., 2020). Enhance, Dhariwal & Nichol (2021)

propose the conditional reverse noise process as:

pθ,ϕ(xt−1|xt, y) ≈ N (xt−1;µθ(xt, t) + σ2
t γ∇xt

log pϕ(y|xt), σ2
t I), (2)

where µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, (3)

and γ is a hyperparameter for conditional control. For the sake of clarity in distinguishing domains,
this paper uses S and T to represent the source and target domain, respectively.
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4 TRANSFER LEARNING IN DIFFUSION MODELS VIA ADVERSARIAL NOISE

In this section, we introduce transfer learning in diffusion models via Adversarial Noise, dubbed
TAN, with similarity-guided training and adversarial noise selection for stronger transfer ability.

4.1 SIMILARITY-GUIDED TRAINING

We use similarity to measure the gap between the source and target domains using a noised image
xt at timestep t instead of the final image. Drawing inspiration from (Dhariwal & Nichol, 2021;
Liu et al., 2023), we express the domain difference between the source and target in terms of the
divergence in similarity measures. Initially, we assume a model that can predict noise with both
source and target domains, denoted as θ(S,T ). As Equation 2, the reverse process for the source and
target images can be written as:

pθ(S,T ),ϕ(xt−1|xt, y = Y ) ≈ N (xt−1;µθ(S,T )
+ σ2

t γ∇xt log pϕ(y = Y |xt), σ2
t I) , (4)

where Y is S or T for source or target domain image generation, respectively. We can consider
µ(xt) + σ2

t γ∇xt
log pϕ(y = S|xt) as the source model θS , which only synthesize image on the

source domain respectively. For brevity, we denote pθS ,ϕ(x
S
t−1|xt) = pθ(S,T ),ϕ(xt−1|xt, y = S). We

similar define pθT ,ϕ(x
T
t−1|xt) as above by replace S with T . Therefore, the KL-divergence between

the output of source model θS and the target θT with the same input xt at timestep t, is defined as:

DKL
(
pθS ,ϕ(x

S
t−1|xt), pθT ,ϕ(xTt−1|xt)

)
= Et,x0,ϵ

[
∥∇xt

log pϕ(y = S|xt)−∇xt
log pϕ(y = T |xt)∥2

]
, (5)

where pϕ is a classifier to distinguish xt. The detailed derivation is in Appendix. We consider the
∇xt

log pϕ(y = S|xt) and ∇xt
log pϕ(y = T |xt) as the similarity measures of the given xt in the

source and target domains, respectively. Since transfer learning primarily focuses on bridging the
gap between the image generated by the current fine-tuning model and the target domain image, we
disregard the first term and utilize only pϕ(y = T |xTt ) to guide the training process. Specifically, we
employ a fixed pre-trained binary classifier that differentiates between source and target images at
time step t to boost the training process. Similarly with the vanilla training loss in DPMs (Ho et al.,
2020), i.e., Equation 1, we use the KL-divergence between the output of current model θ and target
model θT at time step t as:

min
θ

Et,x0,ϵ

[∥∥ϵt − ϵθ(xt, t)− σ̂2
t γ∇xt

log pϕ(y = T |xt)
∥∥2] , (6)

where ϵt ∼ N (0, I), ϵθ is the pre-trained neural network on source domain, γ is a hyper-parameter to
control the similarity guidance, σ̂t = (1− ᾱt−1)

√
αt

1−ᾱt
, and pϕ is the binary classifier differentiating

between source and target images. Equation 6 is defended as similarity-guided DPMs train loss. The
full proof is provided in the Appendix. We leverage the pre-trained classifier to indirectly compare
the noised image xt with both domain images, subtly expressing the gap between the currently
generated image and the target image. By minimizing the output of the neural network with corrected
noise, we bridge the gap in the diffusion model and bolster transfer learning. Furthermore, similarity
guidance enhances few-shot transfer learning by avoiding misdirection towards the target image, as
∇xt log pϕ(y = T |xt) acts as an indirect indicator, rather than straightly relying on the original image.

4.2 ADVERSARIAL NOISE SELECTION

Despite potentially determining the transfer direction, we still encounter a fundamental second
challenge originating from the noise mechanism in diffusion models. As mentioned, the model needs
to be trained to accommodate the quantity of noise ϵt over many iterations. However, increasing
iterations with limited images may lead to overfitting of the training samples, thereby reducing the
diversity of the generated samples. On the other hand, training with too few iterations might only
successfully transform a fraction of the generated images into the target domain as Figure 1.

To counter these issues, we propose an adaptive noise selection method. This approach utilizes a
min-max training process to reduce the actual training iterations required and ensure the generated
images closely resemble the target images. After the model has been trained on a large dataset, it
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exhibits a strong noise reduction capability for source datasets. This implies it only needs to minimize
specific types of Gaussian noise with which the trained model struggles or fails to denoise with the
target domain sample. The first step in this process is to identify the maximum Gaussian noise with
the current model, and then specifically minimize the model using this noise. Based on Equation 6,
this can be mathematically formulated as follows:

min
θ

max
ϵ

Et,x0

[∥∥ϵ− ϵθ(xt, t)− σ̂2
t γ∇xt

log pϕ(y = T |xt)
∥∥2] . (7)

Although finding the exact maximum noise is challenging as Equation 7, the projected gradient
descent (PGD) strategy can be used to solve the inner maximization problem instead. Specifically,
the inner maximization of Gaussian noise can be interpreted as finding the “worse-case” noise
corresponding to the current neural network. Practically, the similarity-guided term is disregarded,
as this term is hard to compute differential and is almost unchanged in the process. We utilize the
multi-step variant of PGD with gradient ascent, as expressed below:

ϵj+1 = Norm
(
ϵj + ω∇ϵj

∥∥ϵj − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ

j , t)
∥∥2) , j = 0, · · · , J − 1, (8)

where ω is a hyperparameter that represents the “learning rate” of the negative loss function, and
Norm is a normalization function that approximately ensures the mean and standard deviation of
ϵj+1 is 0 and I respectively. The initial value, ϵ0, is sampled from the Gaussian distribution as
ϵ0 ∼ N (0, I). We use this method to identify this worse-case noise and minimizing the “worse-case”
Gaussian noise is akin to minimizing all Gaussian noises that are “better” than it. By adaptively
choosing this specific noise, we can more accurately correct the gradient to enhance training with
limited data, effectively addressing the underfitting problem during a limited number of iterations.

4.3 OPTIMIZATION

For time and GPU memory saving, we implement an additional adaptor module, ψl, (Noguchi &
Harada, 2019) to learn the shift gap as Equation 5 based on xt in practice. During the training, we
keep the parameters of θl constant and update the additional adaptor layer parameters ψl. The overall
loss function can be expressed as follows,

L(ψ) ≡ Et,x0

∥∥ϵ⋆ − ϵθ,ψ(x
⋆
t , t)− σ̂2

t γ∇x⋆
t
log pϕ(y = T |x⋆t )

∥∥2 (9)

s.t. ϵ⋆ = argmax
ϵ

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2 , ϵ⋆mean = 0 and ϵ⋆std = I , (10)

where ϵ⋆ is the “worse-case” noise, the x⋆t =
√
ᾱtx0 +

√
1− ᾱtϵ

⋆ is the corresponding noised image
at the timestep t and ψ is certain extra parameter beyond pre-trained model. We link the pre-trained
U-Net model with the adaptor layer (Houlsby et al., 2019) as xlt = θl(xl−1

t ) + ψl(xl−1
t ), where xl−1

t
and xlt represents the l-th layer of the input and output, and θl and ψl denote the l-th layer of the
pre-trained U-Net and the additional adaptor layer, respectively.

Algorithm 1 Training DPMs with TAN

Require: binary classifier pϕ, pre-trained DPMs ϵθ, learning rate η
1: repeat
2: x0 ∼ q(x0);
3: t ∼ Uniform({1, · · · , T});
4: ϵ ∼ N (0, I);
5: for j = 0, · · · , J − 1 do
6: Update ϵj via Eq. 8;
7: end for
8: Compute L(ψ) with ϵ⋆ = ϵJ via Eq. 9;
9: Update the adaptor model parameter: ψ = ψ − η∇ψL(ψ);

10: until converged.

The full training procedure of our method, named DPMs-TAN, is outlined in Algorithm 1. Initially,
as in the traditional DDPM training process, we select samples from target datasets and randomly
choose a timestep t and standard Gaussian noise for each sample. We employ limited extra adaptor
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(a) Gradient of Output Layer (b) Heat-map of DDPM (c) Heat-map of DDPM-TAN

Figure 2: This Figure visualizes gradient changes and heat maps: Figure (a) shows gradient directions
with various settings—the cyan line for the gradient of 10,000 samples in one step, dark blue for ten
samples in one step as baseline method (trained with traditional DDPM), the sienna for our similarity-
guided training, and the orange for our method DDPM-TAN, while red points at the background are
"worse"-case noises by adversarial noise selection; Figure (b) and (c) depict heat-maps of the baseline
and our method, with cyan and gold lines representing the generation sampling process value with
the original DDPM and our method, respectively.

module parameters with the pre-train model. Subsequently, we identify the adaptive inner max as
represented in Equation 8 with the current neural network. Based on these noises, we compute the
similarity-guided DDPM loss as Equation 6, which bridges the discrepancy between the pre-trained
model and the scarce target samples. Lastly, we execute backpropagation to only update the adaptor
module parameters.

5 EXPERIMENT

To demonstrate the effectiveness of our approach, we perform a series of few-shot image generation
experiments using a limited set of just 10 training images with the same setting as DDPM-PA
(Zhu et al., 2022). We compare our method against state-of-the-art GAN-based and DDPM-based
techniques, assessing the quality and diversity of the generated images through both qualitative and
quantitative evaluations. This comprehensive comparison provided strong evidence of the superiority
of our proposed method in the context of few-shot image generation tasks.

5.1 VISUALIZATION ON TOY DATA

To conduct a quantitative analysis, we trained a diffusion model to generate 2-dimensional toy data
with two Gaussian noise distributions. The means of the Gaussian noise distributions for the source
and target are (1, 1) and (−1,−1), and their variances are denoted by I. We train a simple neural
network with source domain samples and then transfer this pre-trained model to target samples.

Figure 2 (a) illustrates the output layer gradient direction of four different settings in the first iteration,
with the same noise and timestep t. The red line, computed with ten thousand different samples,
is considered a reliable reference direction (close to 45 degrees southwest). For 10-shot samples,
we repeat them a thousand times into one batch to provide a unified comparison with ten thousand
different samples. The dark blue line and the sienna represent the gradient computed with the
traditional DDPM as the baseline and similarity-guided training in a 10-shot sample, respectively.
The orange line represents our method, DDPM-TAN, in a 10-shot sample. The gradient of our method
is closer to the reliable reference direction, demonstrating that our approach can effectively correct
the issue of the noisy gradient. The red points in the background symbolize "worse-case" noise,
which is generated through adversarial noise selection. The graphic shows how the noise distribution
transitions from a circle (representing a normal Gaussian distribution) to an ellipse. The principal
axis of this ellipse is oriented along the gradient of the model parameters. This illustrates the noise
distribution shift under our adversarial noise selection approach, which effectively fine-tunes the
model by actively targeting the “worst-case” noise that intensifies the adaptation task.

Figures 2 (b) and (c) present heatmaps of the baseline and our method in only one dimension,
respectively. The cyan and gold lines denote the values of the generation sampling process using the
original DDPM and our method. The heat-maps in the background illustrate the distribution of values
for 20,000 samples generated by the original DDPM (baseline) and our method. The lighter the
color in the background, the greater the number of samples present. There is a significantly brighter
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Figure 3: The 10-shot image generation samples on LSUN Church → Landscape drawings (top) and
FFHQ → Raphael’s paintings (bottom). When compared with other GAN-based and DDPM-based
methods, our method, TAN, yields high-quality results that more closely resemble images of the
target domain style, with less blurring.
central highlight in (c) compared to (b), demonstrating that our method can learn the distribution
more quickly than the baseline method. The gold and cyan lines in the two figures are approximately
parallel, providing further evidence that our method can learn the gap more rapidly.

5.2 EXPERIMENTAL SETUP

Datasets. Following (Ojha et al., 2021), we use FFHQ (Karras et al., 2020b) and LSUN Church
(Yu et al., 2015) as source datasets. For the target datasets, we employe 10-shot Sketches, Babies,
Sunglasses, and face paintings by Amedeo Modigliani and Raphael Peale, which correspond to the
source domain FFHQ. Additionally, we utilize 10-shot Haunted Houses and Landscape drawings as
target datasets corresponding to the LSUN Church source domain.

Configurations. We evaluate our method not only on the DDPM framework but also on the LDMs.
For this, we employ a pre-trained DDPM similar to DDPM-PA and use the pre-trained LDMs as
provided in (Rombach et al., 2022). We restrict our fine-tuning to the shift module of the U-Net,
maintaining the pre-trained DPMs and autoencoders in LDMs as they are. For similarity-guided
training, we establish γ = 5 and we utilized a model pre-trained on the ImageNet dataset and
subsequently fine-tuned it with using a new classifier head on a limited set of 10 target domain images.
In the case of adversarial noise selection, we assign J = 10 and ω = 0.02 for most transfer learning
tasks. We employ a learning rate of 5× 10−5 for the DDPMs or 1× 10−5 LDMs for approximately
300 iterations with a batch size of 40 on ×8 NVIDIA A100.

Measurements. In our evaluation of generation diversity, we utilize Intra-LPIPS and FID as
described in CDC (Ojha et al., 2021). For Intra-LPIPS, we generate 1,000 images, which each of
them wiil be assigned to the training sample with the smallest LPIPS distance. The Intra-LPIPS
measurement is obtained by averaging the pairwise LPIPS distances within the same cluster and then
averaging these results across all clusters. FID is a widely use metric for assessing the generation
quality of generative models by calculating the distribution distances between generated samples
and datasets. However, FID may become unstable and unreliable when applied to datasets with few
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Table 1: The Intra-LPIPS (↑) results for both DDPM-based strategies and GAN-based baselines are
presented for 10-shot image generation tasks. These tasks involve adapting from the source domains
of FFHQ and LSUN Church. The “Parameter Rate” column provides information regarding the
proportion of parameters fine-tuned in comparison to the pre-trained model’s parameters. The best
results are marked as bold.

Methods Parameter FFHQ → FFHQ → FFHQ → LSUN Church → LSUN Church →
Rate Babies Sunglasses Raphael’s paintings Haunted houses Landscape drawings

TGAN 100% 0.510±0.026 0.550±0.021 0.533±0.023 0.585±0.007 0.601±0.030
TGAN+ADA 100% 0.546±0.033 0.571±0.034 0.546±0.037 0.615±0.018 0.643±0.060
EWC 100% 0.560±0.019 0.550±0.014 0.541±0.023 0.579±0.035 0.596±0.052
CDC 100% 0.583±0.014 0.581±0.011 0.564±0.010 0.620±0.029 0.674±0.024
DCL 100% 0.579±0.018 0.574±0.007 0.558±0.033 0.616±0.043 0.626±0.021

DDPM-PA 100% 0.599±0.024 0.604±0.014 0.581±0.041 0.628±0.029 0.706±0.030
DDPM-TAN (Ours) 1.3% 0.592±0.016 0.613±0.023 0.621±0.068 0.648±0.010 0.723±0.020

LMD-TAN (Ours) 1.6% 0.601±0.018 0.613±0.011 0.592±0.048 0.653±0.010 0.738±0.026

samples, such as the 10-shot datasets used in this paper. Following the DDPM-PA approach, we
provide FID evaluations using larger target datasets, such as Sunglasses and Babies, which consist of
2,500 and 2,700 images, respectively.

Baselines. To adapt pre-trained models to target domains using a limited number of samples, we
compare our work with several GAN-based and DDPMs baselines that share similar objectives. These
include TGAN (Wang et al., 2018), TGAN+ADA (Karras et al., 2020a), EWC (Li et al., 2020), CDC
(Ojha et al., 2021), DCL (Zhao et al., 2022), and DDPM-PA (Zhu et al., 2022). All these methods are
implemented on the same StyleGAN2 (Karras et al., 2020b) codebase.

5.3 OVERALL PERFORMANCE

Qualitative Evaluation. Figure 3 presents samples from GAN-based and DDPM-based methods
for 10-shot LSUN Church → Landscape drawings (top) and FFHQ → Raphael’s paintings (bottom).
The samples generated by GAN-based baselines contain unnatural blurs and artifacts. This illustrates
the effectiveness of our approach in handling complex transformations while maintaining the integrity
of the original image features. Whereas the current DDPM-based method, DDPM-PA (third row),
seems to underfit the target domain images, resulting in a significant difference in color and style
between the generated images and the target images. Our method preserves many source domain
shapes and outlines while learning more about the target style. As demonstrated in Figure 1, our
method, TAN, maintains more details such as buildings (above) and human faces (below) in the
generated images. Moreover, TAN-generated images exhibit a color style closer to the target domain,
especially when compared with DDPM-PA. Compared to other methods, our approach (based on
both DDPMs and LDMs) produces more diverse and realistic samples that contain richer details than
existing techniques.

Table 2: FID (↓) results of each method on 10-shot
FFHQ → Babies and Sunglasses. The best results
are marked as bold.

Methods TGAN ADA EWC CDC DCL PA ADMT

Babies 104.79 102.58 87.41 74.39 52.56 48.92 46.70
Sunglasses 55.61 53.64 59.73 42.13 38.01 34.75 20.06

Quantitative Evaluation. In Table 1, we dis-
play the Intra-LPIPS results for DPMs-TAN
under various 10-shot adaptation conditions.
DDPM-TAN yields a considerable improvement
in Intra-LPIPS across most tasks when com-
pared with other GAN-based and DDPMs-based
methods. Furthermore, LMD-TAN excels be-
yond state-of-the-art GAN-based approaches, demonstrating its potent capability to preserve diversity
in few-shot image generation. The FID results are presented in Table 2, where TAN also demonstrates
remarkable advancements compared to other GAN-based or DPMs-based methods, especially in
FFHQ → 10-shot Sunglasses with 20.06 FID. We provide more results for other adaptation scenarios
in the Appendix. Our method can transfer the model from the source to the target domain not only
effectively but also efficiently. Compared to other methods that require around 5,000 iterations, our
approach only necessitates approximately 300 iterations with limited parameter fine-tuning. The use
of TAN enhances efficiency because our approach effectively equates to 3,300 training iterations,
marking a notable decrease from the standard 5,000 iterations and DDPM-PA 6,000 - 10,000 equiva-
lent iterations. The time cost of the baseline with adaptor and 5,000 iterations (same with DDPM-PA)
is about 4.2 GPU hours, while our model (DPMs-TAN) with only 300 iterations takes just 3 GPU
hours.
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Baseline
FID:38.65

Adaptor
FID: 41.88

DPMs-TAN
w\o A

FID: 26.41

DPMs-TAN
FID:20.06

Figure 4: This figure shows our ablation study with all models trained for 300 iterations on a 10-shot
sunglasses dataset measured with FID (↓): the first line - baseline (direct fine-tuning model), second
line - Adaptor (fine-tuning only few extra parameters), third line - DPMs-TAN w/o A (only using
similarity-guided training), and final line - DPMs-TAN (our method).

5.4 ABLATION ANALYSIS

Figure 4 presents an ablation study, with all images synthesized from the same noise. When compared
to directly fine-tuning the entire model (1st row), only fine-tuning the adaptor layer (2nd row) can
achieve competitive FID results (38.65 vs. 41.88). The DPMs-TAN without adversarial noise
selection (DPMs-TAN w/o A) and all DPMs-TAN (3rd and 4th row) are trained with an extra adaptor
layer to save time and GPU memory, and our analysis focuses on the last three rows.

The first two columns demonstrate that all methods can successfully transfer the model to sunglasses,
with the TAN containing richer high-frequency details about sunglasses and background items.
The 3rd and 4th columns show that the similarity-guided method (3rd row) can produce images
of people wearing sunglasses, while the traditional method (2nd row) does not achieve this. The
last two columns highlight the effectiveness of the adaptive noise selection method in TAN. The
step-by-step transformation showcased in the 5th column provides a clear demonstration of how our
method transfers the source face through an intermediate phase, in which the face is adorned with
glasses, to a final result where the face is wearing sunglasses. This vividly illustrates the effectiveness
of our proposed strategies in progressively boosting the transfer process. The Frechet Inception
Distance (FID) scores further illustrate the effectiveness of our proposed strategies; it decreases from
41.88 (with direct adaptation) to 26.41 (with similarity-guided training) and then to 20.66 (with
DPMs-TAN), indicating a progressive improvement in the quality of generated images.

Table 3: FID and Intra-LPIPS results for
classifiers trained on 10 and 100 images.

Intra-LPIPS (↑) FID (↓)

10-shot classifier 0.621 ± 0.068 20.06
100-shot classifier 0.637 ± 0.013 22.84

Table 3 is the FID and Intra-LPIPS results for classifiers
trained on 10 and 100 images. This indicates that only 10
images are sufficient to guide the training process. This
effectiveness is largely attributed to the classifiers being
trained on noised targeted images among T (1000 steps),
ensuring a robust gradient for training.

6 CONCLUSION

In conclusion, the application of previous GAN-based techniques to DPMs encounters substantial
challenges due to the distinct training processes of these models. To overcome this, we introduce
TAN to train the DPMs with a novel adversarial noise selection and the similarity-guided strategy that
improves the efficiency of the transfer learning process. Our proposed method accelerates training,
achieves quicker convergence, and produces images that fit the target style while resembling the
source images. Experimental results on few-shot image generation tasks demonstrate that our method
surpasses existing state-of-the-art GAN-based and DDPM-based methods, delivering superior image
quality and diversity.
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