
Workshop track - ICLR 2018

CAUSAL DISCOVERY USING PROXY VARIABLES

Mateo Rojas-Carulla
Facebook AI Research, Paris
University of Cambridge
Max Plank Institute for Intelligent Systems, Tübingen
mateo.rojas-carulla@tuebingen.mpg.de

Marco Baroni & David Lopez-Paz
Facebook AI Research, Paris
{marco.baroni, dlp}@fb.com

ABSTRACT

In this paper, we develop a framework to estimate the cause-effect relation between
two static entities x and y: for instance, an art masterpiece x and its fraudulent
copy y. To this end, we introduce the notion of proxy variables, which allow the
construction of a pair of random entities (A,B) from the pair of static entities
(x, y). Then, estimating the cause-effect relation between A and B using an
observational causal discovery algorithm leads to an estimation of the cause-effect
relation between x and y. We evaluate our framework in vision and language.

1 INTRODUCTION

Over the last decade, the state-of-the-art in observational causal discovery has matured into a wide
array of algorithms (Shimizu et al., 2006; Hoyer et al., 2009; Daniusis et al., 2012; Peters et al.,
2014; Mooij et al., 2016; Lopez-Paz et al., 2015; Lopez-Paz, 2016). All these algorithms estimate
the causal relations between the random variables (X1, . . . , Xp) by estimating various asymmetries
in P (X1, . . . , Xp). These methods consider random entities X and Y , but often we are interested
instead in two static entities x and y. These are a pair of single objects for which it is not possible
to define a probability distribution directly. Examples of such static entities may include one art
masterpiece and its fraudulent copy, one translated document and its original version, or one pair of
causally linked concepts in natural language, such as “virus” and “death”.

Our Contributions: First, we introduce the framework of proxy variables to estimate the causal
relation between static entities (Section 2). Second, we apply our framework to the task of inferring
the cause-effect relation between pairs of images. In particular, our methods are able to infer the
causal relation between an image and its stylistic modification in 72% of the cases, and it can recover
the correct ordering of a set of shuffled video frames (Section 3). Third, we apply our framework
to discover the cause-effect relation between pairs of concepts in natural language (Section 4). To
this end, we introduce a novel dataset of 10,000 human-elicited pairs of words with known causal
relation. Our methods are able to recover 75% of these challenging cause-effect relations.

2 STATIC ENTITIES, PROXY VARIABLES AND PROXY PROJECTIONS

We consider two static entities x, y in some space S that satisfy the relation “x causes y”. This causal
relation manifests the existence of a (possibly noisy) mechanism f such that the value y is computed
as y ← f(x). This asymmetric assignment guarantees changes in x would lead to changes in y, but
the converse would not hold. The two ingredients of our framework are: i) a proxy random variable
W is a random variable taking values in some setW , which can be understood as a random source of
information related to x and y (specific examples will be given in the different applications) and ii) a
proxy projection is a function π :W ×S → R. Using proxy and projection, we can construct a pair
of scalar random variables A = π(W,x) and B = π(W, y). The process is summarized in Figure 1
(right). A proxy variable and projection are causal if the pair of random entities (A,B) share the same
causal footprint as the pair of static entities (x, y).1 If the proxy variable and projection are causal,
we may estimate the cause-effect relation between the static entities x and y in three steps. First,
draw (a1, b1), . . . , (an, bn) from P (A,B). Second, use an observational causal discovery algorithm

1The concept of causal footprint is relative to our assumptions. For instance, when assuming an ANM
Y ← f(X) +N , the causal footprint is the statistical independence between X and N .
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Figure 1: Left: Sampling random
patches produces a proxy variable.
Right: The static entities (x, y)
share a causal relation (thick blue
arrow). A proxy variable W , and
a proxy projection π produce the
random entities (A,B), who share
the causal footprint of (x, y) (dot-
ted blue arrow). Original image by
Andreas Praefcke, CC BY 3.0.

Experiment Laplace Prewitt Artistic

ImageNet, Laplace 70% 70% 72%

Table 1: Performance of ANM on detecting
the original image from its modified version.

to estimate the cause-effect relation between A and B given {(ai, bi)}ni=1. Third, conclude “x causes
y” if A→ B, or “y causes x” if A← B. Our code will be available soon.

3 CAUSAL DISCOVERY USING PROXIES IN IMAGES

Consider the two images shown in Figure 1 (left). The image on the left is an unprocessed photograph,
while the one on the right is the same photograph after being stylized with the algorithm of Gatys
et al. (2016). From a causal point of view, the unprocessed image x is the cause of the stylized image
y. How can we recover such causal relation using a standard causal discovery method?

The following is one possible solution. Assume that the two images are represented by pixel intensity
vectors x and y, respectively. For n� 1 and j = 1, . . . , n: 1) Draw a mask-imagewj , which contains
ones inside a patch at random coordinates, and zeroes elsewhere and 2) compute aj = 〈wj , x〉, and
bj = 〈wj , y〉. In other words, aj and bj are the sums of pixel intensities of patch wj in images
x and y respectively. This process returns a sample {(aj , bj)}nj=1 drawn from P (A,B), the joint
distribution of the two scalar random variables (A,B). The conversion from static entities (x, y) to
random variables (A,B) is obtained by virtue of i) the randomness generated by the proxy variable
W , in this case random masks and ii) a causal projection π, here a simple dot product.

We conducted three experiments on images: i) we applied Laplace, Prewitt and Fourier filter to
1000 ImageNet images, ii) we downloaded 2000 original and stylized image pairs made using the
algorithm of Gatys et al. (2016) available at https://deepart.io and iii) we also decompose a
video of drops of ink mixing with water into 8 frames {(xi)}8i=1, shown in Figure 2. Using the same
mask proxy variable, we construct an 8× 8 matrix M such that Mij = 1 if xi → xj according to
our method and Mij = 0 otherwise. Then, we consider M to be the adjacency matrix of the DAG
describing the causal structure between the 8 frames. By employing topological sort on this graph,
we obtain the unique true ordering among 40, 320 possibilities. The results can be found in Table 1.

Figure 2: Proxy variables uncover the causal signal to reorder a shuffled sequence of video frames.
The original video can be found in http://goo.gl/sqdvu1.

4 CAUSAL DISCOVERY USING PROXIES IN LANGUAGE

In the language of causal discovery with proxies, a pair of concepts denoted by words is a pair of
static entities: (x, y) = (virus, death). We use a simple proxy: let P (W = w) be the probability
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Figure 3: Results for best methods
on the NLP experiment. Accuracies
above 52% are statistically signifi-
cant with respect to a Binomial test
at a significance level α = 0.05.

of the word w appearing in a sentence drawn at random from a large corpus of natural language.
Using the proxy W , we define the pair of random variables A = πw2voi(W,x) and B = πw2voi(W, y),
with πw2voi(w, x) = 〈vow, vix〉, where voz ∈ Rd and viz ∈ Rd are the output and input word2vec
representations (Mikolov et al., 2013) of the word z. The dot-product 〈vow, vix〉measures the similarity
in context between w and x. We experimented with other projections, but do not report results as
they were not statistically distinguishable, see Appendix D. Given this projection, we can sample
w1, . . . , wn ∼ P (W ), compute the projections and perform causal discovery on {(ai, bi)}ni=1.

We introduce a human-elicited, human-filtered dataset of 10, 000 pairs of words with a known causal
relation constructed by workers from Amazon Mechanical Turk. Details are given in Appendix A. We
study methods that fall within three categories: baselines, proxy projection methods, and feature-based
supervised methods. These three families of methods consider an increasing amount of information
about the task at hand, and therefore exhibit an increasing performance up to 85% classification
accuracy. We report the best method in each family in Figure 3, and the full results in Appendix D.
The best performing baseline is precedence: considering only sentences from the corpus in which
both x and y appear, we predict "x causes y" if x precedes y in more than half those sentences.

Proxy projection methods: Given N word pairs (xi, yi), this family of methods constructs a
dataset D =

{
({(aij , bij)}nj=1, `

i)
}N

i=1
, where aij = πw2voi(wj , xi), bij = πw2voi(wj , yi), `i = +1 if

xi → yi and `i = −1 otherwise. We first split the dataset D into a training set Dtr with 75% of the
pairs and a test set Dte with the remaining pairs. Then, the methods train RCC on the training set Dtr,
and test its classification accuracy on Dte. This process is repeated ten times at random.

Upper-bound for reference: As an upper-bound on achievable test performance, we treat the same
data as fixed-size vectors fed to a generic classifier, rather than random samples to be analyzed with a
causal discovery method. This provides an upper bound on test performance, and can be seen as an
oracle to the amount of causal signals (and signals correlated to causality) in our data. We train a
random forest of 500 trees using Dtr, and report its classification accuracy over Dte. This process is
repeated ten times at random.

Discussion of results: Baseline methods are the lowest performing, up to 59% test accuracy. We
believe that the performance of the best baseline, precedence, is due to the fact that most Wikipedia is
written in the active voice, which often aligns with the temporal sequence of events, and thus correlates
with causality. The feature-based methods perform best, achieving up to 85% test classification
accuracy. However, feature-based methods enjoy the flexibility of considering each of the n = 10, 000
elements in the causal projection as a distinct feature. Therefore, feature-based methods do not focus
on patterns to be found at a distributional level (such as causality), and are vulnerable to permutation
or removal of features. We believe that feature-based methods may achieve their superior performance
by exploiting biases in our dataset, which are not necessarily related to causality. As previously
mentioned, these numbers are provided only as a upper-bound on test performance.

Impressively, the best distribution-based causal discovery method achieves 75% test classification
accuracy, which is a significant improvement over the best baseline method. Importantly, our
distribution-based methods take a whole 2-dimensional distribution as input to the classifier; as such,
these methods are robust with respect to permutations and removals of the n distribution samples.
Since the only commonality between training and test instances is their causal structure, and we can
solve this problem beyond chance-level, our experiments prove the existence of rich causal structures
in raw language data.
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Supplementary material to Causal discovery using proxy
variables

A DATASET

The dataset was constructed in two steps: 1) We asked workers from Amazon Mechanical Turk to
create pairs of words linked by a causal relation. We provided them with examples of words with a
clear causal link (e.g., “sun causes radiation”) and examples of related words not sharing a causal
relation (e.g., “knife” and “fork”). 2) Each of the pairs collected from the previous step was randomly
shuffled and submitted to 20 turks who had not created pairs. Each turk was required to classify
the pair of words (x, y) as “x causes y”, “y causes x”, or “x and y do not share a causal relation”.
This procedure resulted in a dataset of 10, 000 causal word pairs (x, y), each accompanied by turk
confidence scores.

We now present the detailed instructions given to the AT workers.

A.1 INSTRUCTIONS FOR WORD PAIR CREATORS

We will ask you to write word pairs (for instance, WordA and WordB) for which you believe the
statement “WordA causes WordB” is true.

To provide us with high quality word pairs, we ask you to follow these indications:

• All word pairs must have the form “WordA→WordB”. It is essential that the first word
(WordA) is the cause, and the second word (WordB) is the effect.

• WordA and WordB must be one word each (no spaces, and no “recessive gene→ red hair”).
Avoid compound words such as “snow-blind”.

• In most situations, you may come up with a word pair that can be justified both as “WordA
→ WordB” and “WordB→ WordA”. In such situations, prefer the causal direction with
the easiest explanation. For example, consider the word pair “virus→ death”. Most people
would agree that “virus causes death“. However, “death causes virus” can be true in some
specific scenario (for example, “because of all the deaths in the region, a new family of virus
emerged.”). However, the explanation “virus causes death“ is preferred, because it is more
general and depends less on the context.

• We do not accept word pairs with an ambiguous causal relation, such as “book - paper”.

• We do not accept simple variations of word pairs. For example, if you wrote down “dog→
bark”, we will not credit you for other pairs such as “dogs→ bark” or “dog→ barking”.

• Use frequent words (avoid strange words such as “clithridiate”).

• Do not rely on our examples, and use your creativity. We are grateful if you come up with
diverse word pairs! Please do not add any numbers (for example, “1 - dog→ bark”). For
your guidance, we provide you examples of word pairs that belong to different categories.
Please bear in mind that we will reward your creativity: therefore, focus on providing new
word pairs with an evident causal direction, and do not limit yourself to the categories shown
below.

1) Physical phenomenon: there exists a clear physical mechanism that explains why “WordA→
WordB”.

• sun→ radiation (The sun is a source of radiation. If the sun were not present, then there
would be no radiation.)

• altitude→ temperature

• winter→ cold

• oil→ energy

5
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2) Events and consequences: WordA is an action or event, and WordB is a consequence of that
action or event.

• crime→ punishment

• accident→ death

• smoking→ cancer

• suicide→ death

• call→ ring

3) Creator and producer: WordA is a creator or producer, WordB is the creation of the producer.

• writer→ book (the creator is a person)

• painter→ painting

• father→ son

• dog→ bark

• bacteria→ sickness

• pen→ drawing (the creator is an object)

• chef→ food

• instrument→ music

• bomb→ destruction

• virus→ death

4) Other categories! Up to you, please use your creativity!

• fear→ scream

• age→ salary

A.2 INSTRUCTIONS FOR WORD PAIR VALIDATORS

Please classify the relation between pairs of words A and B into one of three categories: either “A
causes B”, “B causes A”, or “Non-causal or unrelated”.

For example, given the pair of words “virus and death”, the correct answer would be:

• virus causes death (correct);

• death causes virus (wrong);

• non-causal or unrelated (wrong).

Some of the pairs that will be presented are non-causal. This may happen if:

• The words are unrelated, like “toilet and beach”.

• The words are related, but there is no clear causal direction. This is the case of “salad and
lettuce”, since we can eat salad without lettuce, or eat lettuce in a burger.

To provide us with high quality categorization of word pairs, we ask you to follow these indications:

• Prefer the causal direction with the simplest explanation. Most people would agree that
“virus causes death”. However, “death causes virus” can be true in some specific scenario
(for example, “because of all the deaths in the region, a new virus emerged.”). However, the
explanation “virus causes death” is preferred, because it is true in more general contexts.

• If no direction is clearer, mark the pair as non-causal. Here, conservative is good!

• Think twice before deciding. We will present the pairs in random order!
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Figure 4: RCC accuracy versus human confidence.

Please classify all the presented pairs. If one or more has not been answered, the whole batch
will be invalid. PLEASE DOUBLE CHECK THAT YOU HAVE ANSWERED ALL 40 WORD
PAIRS.

Examples of causal word pairs:

• “sun and radiation”: sun causes radiation

• “energy and oil”: oil causes energy

• “punishment and crime”: crime causes punishment

• “instrument and music”: instrument causes music

• “age and salary”: age causes salary

Examples of non-causal word pairs:

• “video and games”: non-causal or unrelated

• “husband and wife”: non-causal or unrelated

• “salmon and shampoo”: non-causal or unrelated

• “knife and gun”: non-causal or unrelated

• “sport and soccer”: non-causal or unrelated

B RELATION BETWEEN RCC AND HUMAN ANNOTATORS

Figure 4 shows a positive dependence between the test classification accuracy of RCC and the
confidence of human annotations, when considering the test classification accuracy of all the causal
pairs annotated with a human confidence of at least {0, 20, 40, 50, 60, 70, 80, 90}. Thus, our proxy
variables and projections arguably capture a notion of causality aligned with the one of human
annotators.

C PROXY VARIABLES IN MACHINE LEARNING

The central concept in this paper is the one of proxy variable. This is a variable W providing a
random source of information related to x and y. However, we can consider the reverse process of
using a static entity w to augment random statistics about a pair of random variables X and Y . As it
turns out, this could be an useful process in general prediction problems. To illustrate, consider a
supervised learning problem mapping a feature random variable X into a target random variable Y .
Such problem is often solved by considering a sample {(xi, yi)}ni=1 ∼ Pn(X,Y ). In this scenario,
we may contemplate an unpaired, external, static source of information w (such as a memory), which
might help solving the supervised learning problem at hand. One could incorporate the information in
the static source w by constructing the proxy projection wi = π(xi, w), and add them to the dataset
to obtain {((xi, wi), yi)}ni=1 to build the predictor f(x, π(x,w)).
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Figure 5: Results for all methods on the NLP experiment. Accuracies above 52% are statistically
significant with respect to a Binomial test at a significance level α = 0.05.

D EXPERIMENTS: EXTENDED RESULTS

In this section, we compare more methods from the three families introduced in Section 4. The
entended results are found in Figure 5.

Our computations are based on the full English Wikipedia, as post-processed by Matt Mahoney (see
http://www.mattmahoney.net/dc/textdata.html). We study theN = 1, 970 pairs of words
out of 10, 000 from the dataset described in Appendix A that achieved a consensus across at least
18 out of 20 turks. Since turk confidence is used to measure the strength of the causal association,
we consider for these pairs with strong confidence that the problem is binary (i.e., we ignore the
possibility that the words in the pair are related but not causal). We use RCC to estimate the causal
relation between pairs of random variables.

D.1 PROXY PROJECTIONS

Throughout our experimental evaluation, we will use and compare different proxy projections:

1) πw2vii(w, x) = 〈viw, vix〉, where viz ∈ Rd is the input word2vec representation Mikolov et al.
(2013) of the word z. The dot-product 〈viw, vix〉 measures the similarity in meaning between
w and x.

2) πw2vio(w, x) = 〈viw, vox〉, where voz ∈ Rd is the output word2vec representation of the word
z. The dot-product 〈viw, vox〉 is an unnormalized estimate of the conditional probability
p(x|w) Melamud et al. (2015).

3) πw2voi(w, x) = 〈vow, vix〉, an unnormalized estimate of the conditional probability p(w|x).
4) πcounts(w, x) = p(w, x), where the pmf p(w, x) is directly estimated from counting within-

sentence co-occurrences in the corpus.
5) πprec-counts(w, x) similar to the one above, but only over sentences where w precedes x.
6) πpmi(w, x) = p(w, x)/(p(w)p(x)), where the pmfs p(w), p(x), and p(w, x) are estimated

from counting words and (sentence-based) co-occurrences in the corpus. The log of this
quantity is known as point-wise mutual information, or PMI Church & Hanks (1990).

7) πprec-pmi(w, x), similar to the one above, but only over sentences where w precedes x.

Applying the causal projections to our sample from proxy W , we construct the n-vector

Πx
proj = (πproj(w1, x), . . . , πproj(wn, x)), (1)

and similarly for Πy
proj, where proj ∈ {w2vii,w2vio,w2voi, counts, prec-counts, pmi, prec-pmi}. We

use the skip-gram model of fastText Bojanowski et al. (2016) to compute 300−dimensional word2vec
representations.

8
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D.2 BASELINES

These are a variety of unsupervised baselines. Each baseline computes two scores, denoted by Sx→y

and Sx←y, predicting x→ y if Sx→y > Sx←y, and x← y if Sx→y < Sx←y. The baselines are: i)
frequency: Sx→y is the number of sentences where x appears in the corpus, and Sx←y is the number
of sentences where y appears in the corpus, ii) precedence: considering only sentences from the
corpus where both x and y appear, Sx→y is the number of sentences where x occurs before y, and
Sx←yis the number of sentences where y occurs before x, iii) counts (entropy): Sx→y is the entropy
of Πx

counts, and Sx←y is the entropy of Πy
counts, as defined in (1), iv) counts (WS): Using the WS

measure of Weeds & Weir (2003), Sx→y = WS(Πx
counts,Π

y
counts), and Sx←y = WS(Πy

counts,Π
x
counts),

v) prec-counts (entropy): Sx→y is the entropy of Πx
prec-counts, and Sx←y is the entropy of Πy

prec-counts
(1) and vi) prec-counts (WS): analogous to the previous.
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