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ABSTRACT

Recent studies in multivariate time series (MTS) forecasting reveal that explicitly
modeling the hidden dependencies among different time series can yield promising
forecasting performance and reliable explanations. However, modeling variable de-
pendencies remains underexplored when MTS is continuously accumulated under
different regimes (stages). Due to the potential distribution and dependency dispar-
ities, the underlying model may encounter the catastrophic forgetting problem, i.e.,
it is challenging to memorize and infer different types of variable dependencies
across different regimes while maintaining forecasting performance. To address
this issue, we propose a novel Structural Knowledge Informed Continual Learn-
ing (SKI-CL) framework to perform MTS forecasting within a continual learning
paradigm, which leverages structural knowledge to steer the forecasting model
toward identifying and adapting to different regimes, and selects representative
MTS samples from each regime for memory replay. Specifically, we develop a fore-
casting model based on graph structure learning, where a consistency regularization
scheme is imposed between the learned variable dependencies and the structural
knowledge (e.g., physical constraints, domain knowledge, feature similarity, which
provides regime characterization) while optimizing the forecasting objective over
the MTS data. As such, MTS representations learned in each regime are associated
with distinct structural knowledge, which helps the model memorize a variety of
conceivable scenarios and results in accurate forecasts in the continual learning
context. Meanwhile, we develop a representation-matching memory replay scheme
that maximizes the temporal coverage of MTS data to efficiently preserve the
underlying temporal dynamics and dependency structures of each regime. Thor-
ough empirical studies on synthetic and real-world benchmarks validate SKI-CL’s
efficacy and advantages over the state-of-the-art for continual MTS forecasting
tasks. SKI-CL can also infer faithful dependency structures that closely align to
structural knowledge in the test stage.

1 INTRODUCTION

Multivariate time series (MTS) forecasting aims to predict future samples from multiple time series
based on their historical values and has shown its importance in various applications, e.g., healthcare,
traffic control, energy management, and finance Jin et al. (2018); Gonzalez-Vidal et al. (2019); Guo
et al. (2019); Zhang et al. (2017). Accurate MTS forecasting not only relies on capturing temporal
dynamics of the historical time series data van den Oord et al. (2016); Bai et al. (2018); Borovykh
et al. (2017); Lai et al. (2018); Wu et al. (2021); Zhou et al. (2022); Nie et al. (2022), but also relies
on modeling dependency structures among different variables Lai et al. (2018); Shih et al. (2019);
Wu et al. (2020); Shang & Chen (2021); Liu et al. (2023).

Despite the promising forecasting accuracy and explainable structure characterization, capability of
these MTS forecasters is limited to one regime (stage) of MTS data characterized by a set of similar
dependency patterns. In real-world applications, different regimes of MTS data are often continuously
collected under different operational logic of the target system. In this learning scenario, where
regimes arrive sequentially, the major challenge in MTS forecasting is to keep track of the latest
regime while maintaining forecasting capability on the past ones. For example, in the context of solar
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energy, a model needs to maintain accurate and robust forecasts across regimes spanned by seasons
or locations with different sunlight patterns (e.g., summer and winter, northern and southern areas) to
ensure reliable energy storage and supply. While an intuitive and efficient solution is to retrain the
forecaster periodically over the newly collected regime, this will inevitably lead to the catastrophic
forgetting issue, i.e., the learned dependency structures cannot be maintained over existing regimes
and the forecasting performance will deteriorate accordingly, as shown in Figure 1. On the other
hand, joint training may be infeasible due to the need to store all historical data (different regimes)
and the computational complexity of handling an ever-increasing number of diverse scenarios.
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Figure 1: An illustration depicting the catastrophic forgetting
of learned dependency structures (i.e., the interactions of vari-
ables) in multivariate time series forecasting across regimes.
Each regime is characterized by a distinct operational logic of
the system.

We resort to memory replay to tackle the
aforementioned challenge, where the key
idea is to replay a subset of samples from
previous regimes while the model is learn-
ing the new one Rolnick et al. (2019); Zhou
& Cao (2021). Motivated by the princi-
ple of maximum entropy Guiasu & Shen-
itzer (1985); Du et al. (2021), we aim to
maximize the coverage of each regime by
selecting MTS samples that represent the
most diverse modes. To deal with the mul-
tivariate nature with an emphasis on depen-
dencies modeling, we seek to enhance this
strategy by further incorporating external
structural knowledge into the replay pro-
cess. Structural knowledge provides uni-
versal and task-independent insights that
characterize the dependency patterns from
a specific regime. It helps the model better
identify and adapt to regime-specific pat-
terns, letting the model memorize varieties
of conceivable scenarios and thus mitigat-
ing the catastrophic forgetting issue. The
structural knowledge can be available in
different formats, e.g., physical constraints
such as traffic networks, power grids, and
sensor networks Li et al. (2017); Luo et al.
(2021); Khodayar & Wang (2018); Yan et al. (2018), or dependencies (correlations) that are inferred or
derived from raw data by leveraging either domain knowledge or traditional statistical methods Chen
et al. (2022); Duan et al. (2022); Lin et al. (2021); Cao et al. (2020); Shang & Chen (2021).

In this paper, we present a novel Structural Knowledge Informed Continual Learning (SKI-CL) frame-
work that sequentially learns and preserves meaningful dependency structures for MTS forecasting
under different regimes. As shown in Figure 2, we first exploit structural knowledge to characterize
the variable dependencies within each regime. In our forecasting model, we build a graph structure
learning module that encodes the temporal patterns and dynamically infers dependency structures (in
the form of graphs) based on different MTS input windows to cope with the dependencies variations
within each regime. We jointly optimize the forecasting objective and a consistency regularizer
that enforces the inferred structure toward the existing structural knowledge. MTS data from each
regime is associated with the distinct structure knowledge via the model, which steers the model
to identify and adapt across regimes in continual learning. Note that different scenarios regarding
the description of dependencies and the availability of structural knowledge is considered, i.e., the
discrete/continuous edge description, and fully/partially observed structural knowledge. We present a
novel representation-matching memory replay scheme to select samples that maximize the temporal
coverage of MTS data, to efficiently preserve the underlying temporal dynamics and dependency
structure of each regime (Figure 2(middle)). We first partition the MTS representations into the most
diverse distribution modes along the temporal dimension. Subsequently, we deal with each mode
individually for sample selection. Given the memory budget, we select a subset of MTS samples
whose representations are the most similar to that of the entire mode, measured by CORAL Sun
& Saenko (2016). Thereby the coverage of each regime is efficiently preserved by the union of
representative MTS samples from diverse modes. By jointly learning from the current regime and the
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constructed memory of structural knowledge and representative MTS samples, the obtained model is
able to maintain accurate forecasts and infer the learned structures from the existing regimes.

In summary, our work makes the following four contributions. (1) We present a novel Structural
Knowledge Informed Continual Learning (SKI-CL) framework to perform MTS forecasting and infer
dependency structures in the continual learning setting. (2) We develop a graph-based forecaster
that contains a structure learning module to capture temporal dependencies and dynamically infer
dependency structures, and employ a consistency regularization scheme that exploits structural
knowledge to facilitate continual forecasting. (3) We propose a novel representation-matching
memory replay scheme to maximize the temporal coverage of MTS data and preserve the underlying
temporal dynamics as well as dependency structures within each regime. (4) Thorough experiments
on one synthetic dataset and three benchmark datasets demonstrate the superiority of SKI-CL over
the state-of-the-art in continual MTS forecasting and dependency structure inference.

2 RELATED WORK

2.1 MODELING DEPENDENCIES IN MULTIVARIATE TIME SERIES FORECASTING

In recent years, modeling variable dependencies of MTS has received increasing attention for
forecasting tasks. Early methods apply linear or convolution transformations to capture variable
dependencies in an implicit recurrent process Lai et al. (2018); Graves (2013); Shih et al. (2019),
which fall short of modeling the non-Euclidean interactions due to the underlying fully-connected
or translation-invariant assumptions. The advent of Graph Neural Networks (GNNs) has inspired
the formulation of variable dependencies as a given or learnable graph, with variables being nodes
and pairwise relationships being edges. Existing literature models the dependency structures based
on different topological perspectives and temporal granularity (e.g., undirected Yu et al. (2018) and
directed graph Li et al. (2017), static Bai et al. (2020); Wu et al. (2020) and dynamic graphs Ye
et al. (2022); Cao et al. (2020), single or multiple layers Lin et al. (2021)). On the other hand,
structural knowledge has been an important component in GNN-based forecasting methods. In many
tasks such as the traffic Guo et al. (2019); Li et al. (2017) and skeleton-based action prediction Yan
et al. (2018), structural knowledge is explicitly presented as spatial connections. In other cases
without an explicit topological structure, the structural knowledge can be drawn from either domain
knowledge (e.g., transfer entropy Duan et al. (2022), Mel-frequency cepstral coefficients Lin et al.
(2021)) or feature similarity (e.g., the correlations of decomposed time series Ng et al. (2022), kNN
graph Shang & Chen (2021)). Their promising results suggest the capability of structural knowledge
to convey meaningful dependency information. Our proposed method enforces the consistency
between the learned graph structures and the structural knowledge so as to characterize the underlying
relation-temporal dependencies and improve the continual MTS forecasting performance.

2.2 CONTINUAL LEARNING IN MULTIVARIATE TIME SERIES FORECASTING

Deep learning models use continual learning to address the catastrophic forgetting issue when sequen-
tially adapting to new tasks. Existing literature in continual learning can be roughly classified into
three categories: experience-replay methods Rolnick et al. (2019), parameter-isolation methods Rusu
et al., and regularization-based methods Kirkpatrick et al. (2017); Li & Hoiem (2017). Current
continual learning works have been extensively studied on images Wang et al. (2022), texts Ke
& Liu (2022), and graph data Zhang et al. (2022a;b). However, much less attention is drawn to
time series data, and the focus has primarily been on classification and forecasting tasks without
explicitly addressing complex variable dependencies Gupta et al. (2021); He & Sick (2021). How to
maintain the meaningful dependency structures and forecasting performance over different regimes is
underexplored. Our proposed SKI-CL tackles this issue by jointly optimizing the inferred structure
toward the structural knowledge and forecasting objectives based on samples drawn from the current
regime and a representative memory.

Recent progress has been made in forecasting Pham et al. (2022); Zhang et al. (2023) and topology
identification Money et al. (2021); Natali et al. (2022); Isufi et al. (2019); Zaman et al. (2020)
from MTS data in an online learning setting, which focuses on adapting the forecasting model and
dependency structure from the historical MTS data to future unseen data. In contrast, our study aims
to maintain the forecasting performance and infer the learned structures from the existing regimes
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Figure 2: The proposed SKI-CL framework for continual MTS forecasting. The training objectives for each
regime contains the current training data and the memory buffer. After training at each regime, the structural
knowledge and samples selected by our representation-matching scheme are added to the current memory. At
testing phase, SKI-CL is able to dynamically infer faithful dependency structures for different regimes without
accessing the memory buffer.

while continuously updating the model over the latest regime. Without forgetting the structural
knowledge that has been acquired previously, the model can easily cope with similar regimes that
may be encountered in the future. We further discuss other related topics in Appendix B.

3 METHODOLOGY

In this section, we present the proposed SKI-CL framework for continual MTS forecasting as shown
in Figure 2. We first formally state the continual MTS forecasting problem with dependency structure
learning. Then, we introduce the structural knowledge-informed graph learning model (the detailed
model design is shown in Figure 3) and the representation-matching sample selection scheme for
continual MTS forecasting.

3.1 PROBLEM STATEMENT

We first introduce the MTS forecasting task in a single regime (stage). Let X ∈ RN×T denote the
MTS data containing N variables and T total time steps, where X:,t ∈ RN×1 denotes t-th time
step across all variables and Xi,: ∈ R1×T denotes i-th variable. Our target is to learn a model that
includes a dynamic graph inference module G (·) summarizing a historical τ -step window of MTS as
a graph to encode the dependency structure, as well as a forecasting module F (·) predicting the next
τ ′ time steps based on the input window and inferred graph. Mathematically, at a starting time step t,
the corresponding forecast is defined as: X̂:,t:t+τ ′−1 = F(X:,t−τ :t−1,G(X:,t−τ :t−1)).

We further extend the forecasting task to a continual learning setting. In continual learning, there
exist S distinct regimes of MTS data with different dependencies and temporal dynamics. The model
can only access MTS data of the current regime. Denoting the data of s-th regime as X(s), the
objective is to learn a model to minimize the forecasting error across all seen regimes: F∗,G∗ =

argminF,G
∑S

s=1 L
(
X̂

(s)
:,t:t+τ ′−1, X

(s)
:,t:t+τ ′−1

)
with L being the loss function. We assume there is

a readily available or extracted structural knowledge A ∈ RN×N (either partial or completed) at each
regime that serves as a reference to characterize the underlying dependencies.

3.2 STRUCTURAL KNOWLEDGE INFORMED GRAPH LEARNING FOR MTS FORECASTING

Dynamic Graph Inference Different from the existing works that generate a static graph at the
regime level Wu et al. (2020); Bai et al. (2020); Shang & Chen (2021), we aim to model the variable
dependencies of MTS as a dynamic graph at the granularity of an input window. Therefore, as
shown in Figure 3 (left), we construct a dynamic graph inference module that more precisely reveals
the relation-temporal dynamics in a single regime and has the capacity to handle dependencies
change when the regime shifts. Following Shang & Chen (2021); Cini et al. (2023), we explicitly
model and parameterized each edge for all node pairs. For a possible edge connecting node i and
j, we use a temporal encoding function as a feature extractor to yield node embedding zi and zj
(i.e., z∗ = Φ(X∗,t−τ :t−1)) which are concatenated as the edge embedding. Next, we use another
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Figure 3: The proposed SKI-CL Model for dependencies modeling and MTS forecasting.

generic mapping to finalize the edge generation as Âij = Ψ(zi∥zj). The output graph Â ∈ RN×N

summarizes the variable interactions from the temporal dynamics within a sequence, and can be
further used to generate the forecasts. Note that there are multiple choices to parameterize Φ and Ψ,
where we use stacked convolution layers and a multilayer perceptron (MLP), respectively.

Dependencies Characterization with Structural Knowledge To learn a faithful dynamic graph
structure that characterizes the underlying dependencies of each regime, we incorporate structural
knowledge as a reference in learning objectives. In real-world MTS modeling, the edges can be
either continuous, if we can quantify the strength in the context, or binary if we are more confident
of the connection in a qualitative sense (e.g., physical connections). It also interleaves with the fact
that if the structural knowledge can be fully observed, as in many cases we are only confident in the
existence of certain relationships.

To fully leverage different forms of structural knowledge in dependency structure learning, we
design an adaptive scheme that imposes different constraints on the parameterized graph in the
objective function, which is denoted as LG. If an edge is treated as a binary variable, we activate
the parameterized edge with a sigmoid function to approximate the Bernoulli distribution Âij ∼
Bern(θij), where P (Âij = 1) = θij is the probability that an edge is forming between node i and
node j. Then, we encourage the probability of edge to be consistent with the prior, which essentially
minimizes the binary cross entropy: LG =

∑
i,j −Aij log θij − (1−Aij) log (1− θij).

If an edge is treated as a continuous variable, we activate the parameterized edge with a ReLU
function to remove the weak connections, and enforce the consistency between the numerical values
of the parameterized edge and the prior, representing a similar interaction strength. This is achieved
by minimizing the MSE objective LG = 1

N2

∑
i,j ∥Aij − Âij∥2. So far, we have discussed the

cases when structural knowledge is readily available/fully observed. For partially observed structural
knowledge, we only enforce the consistency between the known entries in the structural knowledge
and corresponding parameterized edges, as the dynamic graph inference module is still able to capture
and infer the underlying dynamic dependencies via optimization based on the existing structural
knowledge and the forecasting objective.

Graph-based Forecasting To further exploit the structural and temporal dependencies and produce
forecasts, we design a graph-based forecasting module consisting of multiple Temporal Graph
Convolution (TGConv) blocks, as shown in Figure 3 (right). In each block, we leverage a dilated
causal convolution Bai et al. (2018); van den Oord et al. (2016) to effectively capture forward
dynamics of time series. The dilated causal convolution operation on a 1D sequence input h is
expressed as rt =

∑K−1
k=0 f(k) · ht−d·k, where rt denotes the t-th step of obtained representation r, d

represents dilation factor, f(k) is the convolution kernel with size k. Since dilated causal convolution
exclusively processes univariate time series, we facilitate the modeling of dependencies in MTS by
exchanging and aggregating information through the learned structure, denoted as Â. This is achieved
by a simple yet effective message-passing neural operation Morris et al. (2019), given the collection
of univariate representations (r1, · · · , rN ):

MessagePassingÂ(ri) = W1ri +W2

∑
j∈N (i)

ej,i · rj , (1)

where N (i) represents the neighbors of variable i, ej,i ∈ Â denotes an edge weight, W(·) denotes
the learnable weights, and the bias term is omitted for simplicity.
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We stack both operations to construct a TGConv block, with an optional 1× 1 convolution tackling
the possibly different dimensions between the residual input and output. Finally, a fully connected
layer serves as a regressor projecting sequence representations onto the forecasts. We adopt the
mean squared error between the forecasts and the ground truths as the main learning objective LF .
The total learning objective function for each regime consists of the forecasting objective and the
consistency regularization weighted by a hyperparameter λ.

Ltotal = LF + λLG =
1

τ ′

t+τ ′−1∑
t′=t

∥X̂:,t′ −X:,t′∥2 + λLG (2)

3.3 REPRESENTATION-MATCHING SAMPLE SELECTION FOR CONTINUAL MTS FORECASTING

Algorithm 1 Representation-Matching Sample Selection
1: Input: Sample representation H , hyperparameters ∆1, ∆2,

K0, memory budget for a single regime Nm, the number of
training samples in a single regime n

2: Split H into modesM1, . . . ,MK by optimizing (3)
3: Initialize an empty memory buffer S for a regime
4: for k ← 1 to K do
5: nsample ← 0; nselect ← Nm × |Mk|

n
; s← {}

6: while nsample ≤ nselect do
7: iselected ← min

i
D (Hs∪i, HMk ) ▷ i /∈ s

8: s = s ∪ iselected; nsample += 1

9: S = S ∪ s
10: Output: The memory buffer S

To tackle the forgetting of variable de-
pendencies and temporal dynamics in
sequential training, we store a small sub-
set of MTS samples and the structural
knowledge from the previous regimes
for memory replay when adapting the
model to the current regime. Specifi-
cally, we propose an efficient sample
selection scheme that maximizes the
temporal and dependencies coverage of
each regime given a limited memory
budget. According to the principle of
maximum entropy Guiasu & Shenitzer
(1985), we can best represent the under-
lying knowledge of MTS in each regime
with the largest entropy, namely, with the most diverse partitions/modes of relational and temporal
patterns. Inspired by this principle and its success in characterizing temporal distribution Du et al.
(2021), we perform a distribution characterization by splitting the MTS data to the most diverse
modes on the representation space (i.e., the representation of all time-consecutive samples that encode
variable dependencies and temporal dynamics), which is a constrained optimization problem:

max
0<K≤K0

max
n1,··· ,nK

1

K

∑
1≤i ̸=j≤K

D (Mi,Mj)

s.t. ∀i,∆1 < |Mi| < ∆2;
∑
i

|Mi| = n,
(3)

where D(·, ·) can be any distribution-related distance metric, n is the number of training samples in
a single regime, ∆1, ∆2 and K0 are hyperparameters to avoid trivial partitions and over-splitting,
M denotes the subset of representations that corresponds to contiguous samples. Specifically, we
choose the Deep Correlation Alignment (CORAL) Sun & Saenko (2016) to measure the temporal
distribution similarity, i.e., D(·, ·) = 1

4q2

∥∥C(·) − C(·)
∥∥2
F

, where q is the number of dimensions
for each hidden state, C(·) denotes the second-order statistics (covariance matrix). The detailed
optimization procedure is explained in Appendix A.

After the most diverse modes are obtained, the distribution of a regime can be efficiently preserved by
selecting a small number of the most representative samples of each mode. The selection algorithm is
shown in Algorithm 1, where we select samples that minimize CORAL to ensure that the selected
small number of samples are well aligned/matched to each mode of MTS. By iterating all modes, we
update the memory buffer as the union of all selected sample sets.

3.4 SEQUENTIAL TRAINING AND TESTING WITH SKI-CL

We briefly introduce the pipeline of continual MTS forecasting, as shown in Figure 2. At the training
phase of i-th regime, the training objectives Lregime-i contains the objective for the current training
samples, denoted as Lcurrent and that for the memory of previous i-1 regimes, denoted as Lmemory,
where Lregime-i = Lcurrent + αLmemory, with α being the weight of memory loss.
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After training, the structural knowledge of the current regime is saved in the structural memory and
the training samples are selected to enrich the MTS memory as aforementioned. At the testing phase,
SKI-CL is able to maintain the forecasting performance on the queries of testing samples from all
regimes up to the current one, and accordingly recover the learned dependency structures informed by
the structural knowledge of each regime (as shown in Figure 2(right)). Unlike other graph structure
learning methods for continual MTS forecasting, our method is able to dynamically infer faithful
dependency structures for existing and current regimes without accessing the memory buffer, which
is more practical in real world applications.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets To evaluate the performance of SKI-CL on continual MTS forecasting, we conduct ex-
periments on three public benchmark MTS datasets including the traffic (Traffic-CL), solar energy
(Solar-CL), and human activity recognition (HAR-CL), as well as one synthetic dataset based on
Non-repeating Random Walk Denton (2005) that is used in Liu et al. (2022b) under continual learning
setting. The statistics of these datasets are summarized in Table 4 in Appendix C. For Traffic-CL and
Solar-CL, the structural knowledge is the spatial proximity of the sensor/station. For HAR-CL, the
partial structural knowledge is drawn from the domain-specific motion dynamics. For synthetic data,
structural knowledge is the feature similarity of different variables. The edges from the structural
knowledge are binary for Traffic-CL and HAR-CL, and continuous for Solar-CL and Synthetic-CL.

Baselines We compare SKI-CL with a number of dependency-modeling-based forecasting methods
and commonly used continual learning methods to resolve the catastrophic forgetting issue in
sequential training. The forecasting methods include statistical model VAR Lütkepohl (2005),
ARIMA Box et al. (2015), and deep learning models including TCN Bai et al. (2018), LSTNet Lai
et al. (2018), STGCN Yu et al. (2018), MTGNN Wu et al. (2020), AGCRN Bai et al. (2020),
GTS Shang & Chen (2021), ESG Ye et al. (2022), StemGNN Cao et al. (2020), Autoformer Wu
et al. (2021), PatchTST Nie et al. (2022), Dlinear Zeng et al. (2023), TimesNet Wu et al. (2022),
iTransformer Liu et al. (2023), and OFA Tian Zhou (2023) where STGCN and GTS use structural
knowledge and ESG learns a dynamic graph in MTS modeling. All forecasting methods are first
evaluated on sequential training without any countermeasures (denoted as seq). The continual
learning methods employ the memory-replay-based methods including the herding method (denoted
as herd) Rebuffi et al. (2016), the randomly replay training samples (denoted as er), a DER++ method
Buzzega et al. (2020) that enforces a L2 knowledge distillation loss on the previous logits (denoted as
der++) and a MIR method that selects samples with highest forgetting for experience replay (denoted
as mir). For the proposed SKI-CL, we also evaluate our proposed representation-matching sample
selection scheme.

Evaluation Metrics We adopt two metrics based on Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) to evaluate the performance on continual MTS forecasting, i.e., the Average
Performance (AP) and Average Forgetting (AF) Lopez-Paz & Ranzato (2017); Zhang et al. (2022a).
The AP at i-th regime is defined as AP =

∑i
j=1 Pi,j/i for i ≥ 1, where Pi,j denotes the performance

on regime j after the model has been sequentially trained from stage 1 to i. Similarly, the Average
Forgetting is defined as AF =

∑i−1
j=1(Pi,j − Pj,j)/(i − 1) for i ≥ 2. Besides the forecasting

performance, we also evaluate AP and AF on the learned dependency structures, where the average
precision (Prec.) and average recall (Rec.) are used for a binary graph, MAE and RMSE are used for
a continuous graph. More details of datasets, baselines, and evaluations are provided in Appendix C.

4.2 PERFORMANCE EVALUATION FOR CONTINUAL MTS FORECASTING

In this paper, we focus on a multi-horizon continual forecasting task. Table 1 summarizes the
comparison results of selected baselines (full experiment results are shown in Appendix Table 7)
versus our proposed SKI-CL method and its variants for 12 horizon predictions. The corresponding
standard deviations and results for different horizons are provided in Table 9 and 8 in Appendix F.

Based on the experiment results in Table 1, we observe that statistical methods, such as VAR and
ARIMA, cannot perform well under continual learning settings and exhibit obvious performance
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Table 1: Experiment Results for 12 Horizon Prediction. (Lower MAE and RMSE for AP mean better; When
AP is comparable, lower MAE and RMSE for AF mean better. )

Model
Traffic-CL Solar-CL HAR-CL (×10−2) Synthetic-CL(×10−2)

AP ↓ AF AP ↓ AF AP ↓ AF AP ↓ AF

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VARseq 88.19 126.01 58.38 80.58 167.30 534.42 205.27 658.80 19.59 28.38 1.93 2.19 22.34 32.70 9.18 13.54
ARIMAseq 141.75 159.89 77.61 77.40 14.97 18.92 4.75 2.92 40.68 52.87 2.35 2.38 42.24 43.51 13.39 12.98

TCNseq 16.88 28.67 3.77 6.83 2.03 4.84 0.06 0.24 14.85 23.42 3.60 5.06 4.30 4.90 0.66 0.99
TCNmir 15.70 26.53 1.70 3.22 1.99 4.79 0.10 0.19 13.91 22.15 2.64 2.93 3.79 4.63 0.46 0.73
TCNherd 15.55 26.21 1.49 2.81 2.01 4.82 0.13 0.23 13.87 22.08 2.05 2.88 3.72 4.61 0.35 0.67
TCNer 15.51 26.23 1.46 2.80 1.98 4.73 -0.05 0.02 13.66 21.78 1.82 2.59 3.29 4.30 0.34 0.61
TCNder++ 15.46 25.68 1.33 2.49 1.95 4.69 -0.07 -0.02 13.56 21.55 1.69 2.28 3.00 4.00 0.28 0.32

ESGseq 18.77 30.02 6.46 10.07 2.80 5.77 1.28 1.74 17.63 26.84 7.28 9.41 8.98 14.19 1.32 1.98
ESGmir 18.24 29.83 5.02 8.25 2.03 4.83 0.25 0.49 17.25 26.63 4.01 5.21 8.95 13.91 1.21 1.81
ESGherd 17.49 28.64 4.82 7.45 1.92 4.72 0.13 0.53 17.22 26.59 3.99 5.13 8.94 13.88 1.11 1.74
ESGer 16.40 27.50 3.05 5.34 2.01 4.82 0.24 0.44 17.15 25.84 4.63 5.33 8.84 13.86 1.21 1.62
ESGder++ 17.40 29.21 4.01 6.97 1.91 4.57 0.09 0.21 16.20 24.32 5.18 6.00 8.81 13.77 1.02 1.42

GTSseq 17.26 29.11 2.33 3.48 2.19 5.20 0.27 0.59 16.44 25.41 3.68 5.10 6.51 8.89 1.88 3.39
GTSmir 17.17 29.08 2.13 3.31 2.15 5.16 0.14 0.68 15.83 24.85 3.27 4.91 6.44 8.57 1.31 2.86
GTSherd 17.00 29.01 2.17 2.98 2.11 5.06 0.13 0.30 15.65 24.33 1.99 2.86 6.34 8.23 1.18 1.81
GTSer 15.83 26.20 1.12 2.52 2.01 4.75 0.12 0.05 15.06 23.52 2.00 2.73 5.59 6.32 0.44 0.69
GTSder++ 15.84 26.05 1.15 2.33 1.94 4.57 -0.25 -0.19 14.80 23.01 1.52 1.88 5.43 6.67 0.23 0.30

MTGNNseq 19.88 32.94 7.83 12.68 2.12 4.75 0.38 0.44 14.86 22.58 2.59 3.61 10.26 14.92 1.16 1.81
MTGNNmir 18.01 31.84 5.03 8.97 2.00 4.73 0.21 0.40 14.59 22.52 2.24 3.53 8.92 12.91 1.07 1.33
MTGNNherd 17.93 30.70 4.90 8.40 1.89 4.68 0.13 0.35 14.09 22.50 1.13 1.62 8.11 12.88 1.03 1.27
MTGNNer 15.79 26.52 2.76 4.87 1.94 4.62 0.14 0.25 13.59 21.85 1.91 2.79 8.70 13.69 0.61 1.21
MTGNNder++ 15.40 25.99 2.22 4.10 1.90 4.57 0.06 0.14 13.57 21.75 1.63 2.40 8.63 13.51 0.50 0.92

PatchTSTseq 19.11 32.50 2.34 2.97 2.64 5.32 0.72 0.43 17.91 27.13 7.18 6.88 4.85 5.93 1.59 1.78
PatchTSTmir 19.04 32.23 2.28 2.79 2.61 5.30 0.70 0.40 17.82 26.89 6.82 4.81 4.83 5.86 1.55 1.72
PatchTSTherd 18.96 32.10 2.21 2.67 2.60 5.30 0.68 0.35 17.73 26.84 6.62 4.79 4.80 5.79 1.43 1.68
PatchTSTer 18.77 31.50 1.98 2.01 2.57 5.27 0.47 0.30 17.57 26.40 6.02 4.69 4.72 5.26 1.03 1.54
PatchTSTder++ 18.53 31.34 1.75 1.98 2.53 5.17 0.43 0.28 17.12 26.13 5.79 4.32 4.64 5.13 0.83 0.88

DLinearseq 19.69 32.75 2.91 2.83 3.47 6.56 1.17 1.12 17.32 26.31 2.71 3.43 4.81 5.81 1.64 1.57
DLinearmir 19.37 32.25 2.17 2.59 3.45 6.51 1.02 1.01 16.87 26.12 2.67 3.01 4.79 5.73 1.47 1.40
DLinearherd 19.53 32.40 2.25 2.68 3.41 6.50 1.03 1.00 16.83 25.81 2.57 2.91 4.77 5.70 1.59 1.46
DLinearer 19.19 32.30 1.73 2.14 3.37 6.43 0.93 0.98 16.71 25.75 2.13 2.85 4.74 5.20 1.23 1.43
DLinearder++ 19.02 31.97 1.75 1.93 3.25 6.37 0.83 0.79 16.58 25.47 1.92 2.77 4.21 4.88 1.12 1.13

TimesNetseq 17.77 29.91 3.13 6.93 3.92 7.18 1.46 2.51 18.38 27.61 4.33 5.15 5.18 6.13 1.72 2.03
TimesNetmir 17.53 29.61 2.44 5.32 3.77 7.15 1.22 1.57 18.27 27.59 4.01 5.08 5.12 6.05 1.69 1.97
TimesNetherd 17.38 29.53 2.56 5.83 3.83 7.10 1.03 1.44 18.01 27.53 3.46 5.03 5.10 6.03 1.68 1.95
TimesNeter 17.25 29.33 1.97 4.19 3.55 7.02 0.42 0.91 17.84 27.07 3.28 4.01 4.93 5.90 1.42 1.90
TimesNetder++ 17.13 29.28 1.56 4.02 3.45 6.55 0.37 0.90 17.73 26.86 3.11 3.87 4.81 5.88 1.32 1.78

iTransformerseq 16.23 27.83 2.33 3.41 2.87 5.84 1.23 1.31 16.03 25.08 4.87 5.35 6.28 7.72 1.52 1.92
iTransformermir 16.19 27.62 1.98 3.01 2.23 4.90 1.12 1.14 15.89 24.90 4.73 4.92 6.13 7.55 1.47 1.81
iTransformerherd 16.11 27.50 1.84 2.95 2.01 4.73 0.88 0.92 15.33 23.88 3.54 4.17 6.09 7.31 1.30 1.59
iTransformerer 16.06 27.28 1.78 2.93 1.95 4.67 0.53 0.94 15.11 23.71 3.23 3.93 5.92 7.09 1.06 1.23
iTransformerder++ 15.98 27.18 1.65 2.88 1.88 4.53 0.43 0.86 14.86 22.93 2.93 3.03 5.77 7.03 0.97 1.03

OFAseq 19.10 32.48 2.21 2.43 3.04 6.33 1.26 1.57 17.40 26.20 5.32 3.69 4.72 5.22 1.63 1.85
OFAmir 19.03 32.27 2.30 2.21 2.97 5.93 1.07 1.32 17.32 26.17 4.86 3.59 4.63 5.15 1.58 1.81
OFAherd 18.91 32.20 1.99 2.13 2.83 5.73 0.91 0.75 17.35 26.19 4.51 3.36 4.45 4.91 1.55 1.62
OFAer 18.83 32.12 1.83 1.97 2.53 5.25 0.50 0.38 17.32 26.17 4.33 3.17 4.17 4.80 1.53 1.47
OFAder++ 18.50 31.33 1.70 1.84 2.47 5.13 0.40 0.28 17.25 26.15 4.11 3.07 4.03 4.71 1.20 1.14

SKI-CLseq 17.30 29.38 4.38 7.80 2.02 4.73 0.30 0.50 14.73 23.31 3.91 5.07 4.70 5.85 1.97 3.46
SKI-CLmir 15.77 26.32 1.95 3.47 1.98 4.69 0.35 0.56 13.65 21.77 2.61 3.82 4.53 5.01 1.67 2.21
SKI-CLherd 15.45 25.73 1.82 3.28 2.00 4.70 0.33 0.52 13.71 21.82 2.53 3.67 4.44 4.82 1.23 2.02
SKI-CLer 15.43 25.60 1.69 2.92 1.95 4.67 0.11 0.23 13.58 21.57 1.82 2.50 3.39 4.52 0.30 0.38
SKI-CLder++ 15.39 25.57 1.63 2.87 1.91 4.60 0.10 0.21 13.50 21.47 1.74 2.42 3.33 4.43 0.28 0.30
SKI-CL 15.23 25.32 1.51 2.72 1.75 4.46 0.09 0.06 13.41 21.30 1.64 2.08 3.24 4.24 0.15 0.23

degradation (AF) in sequential training (i.e., seq). All deep learning based baseline methods, including
state-of-art forecasting models, such as PatchTST Nie et al. (2022), TimesNet Wu et al. (2022),
iTransformer Liu et al. (2023), and even OFA Tian Zhou (2023) that equipped with the large
language model (LLM), also suffer from obvious performance degradation (AF) in sequential training
(i.e., seq), suggesting the existence of catastrophic forgetting phenomenons when regime shifts.
Moreover, we notice that the memory-replay-based methods (i.e., baselines plus herd, er, and der++)
generally alleviate the forgetting issues with better APs (lower RMSE and MAE) and smaller relative
AFs compared to sequential training (i.e., seq). Finally, SKI-CL and its variants (SKI-CLer and
SKI-CLder++) consistently achieve the best or the second-best APs, showing advantages over other
baseline models equipped with memory-replay-based methods (e.g., MTGNNder++,TCNer, GTSder++,
iTransformerder++). These observations demonstrate that learning a dynamic structure is beneficial
for MTS modeling, and the structural knowledge helps to characterize the general variable behaviors
in each regime. Even partially observed structural knowledge can serve as a valid reference to learn
the dependency structures. Finally, we observe that SKI-CL consistently outperforms its variants
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Figure 4: The Structure Visualizations on Traffic-CL and Solar-CL datasets.
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Figure 5: Model Performance with and without Memory Replay (Lower MAE and RMSE indicate better
forecasting performance; higher Precision and Recall indicate higher structure similarity.

(i.e., SKI-CLmir, SKI-CLherd, SKI-CLer, and SKI-CLder++) with better APs, suggesting the superiority
of our proposed representation-matching scheme to maximize the coverage of dependencies and
temporal dynamics.

We visualize the performance matrices of SKI-CLseq (without memory replay) and SKI-CL (with
memory replay and representation-matching scheme) based on the Traffic-CL dataset as shown in
Figure 5. Each cell corresponds to the aforementioned Pi,j , i.e., the performance on regime j after
the model has been sequentially trained from stage 1 to i, where i and j denote the row number
and column number, respectively. We observe the forecasting accuracy, measured by MAE and
RMSE, significantly decreases when no samples are replayed during sequential training. On the
contrary, SKI-CL utilizes the proposed representation-matching scheme based memory replay and
can maintain reasonably well forecasting performance and infer the dependency structures accurately.

4.3 PRESERVING FAITHFUL DEPENDENCY STRUCTURES

We also evaluate how the baselines and our method preserve the learned structures that are highly
correlated to the structural knowledge. Specifically, we compare SKI-CL with GTS on Traffic-
CL dataset, and ESG on Solar-CL dataset to investigate the binary edges and continuous edges,
respectively. The results of the learned structures and structural knowledge are shown in Figure 4,
where the average performance and average forgetting are also annotated. It is clear that SKI-CL is
able to alleviate the forgetting of the learned structures on both datasets at the testing phase, while
the baselines fail to model the dependencies of MTS in different regimes. This observation also
suggests the importance of dynamic structure learning and the incorporation of structural knowledge,
to maintain a faithful structure at each regime. We further visualize the similarity matrices between
the structures inferred by SKI-CL and structural knowledge, as shown in Figure 5. We observe that
the inferred structures at the testing phases of each regime still reveal similarities to the structural
knowledge, by comparing the values of each row with the diagonal ones.

We emphasize that we don’t intend to use structural knowledge as a ground truth. We have demon-
strated that exploiting structural knowledge helps to reduce the performance degradation between

9
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Regime 4

Node 1 Node 2 Node 3Node 1 Node 2 Node 3

Regime 3

Figure 6: A Case Study of SKI-CL on Synthetic Dataset.

Table 2: Analysis of λ on Traffic-CL

λ
Forecasting Performance Structure Similarity

AP AF AP AF

MAE RMSE MAE RMSE Prec. Recall Prec. Recall

0.0 15.79 26.33 2.71 4.23 0.09 0.13 -0.01 -0.01
0.01 15.42 26.08 2.30 4.13 0.52 0.46 -0.52 -0.57
0.1 15.39 25.97 2.12 4.07 0.84 0.75 -0.11 -0.19
0.5 15.33 25.68 1.68 3.07 0.85 0.78 -0.08 -0.11
1.0 15.23 25.32 1.51 2.72 0.84 0.80 -0.10 -0.12
2.0 15.27 25.51 1.70 3.10 0.85 0.79 -0.08 -0.14
5.0 15.31 25.63 2.04 3.56 0.83 0.72 -0.16 -0.24

Table 3: Analysis of Memory Budget on Traffic-CL

Ratio
Forecasting Performance Structure Similarity

AP AF AP AF

MAE RMSE MAE RMSE Prec. Recall Prec. Recall

0.01 15.23 25.32 1.51 2.72 0.84 0.80 -0.10 -0.12
0.05 14.49 24.35 1.16 2.03 0.86 0.79 -0.10 -0.13
0.1 14.44 24.03 0.77 1.23 0.84 0.78 -0.07 -0.13
0.2 14.25 23.74 0.85 1.34 0.89 0.80 -0.06 -0.14
0.5 14.18 23.06 0.55 0.79 0.90 0.81 -0.05 -0.09

consecutive regimes. Besides, it is beneficial to have the model aligned with the structural knowledge
for a better interpretation of each regime. More visualization results are provided in Appendix D.

4.4 CASE STUDY: INFERRED STRUCTURES AND FORECASTS ACROSS DIFFERENT REGIMES

We provide a case study on the Synthetic-CL dataset to further illustrate the efficacy of SKI-CL, as
shown in Figure 6. Our analysis is based on the final SKI-CL model that has been sequentially trained
over all regimes. We select three variables (nodes) and visualize the testing data of regime 3 and 4
with different temporal dynamics (The full visualization of all regimes is provided in Appendix G).
It is clear that SKI-CL can render a faithful dependency structure that well aligns the variables
interactions in each regime (e.g., only nodes 2 and node 3 are similar in regime 3; node 1 and node 2
are highly similar in regime 4). Moreover, SKI-CL gives relatively accurate forecasts that capture
each variable’s temporal dynamics of ground truths.

4.5 HYPERPARAMETER ANALYSIS

We perform experiments on the Traffic-CL dataset to validate the effectiveness and sensitivity of
two key hyperparameters in SKI-CL, the weight of structure regularizer λ (1 by default) and the
memory budget (sampling ratio) at each regime (0.01 by default). As shown in Table 2, within a
small range, the model is relatively stable in terms of λ, resulting in similar average performance
and average forgetting on forecasting performance as well as the inferred structure similarity. We
also study the model performance when the memory budget varies in Table 3. We can observe that a
larger memory budget can achieve better forecasting performance and less forgetting. Meanwhile,
the structure similarity is relatively stable regarding the memory budget. The exploration of other
hyperparameter settings is provided in Appendix E.

5 CONCLUSION

In this paper, we propose a novel Structural Knowledge Informed Continual Learning (SKI-CL)
framework to perform MTS forecasting and infer dependency structures inference in the continual
learning setting. We develop a forecasting model based on dynamic graph learning and impose a
consistency regularization that exploits structural knowledge to facilitate continual learning. We
further alleviate the catastrophic forgetting by proposing a novel representation-matching memory
replay scheme, which maximizes the temporal coverage of MTS data to efficiently preserve each
regime’s underlying temporal dynamics and dependency structure. Experiments on one synthetic
dataset and three real-world benchmark datasets demonstrate the effectiveness and advantages of the
proposed SKI-CL on continual MTS forecasting tasks.
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A REPRESENTATION-BASED DISTRIBUTION CHARACTERIZATION

A.1 OPTIMIZING THE OBJECTIVE FOR COVERAGE MAXIMIZATION

Inspired by the principle of maximum entropy, we perform a distribution characterization by splitting
the MTS data into the most diverse modes on the representation space, which incorporates variable de-
pendence and temporal information. The distribution characterization splits the hidden representation
by solving a constrained optimization problem whose objective is formulated as:

max
0<K≤K0

max
n1,··· ,nK

1

K

∑
1≤i ̸=j≤K

D (Mi,Mj)

s.t. ∀i,∆1 < |Mi| < ∆2;
∑
i

|Mi| = n,
(4)

where D(·, ·) can be any distribution-related distance metric, n is the number of training samples in
a single regime, ∆1, ∆2 and K0 are hyperparameters to avoid trivial partitions and over-splitting,
M denotes the subset of representations that correspond to contiguous samples. The optimization
problem can be computationally intractable and the closed-form solution may not exist. We adopt
the greedy algorithm proposed by Du et al. (2021). First, we obtain the ordered representation set
from the trained model for single regime data. Then, for efficient computation, we evenly split the
representation into N parts and randomly search the value of K in {2, 3, 4 · · ·N − 1} Denote the
start and the end index of the representation by A and B respectively. We first consider K = 2 by
choosing the first splitting point C from all candidate splitting points via maximizing the distance
metric D (MAC ,MCB). After C is determined, we then consider K = 3 and use the same strategy
to select another point D. A similar strategy is applied until the number of representation modes is
obtained.

B RELATION TO OTHER RESEARCH TOPICS

Our method characterizes dynamic variable dependencies of MTS data within each regime to perform
continual MTS forecasting tasks. The dynamic variable dependencies modeling and continual
adaptation nature relate our method to two research topics, i.e., the dynamic graph learning and
learning with temporal drift of MTS. Dynamic graph learning focuses on adapting to the changes in
the explicit graph structure and possibly features over time, and leverage it to facilitate downstream
tasks (e.g., node classification Liu et al. (2022a), link prediction Wang et al. (2021), community
detection Park et al. (2022)). In contrast, our proposed continual multivariate time series forecasting
method needs to discover underlying dependencies structure of variables over different regimes
(stages), by capturing the temporal dynamics of MTS data. On the other hand, temporal drift of
MTS represents the phenomenon where the data distribution of the target MTS changes over time in
unforeseen ways, where the approaches are often more reactive and focused on adapting to changes
in data distribution for a specific task Du et al. (2021); Kim et al. (2021); Lee et al. (2022). Based on
the notion, it is important to emphasize the continual adaptation nature of continual learning setting
regarding the temporal drifts, where the catastrophic forgetting happens due to the shifts over multiple
regimes. That being said, continual MTS forecasters need to handle a variety of regimes, not just
adapt to changes in data distribution for a single one, which is to some degree more realistic and
challenging. Temporal drift represents a specific challenge within this broader spectrum of adaptation.

Moreover, while the aforementioned topics as well as our study deal with the evolving data, the
learning objectives can be very different. For the temporal drift methods, the objective is to adapt
the forecaster to these new MTS patterns by effectively detecting, responding to, and learning from
these changes. Similarly, the focus of dynamic graph learning is to adapt its model to cope with the
structural and possible feature changes. However, the main focus this paper is to prevent the model
from forgetting previously learned knowledge (coupled temporal dynamics and variable dependencies
in our scope) when adapting to new MTS distributions.
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Table 4: Summary of Datasets

Dataset Traffic-CL Solar-CL HAR-CL Synthetic-CL

# of nodes 22 50 9 10
# of all time steps 106,848 52,560 600,576 24,000
# of regimes 7 5 4 4
Regime year state activity adjacency
Structure avail. Completed Completed Partial Completed

C DATASETS, BASELINES AND EVALUATIONS FOR CONTINUAL MTS
FORECASTING

C.1 DATASETS

Traffic-CL Following the fashion in PEMSD3-Stream Chen et al., we construct the Traffic-CL dataset
based on the PEMSD3 benchmark for continual MTS forecasting tasks. The PEMSD3 benchmark
data was collected by the Performance Measurement System in California Chen et al. (2001) in
real-time by every 30 seconds and further aggregated to 5-min granularity. The PEMSD3-Stream
dataset contains traffic data from 2011 to 2017. Specifically, data within a month period from July
10th to August 9th from every year was selected, where the traffic network keeps expanding from
year to year. The adjacency matrix for τ -th year is extracted by applying a Gaussian kernel to the
spatial all pairwise distances between two traffic sensors, as shown in Equation 5.

Aτ [i, j] =

{
exp

(
−d2

ij

σ2
d

)
, i ̸= j and dij ≤ ϵ

0, otherwise
(5)

where dij denotes the spatial distance between sensor i and j. σd and ϵ are the standard deviation and
a predefined threshold (controlling the sparsity of the adjacency matrix, set as 1), respectively.

Based on the constructed PEMSD3-Stream dataset, we make the following modifications to further
simulate distinct regimes in the setting of continual forecasting. For each year, we rank and select
the top 100 traffic sensors with the largest node degrees, based on which we randomly select 22
sensors as a set representing a part of the major traffic. Next, we transform the continuous adjacency
weights to binary ones by a threshold, and use it as the structural knowledge. As such, each regime is
represented by a different portion of a temporally expanding traffic network from different years, with
a binarized structural prior and MTS data defined accordingly. The input horizon for the Traffic-CL
dataset is 12.

Solar-CL We build our continual MTS forecasting dataset based on the database for NREL’s Solar
Power Data for Integration Studies1, which contains 5-minute solar power data for near 6,000
simulated photovoltaic power plants in the United States for the year 2006. Note that the data in
Alabama with a 10-minute granularity is also known as the commonly used Solar dataset in many
existing MTS studies Wu et al. (2020); Lai et al. (2018); Cao et al. (2020); Liu et al. (2022b).

We construct different regimes by states with different average annual sunlight levels (measured by
kJ/m2). Based on the statistics2 and the aggregated MTS data at 10-minute, we select five states,
Massachusetts/MA (3944 kJ/m2) - Arizona/AZ (5755 kJ/m2) - North Carolina/NC (4456 kJ/m2)
- Texas/TX (5137 kJ/m2) - Washington/WA (3467 kJ/m2) as five regimes representing different
sunlight patterns in different spatial locations. For each state, 50 photovoltaic power plants are
randomly selected, where the spatial information is also used as a valid structural prior, as plants that
are geographically close share similar weather and sunlight conditions at a local level. Specially, we
first extract the longitude and latitude for each plant and calculate the pairwise geographic distances
among all plant pairs. Based on all pairwise distances, we generate the adjacency matrix by applying
a Gaussian kernel in Equation 3, where we set ϵ = ∞, indicating a fully connected continuous graph.
The input horizon for the Solar-CL dataset is 24.

1
https://www.nrel.gov/grid/solar-power-data.html

2
https://worldpopulationreview.com/state-rankings/sunniest-states
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HAR-CL We leverage the class boundaries in MTS classification data to construct different regimes
in forecasting tasks. Specifically, we build our continual forecasting dataset based on a commonly
used MTS Classification benchmark, the Human Activity Recognition (HAR) dataset Anguita et al.
(2013b;a) in the UCI database3, where the data is collected from a group of 30 volunteers from
19-48 years, wearing a Samsung smartphone on the waist and performing six activities of daily living
(Walking, Walking upstairs, Walking downstairs, Standing, Sitting, Lying). Each MTS sequence
contains 128 time steps and 9 variables that are recorded based on the accelerometer and gyroscope,
including the linear accelerations, the angular velocities, and total accelerations along the X-Y-Z axis.
The detailed setup for data collection can be found in Figure 1 of Anguita et al. (2013a).

We notice that different human activities naturally form distinct regimes with unique temporal
dynamics, where deep learning methods easily achieve over 94% classification accuracy Wang et al.
(2019). Motivated by this fact, we construct the continual HAR forecasting dataset considering the
following details. Firstly, we select Walking, Walking upstairs, Walking downstairs, and Lying as
four different regimes in our task. Secondly, each regime contains over one thousand sequences that
are not always temporally connected due to different volunteers. As such, we iterate all sequences
and construct the input-output MTS windows in each 128-step sequence, after which all windows
are stacked as the training/validation/testing data in one regime. Secondly, we try to build the
structural knowledge for each regime based on the domain knowledge. We’ve already known that
linear accelerations are highly correlated to total accelerations along each axis, regardless of the
activities, but the dependencies among other variables are not very clear. Therefore, we examine
the Pearson correlations of all training sequences for each regime, where the mean of correlation
matrices demonstrate distinct patterns, and validate the strong correlations between linear and total
accelerations. However, the standard deviations are only small at the diagonal and the aforementioned
entries, suggesting a varying and uncertain structure for other variable pairs. To this end, we check a
small (15-th) percentile of each entry in the absolute correlation matrix, and apply a threshold to get
a binary mask representing the variable dependencies that we are confident of. Note that we only
regularize the learned structures to be consistent with the partially observed structural knowledge
at the masked entries. As such, we simulate the structured scenario when we are not aware of the
completed structural knowledge of MTS. The input for the HAR-CL dataset has 12 steps.

Synthetic-CL Lastly, we generate the synthetic data based on Non-repeating Random Walk Denton
(2005), which is used in Liu et al. (2022b) for the evaluation of the learned graph structure in a single
regime. Next, we introduce how to generate the MTS data for continual forecasting tasks.

Firstly, we describe how to generate the MTS data step by step. At time step t, given a dynamic
weighted adjacency matrix W(t), X(t) = N

(
W(t−1)X(t−1), σ

)
∈ RN×1, where N denotes the

Gaussian distribution, σ ∈ R controls the variance, N denotes the number of variables, and X(0) is
randomly initialized from the set [−1,−0.5, 0.5, 1]. Secondly, we describe how the W(t) is generated
and how to construct different regimes based on W(·). Assuming there are L total time steps, we
define W(t) as one of S constant matrices

(
G(1), . . . ,G(S)

)
, where G(·) is a Laplacian of sparsified

random adjacency matrix with sparsity δ, spanning ⌊L/S⌋ time steps (⌊·⌋ denotes the floor function).
As such, each regime is represented by MTS data with time steps from (i−1)×⌊L/S⌋ to i×⌊L/S⌋,
with the corresponding weighted adjacency matrix W(t) = G(i). Specifically, we set the number
of variable N = 10, the total time steps L = 24, 000, the number of regimes S = 4, the standard
deviation of noise σ = 0.01, and the matrix sparsity δ = 0.1.

There are two main differences between the synthetic setting of Liu et al. (2022b) and our work
despite the setting of continual learning. Firstly, we don’t reinitialize the value of each variable
when the dynamic weighted adjacency matrix transits to a different one in order to preserve the
temporal continuity of MTS data across different regimes. Secondly, the evaluation of graph structure
learning is also different due to the forecasting setting. In this particular synthetic dataset, the
dynamic weighted adjacency matrix W(t) describes the data generation process at the single-step
level, which can be treated as the ground truth if the non-linear part of W(t) in the model learns an
identity mapping with Gaussian noise. As the graph learned in Liu et al. (2022b) is under the setting
of single-step prediction, the W(t) itself is a reasonable reference for evaluation. In our cases of
performing multi-horizon forecasting, the matrix W(t) raised to a higher power can also demonstrate
how the dynamic is propagated in a sequence. In our exploration, we don’t assume W(t) is explicitly

3
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
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given as the structural prior. Instead, we exploit the Pearson correlation of the generated MTS data
and formulate a binary structural prior based on strong absolute correlations, where we will examine
if the learned graph structure is able to reveal the variable interactions in W(t). The input horizon for
the Synthetic-CL dataset is 12.

C.2 BASELINES

In this part, we introduce the state-of-the-art baseline methods evaluated in our paper and compare
the number of parameters for each baseline model in Table 5

• TCN Bai et al. (2018): Temporal convolution networks (TCN) models the temporal causality
using causal convolution and do not involve structural dependence modeling.

• LSTNet Lai et al. (2018): LSTNet leverages the Convolution Neural Network (CNN) with a
kernel spanning the variable dimension to extract short-term local variable dependencies,
and the Recurrent Neural Network (RNN) to discover long-term patterns based on the
extracted dependency patterns for MTS forecasting.

• STGCN Yu et al. (2018): STGCN jointly captures the spatial-temporal patterns by stacking
spatial graph convolution layers that perform graph convolution using continuous structural
knowledge and temporal-gated convolution layers that capture temporal dynamics based on
the yielded spatial representations.

• MTGNN Wu et al. (2020): MTGNN learns a parameterized graph with top-k connections for
each node, and performs mix-hop propagation for graph convolution and dilated inception for
temporal convolution. The parameterized graph is purely optimized based on the forecasting
objective. At the testing stage, the inferred graph is static due to the fixed parameters.

• AGCRN Bai et al. (2020): AGCRN models the dependencies graph structure as a product
of trainable node embedding and performs graph convolution in the recurrent convolution
layer for MTS forecasting. The node embedding and yielded graph are purely optimized
based on the forecasting objective. At the testing stage, the inferred graph is static due to the
fixed parameters.

• GTS Shang & Chen (2021): GTS infers steady node representations and global node relations
from entire training MTS data. The learned dependency structure is used in Diffusion
Convolution Recurrent Neural Networks (DCRNN) for MTS forecasting. The parameterized
graph is optimized based on the forecasting objective as well as the regularization based on
binary structure priors. At the testing stage, the graph is sampled from learned binary edge
distributions.

• ESG Ye et al. (2022): ESG learns evolving and scale-specific node relations from features
extracted from MTS data. A series of dynamic graphs representing dynamic correlations are
utilized in sequential graph convolution and temporal convolution. The dynamic graphs are
learned via the optimization of feature extraction layers based on the forecasting objective.
At the testing stage, the graphs are dynamics inferred based on each MTS input window.

• StemGNN Cao et al. (2020): The Spectral Temporal Graph Neural Network (StemGNN)
is a Graph-based multivariate time-series forecasting model, which jointly learns temporal
dependencies and inter-series correlations in the spectral domain, by combining Graph
Fourier Transform (GFT) and Discrete Fourier Transform (DFT).

• Autoformer Wu et al. (2021): Autoformer is a Transformer-based model using decomposition
architecture with an Auto-Correlation mechanism to capture cross-time dependency for
forecasting.

• PatchTST Nie et al. (2022): PatchTST model uses channel-independent and patch techniques
to tokenize input time series and perform time series forecasting by utilizing the vanilla
Transformer encoders.

• Dlinear Zeng et al. (2023): DLinear adopts trend-seasonal components decomposition tech-
niques for time series data and applies MLP-based architectures for time series forecasting.

• TimesNet Wu et al. (2022): TimesNet model leverages intricate temporal patterns by
exploring time series’ multi-periodicity and capturing the temporal 2D-variations in 2D
space using transformer-based backbones.
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Table 5: Baseline Model Parameter Comparison
Model Number of Parameters Rank

LSTNet 53253 14

STGCN 96606 13

MTGNN 139990 12

AGCRN 252130 10

GTS 14647763 3

ESG 5999516 6

TCN 170886 11

StemGNN 1060802 8

Autoformer 10612758 4

PatchTST 3226124 7

Dlinear 49168 15

TimesNet 36849590 2

iTransformer 6331916 5

OFA 82033932 1

SKI-CL 614731 9

• iTransformer Liu et al. (2023):iTransformer applies the attention and feed-forward network
on the inverted dimensions of the time series data to capture multivariate correlations for
time series forecasting.

• OFA Tian Zhou (2023): OFA represents time series data into patched tokens to fine-tune the
pre-trained GPT2 (Radford et al., 2019) for various time series analysis tasks

Compared with the state-of-the-art method, our proposed SKI-CL backbone model learns a dynamic
graph for MTS modeling, which is also capable of incorporating structural knowledge with different
forms and availability scenarios to characterize the dependency structure and temporal dynamics of
each regime.

Training Details The dynamic graph inference module consists of 3 stacked 2D convolutional layers.
Using Cin, Cout to denote the number of channels coming in and out, the parameters of these
convolutional layers are [ Cin = 1, Cout = 8, kernel size = (1,2), stride = 1, dilation = 2 ], [Cin =
8, Cout = 16, kernel size = (1,3), stride = 1, dilation = 2 ] and [Cin = 16, Cout = 32, kernel size
= (1,3), stride = 1, dilation = 2 ] respectively. Each batched output is normalized using the Batch
Norm2d layer. The hidden dimension for the node feature project is set at 128. For optimization,
we train SKI-CL with 100 epochs for every stage under Adam optimizer with a linear scheduler.
For the learning rate schedule, we use a linear scheduler, which drops the linear rate from 0.0001
to the factor of 0.8 for every 20 epochs. The data split is 6/2/2 for training/validation/testing. We
use a batch size of 32/64/64 for the Traffic-CL, Solar-CL and HAR-CL datasets and use a batch
size of 8 for our synthetic dataset. Considering the sizes of datasets, the default memory for each
regime is 1% for Traffic-CL and Synthetic-CL and 0.1% for Solar-CL and HAR-CL, respectively.
We also weigh the examples in the current stage and in memory differently. We apply a weighted loss
regarding the sizes of memory and training data, as stated in the manuscript, and we also construct a
data loader that guarantees the balance between training data and memory data. For the setting of our
distribution characterization scheme, the default values are N = 10 and K = 7. We implement our
models in Pytorch. All experiments are run on one server with four NVIDIA RTX A6000 GPUs. We
will release our code upon paper acceptance.

C.3 EVALUATIONS

Multi-horizon MTS Forecasting We use two common evaluation metrics for multi-horizon MTS
forecasting, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), which are given as:
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MAE(Y, Ŷ ) =
1

τ

τ∑
t=1

|yi − ŷi| (6)

RMSE(Y, Ŷ ) =

√√√√1

τ

τ∑
t=1

(yi − ŷi)
2 (7)

where τ is the number of time steps, ŷt is the forecasting results at t-th time step and yt is the
corresponding ground truth. Besides, ȳ and ¯̂y denote the mean values of ground truth and forecasting
results, respectively.

Learning Faithful Dependency Structures For continuous edge variables, we still use MAE and
RMSE to measure the similarity between the learned weighted graphs and continuous structural
knowledge in an average sense, where the τ in Equations 6 and 7 denotes the entry of adjacency
matrix. For binary edge variables, we use the average precision (Prec.) and recall (Rec.) to measure
the similarity between the learned dependency structures over all testing MTS input windows and the
binary structural prior at each regime, which are given as:

Prec. =
TP

TP + FP
(8)

Rec. =
TP

TP + FN
(9)

where TP denotes the number of identified edges that exist in the structural prior, TN denotes the
number of non-identified that do not exist in the structural prior, FP denotes the number of identified
edges that do not exist in the structural prior, and FN denotes the number of non-identified edges that
exist in the structural prior.

Continual MTS Forecasting and Dependency Structures Preserving We adopt two widely used
metrics to evaluate the performance on continual MTS forecasting and dependency structures pre-
serving, i.e., the Average Performance (AP) and Average Forgetting (AF) Lopez-Paz & Ranzato
(2017); Zhang et al. (2022a), where the AP and AF at i-th regime are defined as:

AP =

i∑
j=1

Pi,j

i
,∀i ≥ 1 (10)

AF =

i−1∑
j=1

(Pi,j − Pj,j)

i− 1
,∀i ≥ 2 (11)

where Pi,j denotes the performance on regime j (including the forecasting performance and structure
similarity) after the model has been sequentially trained from stage 1 to i.

Even if we provide both metrics for performance evaluation, we need to emphasize the superiority of
average performance over average forgetting in continual learning. Average performance provides
a direct measure of how well a learning system is performing on a task or set of tasks. It reflects
the system’s ability to retain previously learned knowledge over past regimes while adapting to new
information. While average forgetting is a relevant metric in assessing the memory capabilities of a
learning system, it does not provide a complete picture of the learning system’s retention abilities.
The average performance takes into account both the retention of old knowledge and the acquisition
of new knowledge, providing a more comprehensive evaluation of the learning system’s performance.
Therefore, we use average performance as the main evaluation metric and average forgetting as an
auxiliary metric to measure knowledge retention and model adaptivity.

D VISUALIZATION OF LEARNED DEPENDENCY STRUCTURES

In this section, we provide case studies of the learned dependency structures for continual MTS
forecasting on all datasets, as shown in Figure 7,8,9, and 10 . For binary edge scenarios, we compare
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MTGNN Prec. (AP): 0.10  Prec. (AF): 0.00  Rec. (AP): 0.49  Rec. (AF): 0.00
GTS  Prec. (AP): 0.64  Prec. (AF): -0.028  Rec. (AP): 0.53  Rec. (AF): -0.37
SKI-CL  Prec. (AP): 0.88  Prec. (AF): -0.08  Rec. (AP): 0.81  Rec. (AF): -0.10
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Figure 7: Visualization of Learned Structures on Traffic-CL Dataset.

MTGNN  Prec. (AP): 0.53  Prec. (AF): 0.00  Rec. (AP): 0.42  Rec. (AF): 0.00
GTS     Prec. (AP): 0.91  Prec. (AF): -0.01  Rec. (AP): 0.88  Rec. (AF): -0.01
SKI-CL  Prec. (AP): 0.88  Prec. (AF): -0.01  Rec. (AP): 0.87  Rec. (AF): -0.004

W(i) (W(i))12MTGNNRegime GTS SKI-CL
Structural 

Knowledge

Figure 8: Visualization of Learned Structures on Synthetic-CL Dataset.

our proposed SKI-CL with MTGNNer and GTSer, which only support discrete edge formulation
and yield better performance over other baselines. For continuous edge scenarios, we compare our
SKI-CL with ESGer that only support continuous edge formulation. For ESGer, we visualize the
generated graph at the last step representing the temporal dynamics of the whole sequence. All the
results are plotted after the model is trained at the last regime, where the average structure similarities
over all testing windows are also annotated under the case visualizations.

We first discuss the results on the Traffic-CL dataset as shown in Figure 7. As MTGNN directly
learns a parameterized graph, it can only infer one fixed dependency structure reflecting the model at
the latest regime. That being said, even if the model with experience replay is able to maintain the
forecasting performance over the past regimes, the inferred graph fails to preserve the learned unique
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ESG MAE (AP): 0.35  MAE (AF): 0.01  RMSE (AP): 0.51  RMSE (AF): 0.01  
SKI-CL MAE (AP): 0.17  MAE (AF): 0.03  RMSE (AP): 0.23  RMSE (AF): 0.05
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Figure 9: Visualization of Learned Structures on Solar-CL Dataset.
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Figure 10: Visualization of Learned Structures on HAR-CL Dataset.

variable dependencies for each regime. Similarly, GTS infers a graph based on parameterized edge
distributions, which also reveals the dependencies in a static sense. The incorporation of structural
knowledge helps GTS characterize each regime in continual learning, which renders more relevant
dependency structure for each regime. Nevertheless, learning a static edge distribution over regimes
falls short of handling varying relational and temporal dynamics in complex environments. Another
inherent drawback of GTS is that GTS has to access the training data and memory buffer when
inferring graphs at the testing stage, which is not realistic for practical model deployment in real-
world applications. Compared to these baselines, our model yields better forecasting performance
(as shown in the manuscripts, as well as Table 8, and a faithful dependency structure that is more
consistent with structure knowledge for each regime. These observations demonstrate the importance
of the joint design of the dynamic graph inference module and the regularizer based on a structural
prior.

For results on Synthetic-CL dataset as shown in Figure 8, the aforementioned observations still
hold despite the comparative performance of GTS due to the simplicity of this dataset (Here we use
the binary structural knowledge by thresholding the correlations for fair comparisons with GTS).
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Table 6: Hyperparameter analysis for distribution characterization

N K
Forecasting Performance (×10−2) Structure Similarity

AP AF AP AF

MAE RMSE MAE RMSE Prec. Recall Prec. Recall

5 3 3.54 4.35 0.30 0.38 0.69 0.60 -0.11 -0.17

10 3 3.34 4.27 0.20 0.27 0.65 0.69 -0.04 -0.11
10 5 3.27 4.25 0.18 0.25 0.80 0.78 -0.01 -0.06
10 7 3.24 4.24 0.15 0.23 0.76 0.76 -0.06 -0.08

15 5 3.45 4.18 0.27 0.33 0.75 0.71 -0.06 -0.12
15 10 3.26 4.25 0.15 0.21 0.86 0.75 -0.06 -0.09

Moreover, our model and GTS regularized with strong absolute correlations are able to render
binary structures that capture the single-step and multi-step variable interactions of the ‘ground truth’
dynamic adjacency matrix W i and its 12th power (the input window size) for each regime.

We next discuss the results on the Solar-CL dataset as shown in Figure 9, where the edge is formulated
as a continuous variable. It is clear that our proposed SKI-CL still gains advantages in terms of pre-
serving a faithful continuous dependency structure for each regime. Instead, ESG that learns dynamic
graphs still falls short of capturing a relevant structure due to the lack of regime characterizations.

Finally, we investigate our method on the HAR-CL dataset (as shown in Figure 10) when the
structural knowledge is partially observed. Here, we do not evaluate the structure similarity due
to the incompleteness of the prior as a referencing graph. Instead, we focus on how our model
leverages the limited but confident knowledge in dependency structure learning. It can be seen
that MTGNN fails to capture the important relationships that reveal in the structural knowledge.
Besides, GTS consistently inferred a fully connected graph at the testing stages (even if we have
tuned the temperature in the Gumbel-Softmax module), which renders a less meaningful dependency
structure. Instead, the proposed SKI-CL exploits partial knowledge and renders faithful structures.
For example, SKI-CL is able to capture the correlations of linear accelerations, angular velocities,
and total accelerations within three axes, and the irrelevance between accelerations and angular
velocities, which is reasonable in a binary sense for lying down behavior. Besides, even if the partial
structural knowledge is the same for walking upstairs and walking downstairs, the SKI-CL is able to
identify different dependencies patterns for different activities. It demonstrates the effectiveness of
the SKI-CL on partially observed structural knowledge, suggesting a certain generalizability of our
proposed framework in MTS modeling.

E HYPERPARAMETERS ANALYSIS

In this section, we supplement additional analysis of distribution characterization hyperparameters,
namely the granularity N (10 by default) and the mode number K (7 by default), using Synthetic-CL
dataset. As shown in Table 6, for a fixed N , a relatively large K facilitates inferred structure-
preserving and mitigated the forgetting in time series forecasting. When N and K are close, average
performance and average forgetting behavior are insensitive to the choice of these hyperparameters.
However, a small N degrades the structure-preserving ability as the average forgetting on precision
and recall increases.

F EXPERIMENTAL RESULTS FOR DIFFERENT HORIZON FORECASTING

Table 8 summarize the experiment results of baselines and our proposed SKI-CL method with variants
for different horizon forecasting performance based on three rounds of experiments. We intentionally
select 3-horizon prediction on Traffic-CL and Solar-CL datasets as the settings in Wu et al. (2020) and
Cao et al. (2020). While for HAR-CL and synthetic-CL dataset, 6-horizon prediction performance is
reported. Based on the results, the memory-replay-based methods generally alleviate the forgetting
issues with better APs and smaller relative AFs. Under different horizon prediction settings, SKI-CL
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and its variants (SKI-CLer and SKI-CLder++) still consistently achieve the best or the second-best APs,
demonstrating its advantages over other baseline methods.

We also provide the standard deviation of AP and AF for the above continual forecasting performance,
as shown in Table 9. It can be seen that the standard deviation of SKI-CL is generally comparative or
lower to other variants except the Synthetic-CL dataset.

G A CASE STUDY WITH INFERRED STRUCTURES AND PREDICTION
VISUALIZATIONS

We provide a case study on the Synthetic-CL dataset to illustrate the efficacy of SKI-CL, as shown in
Figure 11. Our analysis is based on the final SKI-CL model that has been sequentially trained over all
regimes. We select three variables (nodes) and visualize the testing data, where the temporal dynamics
obviously differ across four regimes. It is clear that SKI-CL can render a faithful dependency structure
that well aligns the similarity of variables in each regime. Moreover, SKI-CL gives relatively accurate
forecasts that capture each variable’s temporal dynamics of ground truths.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

R
eg

im
e 

1
R

eg
im

e 
2

R
eg

im
e 

3
R

eg
im

e 
4

Figure 11: A case study of SKI-CL on Synthetic-CL dataset. In each regime, red rectangles indicate the
correspondence between the ground truth time series (top-left) and the inferred variable dependencies (top-right),
red arrows indicate the comparisons between these ground truth values and corresponding predictions (bottoms).
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Table 7: Experiment Results for 12 Horizon Prediction. (Lower MAE and RMSE for AP mean better; When
AP is comparable, lower MAE and RMSE for AF mean better. )

Model
Traffic-CL Solar-CL HAR-CL (×10−2) Synthetic-CL(×10−2)

AP ↓ AF AP ↓ AF AP ↓ AF AP ↓ AF

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VARseq 88.19 126.01 58.38 80.58 167.30 534.42 205.27 658.80 19.59 28.38 1.93 2.19 22.34 32.70 9.18 13.54
ARIMAseq 141.75 159.89 77.61 77.40 14.97 18.92 4.75 2.92 40.68 52.87 2.35 2.38 42.24 43.51 13.39 12.98

LSTNetseq 27.01 42.87 11.19 16.72 3.15 5.76 1.12 1.14 16.00 23.96 2.78 3.77 24.13 31.35 5.46 7.32
LSTNetmir 21.79 35.37 4.39 5.21 2.73 5.51 0.93 0.84 15.73 23.14 1.45 1.67 21.44 27.23 0.57 0.72
LSTNetherd 20.86 33.56 3.24 4.58 3.09 5.71 1.08 0.99 15.06 22.98 1.37 1.59 20.31 26.22 0.36 0.43
LSTNeter 20.67 33.38 3.21 4.83 2.49 5.18 0.25 0.32 14.79 22.44 0.79 0.86 20.12 26.17 1.01 1.08
LSTNetder++ 20.05 32.22 2.66 3.96 2.44 5.13 0.16 0.20 14.96 21.83 0.70 0.83 20.14 26.08 0.33 0.76

STGCNseq 30.45 49.51 13.91 20.77 2.99 5.75 0.81 0.99 17.36 26.38 1.79 2.25 8.89 13.67 4.55 7.36
STGCNmir 25.63 43.07 8.51 9.27 2.86 5.69 0.73 0.90 17.25 25.80 1.40 2.11 8.57 13.58 4.20 6.82
STGCNherd 24.89 41.42 5.04 8.51 2.83 5.62 0.67 0.74 17.30 25.84 1.49 2.16 8.50 13.21 3.80 6.46
STGCNer 28.53 47.63 9.38 15.79 2.81 5.57 0.81 0.95 16.19 24.81 1.15 1.96 7.77 12.10 3.56 5.99
STGCNder++ 27.06 45.77 7.78 13.88 2.71 5.60 0.56 0.53 16.05 23.53 0.94 1.16 7.64 11.37 2.77 5.06

AGCRNseq 21.84 35.93 7.87 12.06 4.02 7.32 -0.41 -0.39 18.01 25.91 1.10 1.62 14.58 23.68 1.37 1.75
AGCRNmir 20.03 34.52 3.13 7.01 3.81 6.92 -0.33 -0.35 15.51 23.57 0.83 1.03 14.40 22.56 1.33 1.65
AGCRNherd 18.63 31.32 2.39 4.19 3.14 5.78 -0.23 -0.13 15.65 23.92 0.21 1.93 14.42 22.58 1.31 1.67
AGCRNer 18.58 31.00 2.82 5.17 2.11 4.07 -1.77 -2.53 15.26 23.25 0.32 0.51 13.67 20.98 0.56 1.11
AGCRNder++ 18.29 30.41 2.58 4.56 4.36 7.63 -0.65 -0.86 15.23 23.23 0.28 0.49 13.14 20.62 1.25 1.54

StemGNNseq 18.53 31.23 4.48 7.44 2.79 5.53 0.42 0.52 16.19 24.81 2.21 3.01 13.83 20.01 1.91 1.88
StemGNNmir 17.73 29.75 2.21 5.17 2.75 5.51 0.15 0.39 16.11 23.93 1.53 1.77 12.75 19.23 1.13 1.45
StemGNNherd 17.55 29.63 1.73 3.29 2.78 5.50 1.05 1.16 16.07 23.77 1.04 1.53 12.69 18.46 1.10 1.30
StemGNNer 17.01 28.68 2.07 3.69 2.73 5.52 0.04 0.16 15.95 23.32 1.21 1.25 12.13 18.18 0.65 0.59
StemGNNder++ 17.26 29.21 1.63 3.29 2.20 4.88 -0.04 0.02 15.78 23.12 1.01 0.92 12.19 17.98 0.26 0.61

TCNseq 16.88 28.67 3.77 6.83 2.03 4.84 0.06 0.24 14.85 23.42 3.60 5.06 4.30 4.90 0.66 0.99
TCNmir 15.70 26.53 1.70 3.22 1.99 4.79 0.10 0.19 13.91 22.15 2.64 2.93 3.79 4.63 0.46 0.73
TCNherd 15.55 26.21 1.49 2.81 2.01 4.82 0.13 0.23 13.87 22.08 2.05 2.88 3.72 4.61 0.35 0.67
TCNer 15.51 26.23 1.46 2.80 1.98 4.73 -0.05 0.02 13.66 21.78 1.82 2.59 3.29 4.30 0.34 0.61
TCNder++ 15.46 25.68 1.33 2.49 1.95 4.69 -0.07 -0.02 13.56 21.55 1.69 2.28 3.00 4.00 0.28 0.32

ESGseq 18.77 30.02 6.46 10.07 2.80 5.77 1.28 1.74 17.63 26.84 7.28 9.41 8.98 14.19 1.32 1.98
ESGmir 18.24 29.83 5.02 8.25 2.03 4.83 0.25 0.49 17.25 26.63 4.01 5.21 8.95 13.91 1.21 1.81
ESGherd 17.49 28.64 4.82 7.45 1.92 4.72 0.13 0.53 17.22 26.59 3.99 5.13 8.94 13.88 1.11 1.74
ESGer 16.40 27.50 3.05 5.34 2.01 4.82 0.24 0.44 17.15 25.84 4.63 5.33 8.84 13.86 1.21 1.62
ESGder++ 17.40 29.21 4.01 6.97 1.91 4.57 0.09 0.21 16.20 24.32 5.18 6.00 8.81 13.77 1.02 1.42

GTSseq 17.26 29.11 2.33 3.48 2.19 5.20 0.27 0.59 16.44 25.41 3.68 5.10 6.51 8.89 1.88 3.39
GTSmir 17.17 29.08 2.13 3.31 2.15 5.16 0.14 0.68 15.83 24.85 3.27 4.91 6.44 8.57 1.31 2.86
GTSherd 17.00 29.01 2.17 2.98 2.11 5.06 0.13 0.30 15.65 24.33 1.99 2.86 6.34 8.23 1.18 1.81
GTSer 15.83 26.20 1.12 2.52 2.01 4.75 0.12 0.05 15.06 23.52 2.00 2.73 5.59 6.32 0.44 0.69
GTSder++ 15.84 26.05 1.15 2.33 1.94 4.57 -0.25 -0.19 14.80 23.01 1.52 1.88 5.43 6.67 0.23 0.30

MTGNNseq 19.88 32.94 7.83 12.68 2.12 4.75 0.38 0.44 14.86 22.58 2.59 3.61 10.26 14.92 1.16 1.81
MTGNNmir 18.01 31.84 5.03 8.97 2.00 4.73 0.21 0.40 14.59 22.52 2.24 3.53 8.92 12.91 1.07 1.33
MTGNNherd 17.93 30.70 4.90 8.40 1.89 4.68 0.13 0.35 14.09 22.50 1.13 1.62 8.11 12.88 1.03 1.27
MTGNNer 15.79 26.52 2.76 4.87 1.94 4.62 0.14 0.25 13.59 21.85 1.91 2.79 8.70 13.69 0.61 1.21
MTGNNder++ 15.40 25.99 2.22 4.10 1.90 4.57 0.06 0.14 13.57 21.75 1.63 2.40 8.63 13.51 0.50 0.92

Autoformerseq 23.92 40.40 2.58 4.42 6.04 11.41 0.53 1.56 19.97 28.76 2.81 3.08 5.15 6.87 0.53 0.46
Autoformermir 23.85 40.13 2.21 4.07 5.95 11.18 0.87 1.14 18.57 27.93 1.45 2.88 5.12 6.73 0.32 0.37
Autoformerherd 23.90 40.21 2.43 4.29 5.91 11.12 0.90 1.20 18.78 28.03 1.42 2.66 5.00 6.65 0.23 0.24
Autoformerer 23.26 38.98 1.28 2.00 5.83 10.89 0.49 1.32 18.42 27.05 1.29 2.01 5.02 6.66 0.24 0.25
Autoformerder++ 22.11 37.34 1.08 1.92 5.34 9.29 0.21 1.14 18.12 26.91 1.12 1.85 4.97 6.61 0.18 0.23

PatchTSTseq 19.11 32.50 2.34 2.97 2.64 5.32 0.72 0.43 17.91 27.13 7.18 6.88 4.85 5.93 1.59 1.78
PatchTSTmir 19.04 32.23 2.28 2.79 2.61 5.30 0.70 0.40 17.82 26.89 6.82 4.81 4.83 5.86 1.55 1.72
PatchTSTherd 18.96 32.10 2.21 2.67 2.60 5.30 0.68 0.35 17.73 26.84 6.62 4.79 4.80 5.79 1.43 1.68
PatchTSTer 18.77 31.50 1.98 2.01 2.57 5.27 0.47 0.30 17.57 26.40 6.02 4.69 4.72 5.26 1.03 1.54
PatchTSTder++ 18.53 31.34 1.75 1.98 2.53 5.17 0.43 0.28 17.12 26.13 5.79 4.32 4.64 5.13 0.83 0.88

DLinearseq 19.69 32.75 2.91 2.83 3.47 6.56 1.17 1.12 17.32 26.31 2.71 3.43 4.81 5.81 1.64 1.57
DLinearmir 19.37 32.25 2.17 2.59 3.45 6.51 1.02 1.01 16.87 26.12 2.67 3.01 4.79 5.73 1.47 1.40
DLinearherd 19.53 32.40 2.25 2.68 3.41 6.50 1.03 1.00 16.83 25.81 2.57 2.91 4.77 5.70 1.59 1.46
DLinearer 19.19 32.30 1.73 2.14 3.37 6.43 0.93 0.98 16.71 25.75 2.13 2.85 4.74 5.20 1.23 1.43
DLinearder++ 19.02 31.97 1.75 1.93 3.25 6.37 0.83 0.79 16.58 25.47 1.92 2.77 4.21 4.88 1.12 1.13

TimesNetseq 17.77 29.91 3.13 6.93 3.92 7.18 1.46 2.51 18.38 27.61 4.33 5.15 5.18 6.13 1.72 2.03
TimesNetmir 17.53 29.61 2.44 5.32 3.77 7.15 1.22 1.57 18.27 27.59 4.01 5.08 5.12 6.05 1.69 1.97
TimesNetherd 17.38 29.53 2.56 5.83 3.83 7.10 1.03 1.44 18.01 27.53 3.46 5.03 5.10 6.03 1.68 1.95
TimesNeter 17.25 29.33 1.97 4.19 3.55 7.02 0.42 0.91 17.84 27.07 3.28 4.01 4.93 5.90 1.42 1.90
TimesNetder++ 17.13 29.28 1.56 4.02 3.45 6.55 0.37 0.90 17.73 26.86 3.11 3.87 4.81 5.88 1.32 1.78

iTransformerseq 16.23 27.83 2.33 3.41 2.87 5.84 1.23 1.31 16.03 25.08 4.87 5.35 6.28 7.72 1.52 1.92
iTransformermir 16.19 27.62 1.98 3.01 2.23 4.90 1.12 1.14 15.89 24.90 4.73 4.92 6.13 7.55 1.47 1.81
iTransformerherd 16.11 27.50 1.84 2.95 2.01 4.73 0.88 0.92 15.33 23.88 3.54 4.17 6.09 7.31 1.30 1.59
iTransformerer 16.06 27.28 1.78 2.93 1.95 4.67 0.53 0.94 15.11 23.71 3.23 3.93 5.92 7.09 1.06 1.23
iTransformerder++ 15.98 27.18 1.65 2.88 1.88 4.53 0.43 0.86 14.86 22.93 2.93 3.03 5.77 7.03 0.97 1.03

OFAseq 19.10 32.48 2.21 2.43 3.04 6.33 1.26 1.57 17.40 26.20 5.32 3.69 4.72 5.22 1.63 1.85
OFAmir 19.03 32.27 2.30 2.21 2.97 5.93 1.07 1.32 17.32 26.17 4.86 3.59 4.63 5.15 1.58 1.81
OFAherd 18.91 32.20 1.99 2.13 2.83 5.73 0.91 0.75 17.35 26.19 4.51 3.36 4.45 4.91 1.55 1.62
OFAer 18.83 32.12 1.83 1.97 2.53 5.25 0.50 0.38 17.32 26.17 4.33 3.17 4.17 4.80 1.53 1.47
OFAder++ 18.50 31.33 1.70 1.84 2.47 5.13 0.40 0.28 17.25 26.15 4.11 3.07 4.03 4.71 1.20 1.14

SKI-CLseq 17.30 29.38 4.38 7.80 2.02 4.73 0.30 0.50 14.73 23.31 3.91 5.07 4.70 5.85 1.97 3.46
SKI-CLmir 15.77 26.32 1.95 3.47 1.98 4.69 0.35 0.56 13.65 21.77 2.61 3.82 4.53 5.01 1.67 2.21
SKI-CLherd 15.45 25.73 1.82 3.28 2.00 4.70 0.33 0.52 13.71 21.82 2.53 3.67 4.44 4.82 1.23 2.02
SKI-CLer 15.43 25.60 1.69 2.92 1.95 4.67 0.11 0.23 13.58 21.57 1.82 2.50 3.39 4.52 0.30 0.38
SKI-CLder++ 15.39 25.57 1.63 2.87 1.91 4.60 0.10 0.21 13.50 21.47 1.74 2.42 3.33 4.43 0.28 0.30
SKI-CL 15.23 25.32 1.51 2.72 1.75 4.46 0.09 0.06 13.41 21.30 1.64 2.08 3.24 4.24 0.15 0.23
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Table 8: Experiment Results for Different Horizon Prediction (3-step Horizon Prediction for Traffic-CL and
Solar-CL and 6-step Horizon Prediction for HAR-CL and Synthetic-CL) (Lower MAE and RMSE for AP mean
better; When AP is comparable, lower MAE and RMSE for AF mean better. )

Model
Traffic-CL (3) Solar-CL (3) HAR-CL (6) (×10−2) Synthetic-CL (6) (×10−2)

AP ↓ AF AP ↓ AF AP ↓ AF AP ↓ AF

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VARseq 73.36 104.97 70.26 97.19 59.30 196.75 72.88 242.41 18.04 27.37 1.01 1.28 18.61 27.33 7.70 11.40
ARIMAseq 141.53 159.81 77.65 78.19 14.93 19.12 5.84 3.71 41.02 53.11 2.42 2.11 42.25 43.53 13.41 13.01

LSTNetseq 24.89 39.49 10.50 15.63 2.45 4.77 1.09 1.45 14.13 21.90 4.05 5.49 25.31 33.71 7.44 10.61
LSTNetmir 20.07 31.86 4.18 4.91 2.27 4.45 0.82 0.96 13.20 20.85 2.73 3.96 19.86 27.67 1.71 2.41
LSTNetherd 19.11 30.68 3.22 4.73 2.26 4.43 0.81 0.89 13.12 20.66 2.64 3.66 19.75 26.28 0.60 0.90
LSTNeter 18.29 29.42 2.55 3.95 1.87 4.10 0.37 0.55 12.65 20.06 2.08 2.94 19.31 24.76 0.31 0.77
LSTNetder++ 17.94 28.96 2.03 3.18 1.78 3.98 0.18 0.28 12.55 19.94 1.85 2.86 18.92 24.26 0.77 0.57

STGCNseq 26.80 42.22 11.90 14.48 3.14 6.30 1.86 3.16 16.52 25.04 5.21 6.52 8.21 12.90 2.27 4.63
STGCNmir 26.56 42.31 9.79 14.48 2.67 6.03 1.27 2.75 15.54 24.06 4.22 5.83 5.62 8.82 1.58 3.48
STGCNherd 26.53 43.56 9.36 14.79 2.57 5.99 1.15 2.65 15.41 23.97 4.12 5.69 5.53 8.65 1.42 3.37
STGCNer 25.54 42.43 8.29 11.71 2.41 4.88 1.10 1.52 15.11 23.54 3.72 4.25 5.12 8.49 1.15 1.76
STGCNder++ 25.53 42.43 8.12 10.03 2.26 4.41 0.66 0.63 15.51 23.64 3.52 4.13 6.95 11.12 1.86 2.89

AGCRNseq 16.13 26.21 3.65 5.29 1.44 3.21 0.31 0.60 13.82 21.88 2.97 4.06 13.00 21.16 0.99 0.47
AGCRNmir 15.20 25.39 1.77 2.94 1.32 3.15 0.11 0.34 12.39 20.85 2.16 3.97 12.23 19.48 0.29 0.21
AGCRNherd 15.17 25.32 1.59 2.71 1.30 3.14 0.11 0.33 12.32 20.63 2.03 3.96 12.18 19.27 0.12 0.16
AGCRNer 14.88 24.72 1.47 2.43 1.27 3.04 0.10 0.04 12.28 20.54 1.98 3.03 10.84 16.82 0.10 0.17
AGCRNder++ 15.02 25.15 1.41 2.66 1.17 3.01 0.03 0.03 12.01 20.18 1.76 2.95 12.40 19.56 0.25 0.23

StemGNNseq 14.10 23.51 1.92 1.63 1.30 3.10 0.24 0.28 17.31 25.43 6.31 7.23 11.71 17.77 1.54 1.01
StemGNNmir 13.81 23.04 1.05 1.07 1.19 2.92 0.22 0.25 16.66 25.05 5.21 4.37 9.41 14.45 1.08 0.69
StemGNNherd 13.78 23.01 0.98 1.03 1.17 2.92 0.22 0.25 16.51 25.03 5.21 4.23 9.17 13.97 1.03 0.65
StemGNNer 13.49 22.59 0.36 0.42 1.00 2.73 0.04 0.05 16.43 24.83 5.19 4.13 8.38 12.95 0.96 0.97
StemGNNder++ 13.37 22.42 0.31 0.37 1.03 2.87 0.04 0.07 16.25 24.51 5.10 4.01 9.02 13.65 0.89 0.85

TCNseq 13.89 22.12 2.57 4.77 0.93 2.71 0.12 0.13 12.71 20.46 2.98 4.35 3.81 3.37 0.26 0.33
TCNmir 13.66 21.99 1.74 2.02 0.91 2.64 0.05 0.04 11.89 19.51 1.92 2.63 2.81 3.35 0.24 0.32
TCNherd 13.62 21.97 1.63 1.89 0.90 2.64 0.04 0.03 11.85 19.34 1.70 2.53 2.77 3.31 0.23 0.31
TCNer 13.21 21.85 1.58 1.63 0.92 2.64 0.03 0.02 11.68 18.98 1.54 2.29 2.67 3.18 0.18 0.22
TCNder++ 13.50 21.90 1.48 1.57 0.87 2.63 0.03 0.05 11.63 18.97 1.46 2.11 2.73 3.29 0.15 0.17

ESGseq 14.62 23.83 3.72 5.39 1.75 2.93 0.92 0.83 16.57 25.07 5.34 6.21 8.68 13.95 1.06 1.57
ESGmir 14.54 23.79 3.27 4.78 1.02 2.80 0.27 0.28 14.32 23.28 4.61 5.48 7.69 12.54 0.75 1.20
ESGherd 14.53 23.79 3.26 4.71 1.01 2.78 0.14 0.27 14.31 23.17 4.48 5.39 7.61 12.25 0.71 1.15
ESGer 13.07 22.11 1.62 2.93 1.15 2.71 0.32 0.25 14.21 23.01 4.37 5.21 7.21 11.65 0.61 0.89
ESGder++ 13.92 23.17 2.52 3.98 0.98 2.67 0.16 0.21 14.10 22.87 4.13 4.83 8.08 12.95 0.35 0.52

GTSseq 15.20 27.09 3.23 7.32 1.20 3.19 0.19 0.48 14.44 23.41 3.51 4.63 4.90 6.71 0.56 0.61
GTSmir 14.40 24.05 2.87 3.83 1.05 2.83 0.10 0.16 13.87 22.99 3.15 4.09 4.72 6.66 0.19 0.27
GTSherd 14.33 23.55 2.82 3.78 1.03 2.69 0.05 0.10 13.78 22.89 3.08 4.05 4.71 6.66 0.13 0.20
GTSer 14.54 24.65 1.96 3.58 0.94 2.67 0.08 0.05 13.38 22.45 2.95 3.97 4.41 6.40 0.13 0.19
GTSder++ 14.07 24.12 1.25 3.39 0.96 2.67 0.05 0.15 13.34 22.41 2.93 3.89 4.39 6.39 0.12 0.18

MTGNNseq 14.42 23.94 3.34 5.13 1.14 2.76 0.32 0.30 12.87 20.66 3.51 4.80 7.63 12.44 0.59 0.67
MTGNNmir 13.66 22.68 2.26 3.43 0.97 2.70 0.14 0.24 12.10 19.85 2.48 3.68 7.43 12.00 0.46 0.61
MTGNNherd 13.55 22.55 2.13 3.35 0.96 2.69 0.13 0.23 11.98 19.78 2.42 3.61 7.43 11.99 0.45 0.61
MTGNNer 13.95 22.29 2.03 3.02 0.95 2.74 0.05 0.16 11.30 18.67 1.51 2.15 6.38 10.13 0.35 0.53
MTGNNder++ 12.99 21.86 1.24 2.24 0.91 2.72 0.03 0.10 11.27 18.64 1.22 1.81 6.31 10.10 0.18 0.41

Autoformerseq 18.19 30.22 2.37 4.23 3.19 6.47 0.82 1.69 16.79 24.78 1.83 1.98 3.83 5.38 0.35 0.24
Autoformermir 17.75 27.15 1.95 3.15 2.91 5.51 0.68 1.30 16.12 24.23 1.61 1.82 3.71 5.27 0.31 0.20
Autoformerherd 17.72 26.93 1.89 3.02 2.89 5.34 0.67 1.23 16.01 24.12 1.58 1.78 3.71 5.26 0.31 0.20
Autoformerer 16.07 26.82 1.36 2.54 2.54 5.02 0.13 0.23 15.66 23.88 1.57 1.58 3.65 5.26 0.24 0.17
Autoformerder++ 16.17 27.01 1.74 2.93 2.47 4.79 0.12 0.33 16.14 24.28 1.59 1.56 3.52 5.01 0.17 0.13

PatchTSTseq 13.78 23.21 2.39 4.33 1.05 3.02 0.17 0.27 14.13 22.93 1.50 1.57 3.46 4.93 0.43 0.35
PatchTSTmir 13.60 22.93 1.87 3.67 1.03 2.98 0.15 0.23 14.01 22.87 1.45 1.50 3.41 4.84 0.37 0.29
PatchTSTherd 13.53 22.75 1.54 2.77 0.99 2.90 0.13 0.19 13.94 22.51 1.38 1.47 3.38 4.79 0.31 0.26
PatchTSTer 13.20 22.26 1.13 1.73 0.95 2.84 0.10 0.15 13.90 21.99 1.31 1.44 3.35 4.75 0.25 0.20
PatchTSTder++ 13.11 22.03 1.05 1.66 0.89 2.65 0.10 0.13 13.65 21.67 1.25 1.37 3.26 4.68 0.19 0.17

DLinearseq 13.76 23.05 2.37 4.63 1.65 3.44 0.57 0.64 14.85 23.43 1.81 3.19 3.47 4.90 0.51 0.73
DLinearmir 13.71 23.00 2.30 4.22 1.55 3.40 0.45 0.51 14.64 23.37 1.75 2.86 3.41 4.80 0.50 0.72
DLinearherd 13.70 22.99 2.28 4.06 1.53 3.35 0.39 0.47 14.28 23.15 1.72 2.83 3.23 4.11 0.47 0.69
DLinearer 13.64 22.97 2.15 3.87 1.50 3.30 0.33 0.41 14.26 22.85 1.71 2.82 2.96 3.92 0.38 0.59
DLinearder++ 13.50 22.74 2.06 3.73 1.42 3.20 0.28 0.33 14.12 22.15 1.65 2.73 2.93 3.88 0.33 0.52

TimesNetseq 12.99 21.71 2.01 2.55 0.98 2.69 0.18 0.24 14.10 22.85 2.93 4.59 4.43 6.24 1.18 1.62
TimesNetmir 12.92 21.67 1.75 2.21 0.95 2.66 0.16 0.20 12.92 21.06 1.92 2.48 4.35 5.98 1.06 1.23
TimesNetherd 12.67 21.30 1.72 2.12 0.93 2.60 0.14 0.16 12.85 20.47 1.72 2.31 4.30 5.90 1.05 1.12
TimesNeter 12.63 21.23 1.64 2.06 0.91 2.58 0.11 0.14 12.66 20.44 1.56 2.23 4.29 5.87 1.02 1.05
TimesNetder++ 12.50 21.00 1.51 1.85 0.90 2.55 0.09 0.13 12.53 20.24 1.54 2.21 4.17 5.93 1.01 1.04

iTransformerseq 12.86 21.58 1.99 2.58 0.99 2.70 0.18 0.24 13.96 22.62 2.96 4.54 4.36 6.30 1.17 1.60
iTransformermir 12.80 21.50 1.77 2.23 0.95 2.67 0.16 0.20 13.05 20.85 1.90 2.46 4.31 6.04 1.07 1.24
iTransformerherd 12.79 21.48 1.70 2.10 0.92 2.62 0.14 0.16 12.98 20.68 1.74 2.33 4.30 5.99 1.04 1.11
iTransformerer 12.76 21.42 1.66 2.08 0.90 2.60 0.11 0.14 12.79 20.65 1.54 2.21 4.25 5.93 1.01 1.06
iTransformerder++ 12.63 21.21 1.53 1.83 0.89 2.57 0.09 0.13 12.66 20.44 1.52 2.19 4.21 5.87 1.00 1.05

OFAseq 13.74 23.16 2.41 4.29 1.04 3.05 0.17 0.27 14.27 23.16 1.49 1.59 3.43 4.88 0.43 0.35
OFAmir 13.67 22.98 1.56 2.80 0.98 2.93 0.13 0.19 13.80 22.28 1.39 1.49 3.41 4.83 0.31 0.26
OFAherd 13.50 22.88 1.30 2.03 0.96 2.90 0.12 0.18 13.79 22.03 1.35 1.46 3.35 4.80 0.25 0.20
OFAer 13.33 22.74 1.14 1.75 0.96 2.87 0.10 0.15 13.76 21.77 1.32 1.45 3.32 4.76 0.27 0.23
OFAder++ 12.98 22.25 1.04 1.68 0.88 2.68 0.10 0.13 13.51 21.89 1.26 1.36 3.29 4.63 0.19 0.17

SKI-CLseq 13.81 23.16 2.52 4.25 0.90 2.63 0.09 0.14 12.41 19.37 2.54 3.78 3.72 5.26 2.02 3.10
SKI-CLmir 12.94 21.94 1.55 2.76 0.89 2.64 0.08 0.12 11.88 19.09 1.93 3.08 3.20 4.33 0.52 0.46
SKI-CLherd 12.91 21.80 1.43 2.55 0.87 2.65 0.07 0.12 11.78 19.04 1.89 2.95 3.11 4.18 0.23 0.45
SKI-CLer 12.66 21.21 1.26 2.27 0.88 2.64 0.05 0.06 11.67 18.95 1.54 2.35 2.85 3.60 0.17 0.16
SKI-CLder++ 12.61 21.20 1.10 1.72 0.85 2.56 0.04 0.05 11.55 18.84 1.40 2.06 2.33 3.05 0.10 0.13
SKI-CL 12.49 21.01 0.93 1.60 0.82 2.54 0.02 0.02 11.01 18.25 1.21 1.78 2.01 2.85 0.05 0.03
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Table 9: Standard Deviations for 12 Horizon Prediction.

Model
Traffic-CL Solar-CL HAR-CL (×10−2) Synthetic-CL(×10−2)

AP AF AP AF AP AF AP AF

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTNetseq 0.42 0.65 0.55 0.74 0.08 0.03 0.09 0.03 0.41 0.51 0.45 0.61 0.48 0.64 0.81 0.17
LSTNetmir 0.21 0.27 0.42 0.64 0.05 0.05 0.08 0.04 0.32 0.43 0.39 0.58 0.47 0.41 0.42 0.11
LSTNetherd 0.17 0.21 0.40 0.60 0.04 0.03 0.07 0.03 0.28 0.42 0.44 0.57 0.43 0.45 0.39 0.12
LSTNetrnd 0.19 0.25 0.39 0.65 0.02 0.07 0.05 0.05 0.34 0.48 0.67 0.52 0.40 0.40 0.41 0.11
LSTNetder++ 0.07 0.13 0.15 0.21 0.03 0.05 0.04 0.04 0.28 0.37 0.29 0.45 0.30 0.35 0.49 0.61

STGCNseq 1.09 1.91 1.30 2.25 0.07 0.09 0.11 0.12 0.35 0.47 0.37 0.31 1.02 1.62 0.60 0.90
STGCNmir 1.71 1.49 1.90 2.71 0.08 0.22 0.03 0.14 0.25 0.43 0.31 0.23 0.27 0.60 0.39 0.57
STGCNherd 1.54 2.10 1.72 2.50 0.11 0.30 0.07 0.31 0.28 0.27 0.20 0.32 0.38 0.59 0.36 0.63
STGCNrnd 1.65 1.41 1.87 2.94 0.07 0.16 0.05 0.19 0.27 0.41 0.25 0.27 0.25 0.63 0.42 0.59
STGCNder++ 1.58 2.18 1.77 2.54 0.10 0.27 0.15 0.35 0.23 0.27 0.19 0.25 0.38 0.59 0.42 0.60

AGCRNseq 0.44 0.58 0.45 0.88 0.33 0.26 0.24 0.35 0.61 0.51 0.41 0.37 0.26 0.79 0.13 0.35
AGCRNmir 0.37 0.41 0.37 0.70 0.27 0.32 0.33 0.20 0.53 0.41 0.35 0.44 0.35 0.83 0.31 0.51
AGCRNherd 0.49 0.99 0.38 0.92 0.36 0.26 0.43 0.17 0.48 0.52 0.55 0.59 0.28 0.95 0.36 0.47
AGCRNrnd 0.31 0.36 0.34 0.64 0.15 0.35 0.31 0.13 0.58 0.47 0.39 0.40 0.30 0.89 0.25 0.50
AGCRNder++ 0.56 1.15 0.43 0.85 0.29 0.27 0.37 0.18 0.45 0.62 0.49 0.56 0.30 0.95 0.32 0.21

StemGNNseq 0.22 0.18 0.77 1.24 0.16 0.13 0.18 0.19 0.25 0.47 0.23 0.31 0.95 0.44 0.38 0.58
StemGNNmir 0.20 0.23 0.32 0.43 0.19 0.20 0.14 0.26 0.29 0.35 0.31 0.22 0.24 0.27 0.42 0.28
StemGNNherd 0.25 0.43 0.72 0.85 0.15 0.19 0.15 0.13 0.28 0.33 0.26 0.24 0.45 0.70 0.40 0.43
StemGNNrnd 0.16 0.16 0.21 0.22 0.17 0.18 0.14 0.22 0.23 0.39 0.27 0.21 0.26 0.26 0.49 0.32
StemGNNder++ 0.29 0.40 0.65 0.89 0.12 0.11 0.19 0.07 0.28 0.41 0.29 0.31 0.54 0.71 0.55 0.47

TCNseq 0.11 0.15 0.13 0.17 0.05 0.07 0.08 0.13 0.01 0.03 0.05 0.08 0.05 0.05 0.25 0.44
TCNmir 0.18 0.10 0.12 0.21 0.15 0.05 0.12 0.09 0.09 0.11 0.09 0.07 0.15 0.35 0.34 0.55
TCNherd 0.09 0.08 0.09 0.10 0.06 0.03 0.05 0.13 0.08 0.13 0.07 0.12 0.17 0.27 0.16 0.25
TCNrnd 0.10 0.11 0.11 0.13 0.04 0.04 0.10 0.10 0.04 0.16 0.02 0.02 0.21 0.37 0.29 0.51
TCNder++ 0.10 0.10 0.08 0.09 0.01 0.08 0.06 0.10 0.04 0.09 0.03 0.07 0.25 0.37 0.14 0.23

ESGseq 0.48 0.70 0.65 0.87 0.62 0.67 0.76 0.83 0.31 0.30 0.35 0.31 0.10 0.65 0.35 0.33
ESGmir 0.43 0.37 0.19 0.45 0.18 0.18 0.13 0.27 0.82 0.57 0.59 0.54 0.88 1.12 0.97 1.08
ESGherd 0.45 0.52 0.41 0.48 0.16 0.30 0.20 0.36 0.73 1.32 1.01 1.33 0.51 0.56 0.55 0.41
ESGrnd 0.43 0.49 0.44 0.35 0.19 0.29 0.25 0.42 1.05 1.88 1.43 2.60 0.45 0.63 0.53 0.43
ESGder++ 0.37 0.47 0.39 0.54 0.06 0.02 0.06 0.08 0.89 0.67 0.59 0.45 0.85 1.21 0.95 1.15

GTSseq 0.11 0.27 0.10 0.21 0.14 0.43 0.19 0.55 0.29 0.34 0.38 0.51 0.57 0.80 0.56 0.63
GTSmir 0.38 0.29 0.07 0.20 0.22 0.20 0.12 0.11 0.32 0.50 0.02 0.21 0.67 0.94 0.34 0.83
GTSherd 0.20 0.52 0.28 0.70 0.10 0.23 0.07 0.10 0.55 0.75 0.40 0.70 0.54 0.57 0.21 0.40
GTSrnd 0.18 0.29 0.20 0.39 0.03 0.14 0.06 0.08 0.58 0.81 0.51 0.65 0.43 0.45 0.28 0.42
GTSder++ 0.23 0.28 0.16 0.19 0.04 0.15 0.07 0.21 0.30 0.45 0.11 0.20 0.61 0.95 0.48 0.85

MTGNNseq 0.31 0.35 0.15 0.30 0.03 0.06 0.05 0.07 0.10 0.15 0.10 0.24 0.41 0.64 0.24 0.10
MTGNNmir 0.35 0.12 0.17 0.15 0.05 0.12 0.10 0.18 0.11 0.23 0.31 0.31 0.53 0.52 0.25 0.19
MTGNNherd 0.11 0.29 0.33 0.31 0.13 0.15 0.11 0.22 0.09 0.39 0.26 0.36 0.60 0.58 0.17 0.27
MTGNNrnd 0.10 0.12 0.12 0.17 0.03 0.05 0.11 0.17 0.13 0.19 0.14 0.27 0.34 0.57 0.23 0.13
MTGNNder++ 0.15 0.25 0.35 0.54 0.06 0.02 0.08 0.07 0.17 0.16 0.18 0.23 0.48 0.56 0.21 0.17

Autoformerseq 0.58 1.11 1.51 2.88 0.11 0.27 0.20 0.23 0.12 0.31 0.27 0.24 0.65 0.41 0.32 0.51
Autoformermir 0.69 1.23 0.75 1.33 0.10 0.24 0.21 0.37 0.22 0.39 0.18 0.25 0.40 0.31 0.19 0.30
Autoformerherd 0.77 1.43 0.67 1.20 0.36 0.36 0.23 0.41 0.12 0.13 0.14 0.12 0.90 0.61 0.71 0.70
Autoformerrnd 0.86 1.42 0.74 1.18 0.18 0.31 0.24 0.31 0.17 0.27 0.35 0.31 0.46 0.31 0.25 0.43
Autoformerder++ 0.84 1.54 0.63 1.34 0.26 0.43 0.22 0.40 0.18 0.30 0.21 0.23 0.72 0.71 0.54 0.47

PatchTSTseq 0.27 0.21 0.25 0.46 0.24 0.17 0.12 0.21 0.24 0.10 0.26 0.15 0.16 0.54 0.40 0.54
PatchTSTmir 0.13 0.11 0.17 0.21 0.29 0.12 0.21 0.23 0.21 0.11 0.09 0.10 0.32 0.42 0.49 0.57
PatchTSTherd 0.17 0.13 0.19 0.17 0.12 0.08 0.12 0.14 0.24 0.10 0.27 0.13 0.10 0.54 0.40 0.49
PatchTSTer 0.146 0.25 0.19 0.18 0.16 0.09 0.09 0.17 0.07 0.09 0.08 0.09 0.14 0.11 0.26 0.35
PatchTSTder++ 0.20 0.15 0.04 0.16 0.14 0.10 0.15 0.31 0.15 0.27 0.17 0.19 0.26 0.23 0.21 0.48

Dlinearseq 0.21 0.19 0.23 0.36 0.18 0.21 0.17 0.18 0.16 0.11 0.26 0.26 0.14 0.25 0.39 0.53
Dlinearmir 0.25 0.24 0.23 0.22 0.19 0.13 0.15 0.12 0.15 0.29 0.11 0.14 0.32 0.53 0.36 0.49
Dlinearherd 0.15 0.17 0.17 0.25 0.14 0.22 0.13 0.26 0.12 0.37 0.18 0.27 0.25 0.14 0.21 0.43
Dlinearer 0.23 0.17 0.18 0.12 0.11 0.14 0.16 0.23 0.14 0.31 0.27 0.23 0.22 0.46 0.56 0.62
Dlinearder++ 0.16 0.08 0.08 0.14 0.13 0.14 0.08 0.28 0.01 0.16 0.13 0.12 0.29 0.49 0.23 0.32

TimesNetseq 0.17 0.14 0.23 0.22 0.09 0.13 0.15 0.08 0.16 0.21 0.11 0.14 0.32 0.53 0.36 0.49
TimesNetmir 0.12 0.16 0.18 0.20 0.10 0.08 0.14 0.12 0.14 0.12 0.27 0.21 0.14 0.25 0.31 0.35
TimesNetherd 0.14 0.19 0.17 0.25 0.14 0.20 0.09 0.26 0.15 0.37 0.09 0.32 0.23 0.14 0.21 0.43
TimesNeter 0.08 0.10 0.12 0.20 0.18 0.13 0.12 0.20 0.09 0.15 0.07 0.24 0.11 0.21 0.18 0.36
TimesNetder++ 0.07 0.13 0.11 0.15 0.09 0.11 0.08 0.26 0.07 0.13 0.06 0.15 0.18 0.31 0.21 0.33

iTransformerseq 0.18 0.17 0.20 0.34 0.19 0.19 0.17 0.22 0.12 0.11 0.25 0.24 0.14 0.28 0.43 0.57
iTransformermir 0.23 0.29 0.22 0.22 0.23 0.09 0.12 0.07 0.11 0.28 0.09 0.13 0.32 0.57 0.40 0.46
iTransformerherd 0.11 0.12 0.17 0.27 0.17 0.22 0.16 0.21 0.15 0.33 0.20 0.28 0.29 0.16 0.25 0.45
iTransformerer 0.21 0.20 0.18 0.16 0.08 0.09 0.19 0.25 0.19 0.29 0.25 0.26 0.19 0.46 0.58 0.65
iTransformerder++ 0.14 0.08 0.10 0.12 0.12 0.13 0.11 0.30 0.02 0.20 0.15 0.16 0.30 0.50 0.20 0.21

OFAseq 0.14 0.10 0.27 0.23 0.13 0.09 0.18 0.13 0.12 0.19 0.13 0.14 0.29 0.51 0.40 0.52
OFAmir 0.10 0.17 0.21 0.17 0.11 0.11 0.14 0.14 0.15 0.15 0.23 0.25 0.19 0.23 0.35 0.33
OFAherd 0.19 0.24 0.19 0.22 0.17 0.18 0.11 0.21 0.13 0.41 0.08 0.34 0.21 0.17 0.25 0.45
OFAer 0.10 0.12 0.15 0.16 0.21 0.13 0.09 0.20 0.05 0.18 0.03 0.23 0.10 0.17 0.13 0.38
OFAder++ 0.08 0.17 0.13 0.18 0.09 0.14 0.06 0.28 0.09 0.16 0.01 0.11 0.22 0.28 0.18 0.37

SKI-CLseq 0.30 0.40 0.39 0.54 0.03 0.03 0.04 0.04 0.03 0.02 0.04 0.17 0.17 0.26 0.17 0.23
SKI-CLmir 0.14 0.31 0.22 0.20 0.01 0.03 0.08 0.02 0.01 0.22 0.22 0.29 0.36 0.31 0.11 0.21
SKI-CLherd 0.15 0.21 0.14 0.20 0.05 0.07 0.07 0.09 0.05 0.12 0.15 0.19 0.18 0.25 0.25 0.36
SKI-CLrnd 0.04 0.10 0.04 0.16 0.06 0.06 0.05 0.10 0.02 0.09 0.23 0.21 0.16 0.22 0.35 0.49
SKI-CLder++ 0.04 0.07 0.12 0.17 0.04 0.05 0.08 0.11 0.04 0.12 0.15 0.13 0.25 0.29 0.15 0.11
SKI-CL 0.04 0.06 0.03 0.03 0.02 0.05 0.03 0.08 0.04 0.09 0.08 0.09 0.27 0.27 0.13 0.09
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