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Figure 1: Comparison of Proximal Policy Optimization (PPO) and our proposed PPO-CMA method.
Sampled actions a ∈ R2 are shown in blue. In this ”stateless” didactic example, the simple quadratic
objective has the global optimum at the origin (details in Section 3.1). PPO shrinks the exploration
variance prematurely, which leads to slow convergence. PPO-CMA dynamically expands the vari-
ance to speed up progress, and only shrinks the variance when close to the optimum.

ABSTRACT

Proximal Policy Optimization (PPO) is a highly popular model-free reinforce-
ment learning (RL) approach. However, in continuous state and actions spaces
and a Gaussian policy – common in computer animation and robotics – PPO is
prone to getting stuck in local optima. In this paper, we observe a tendency of
PPO to prematurely shrink the exploration variance, which naturally leads to slow
progress. Motivated by this, we borrow ideas from CMA-ES, a black-box opti-
mization method designed for intelligent adaptive Gaussian exploration, to derive
PPO-CMA, a novel proximal policy optimization approach that can expand the
exploration variance on objective function slopes and shrink the variance when
close to the optimum. This is implemented by using separate neural networks for
policy mean and variance and training the mean and variance in separate passes.
Our experiments demonstrate a clear improvement over vanilla PPO in many dif-
ficult OpenAI Gym MuJoCo tasks.

1 INTRODUCTION

This paper proposes a new solution to the problem of policy optimization with high-dimensional
continuous state and action spaces. This is a problem that has a long history in computer anima-
tion, robotics, and machine learning research. More specifically, our work falls in the domain of
simulation-based Monte Carlo approaches; instead of operating with closed-form expressions of the
control dynamics, we use a black-box dynamics simulator, sample actions from some distribution,
simulate the results, and then adapt the sampling distribution. In recent years, such approaches have
achieved remarkable success in previously intractable tasks such as real-time locomotion control of
(simplified) biomechanical models of the human body (Wang et al. (2010); Geijtenbeek et al. (2013);
Hämäläinen et al. (2014; 2015); Liu et al. (2016); Duan et al. (2016); Rajamäki & Hämäläinen
(2017)). In 2017, Proximal Policy Optimization (PPO) provided the first demonstration of a neural
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network policy that enables a simulated humanoid not only to run but also to rapidly switch direction
and get up after falling (Schulman et al. (2017)). Previously, such feats had only been achieved with
more computationally heavy approaches that used simulation and sampling not only during training
but also in run-time (Hämäläinen et al. (2014; 2015); Rajamäki & Hämäläinen (2017)).

PPO has been quickly adopted as the default RL algorithm in popular frameworks like Unity Ma-
chine Learning Agents Juliani et al. (2018) and TensorFlow Agents (Hafner et al. (2017)). It has
also been extended and applied to even more complex humanoid movement skills such as kung-fu
kicks and backflips (Peng et al. (2018)). Outside the continuous control domain, it has demonstrated
outstanding performance in complex multi-agent video games 1. However, like many other rein-
forcement learning methods, PPO can be sensitive to hyperparameter choices and difficult to tune
(Henderson et al. (2017)). In experiments by ourselves and our colleagues, we have also noticed a
tendency to get stuck in local optima.

In this paper, we make the following contributions:

• We provide visualizations and evidence of how PPO’s exploration variance can shrink pre-
maturely, which leads to slow progress or getting stuck in local optima. Figure 1 illustrates
this in a simple didactic example. Subsequently, we discuss how a similar exploration
problem is solved in the black-box optimization domain by Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). CMA-ES dynamically expands the exploration variance on
objective function slopes and only shrinks the variance when close to the optimum.

• We show how exploration behavior similar to CMA-ES can be achieved in RL with simple
changes, resulting in our PPO-CMA algorithm visualized in Figure 1. As elaborated in
Section 4, a key idea of PPO-CMA is to use separate neural networks for policy mean
and variance, and train the mean and variance in separate passes. Our experiments show a
significant improvement over PPO in many OpenAI Gym MuJoCo tasks (Brockman et al.
(2016)).

In Appendix A, we also investigate solving the variance adaptation problem with simple variance
clipping and entropy regularization. The entropy regularization was suggested by Schulman et al.
(2017) but not analyzed in detail. Our results suggest that both approaches can help but they are
sensitive to tuning parameters.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Algorithm 1 Episodic On-policy Reinforcement Learning (high-level summary)
1: for iteration=1,2,... do
2: while iteration simulation budget N not exceeded do
3: Reset the simulation to a (random) initial state
4: Run agent on policy πθ for T timesteps or until a terminal state
5: end while
6: Update policy parameters θ based on the observed experience [si,ai, ri, s

′
i]

7: end for

We consider the discounted formulation of the policy optimization problem, following the notation
of Schulman et al. (2015b). At time t, the agent observes a state vector st and takes an action
at ∼ πθ(at|st), where πθ denotes a stochastic policy parameterized by θ, e.g., neural network
weights. This results in observing a new state s′t and receiving a scalar reward rt. The goal is to
find θ that maximizes the expected future-discounted sum of rewards E[

∑∞
t=0 γ

trt], where γ is a
discount factor in the range (0, 1). A lower γ makes the learning prefer instant gratification instead
of long-term gains.

The original PPO and the PPO-CMA proposed in this paper collect experience tuples [si,ai, ri, s′i]
by simulating a number of episodes in each optimization iteration. For each episode, an initial

1https://blog.openai.com/openai-five/

2

https://blog.openai.com/openai-five/


Under review as a conference paper at ICLR 2019

state s0 is sampled from some application-dependent stationary distribution, and the simulation is
continued until a terminal (absorbing) state or a predefined maximum episode length T is reached.
After an iteration simulation budget N is exhausted, θ is updated. This is summarized in Algorithm
1.

2.2 POLICY GRADIENT WITH ADVANTAGE ESTIMATION

Policy gradient methods update policy parameters by estimating the gradient g = ∇θE[
∑∞
t γtrt].

There are different formulations of the gradient, of which PPO uses the following:

g = E
[ ∞∑
t=0

Aπ(st,at)∇θ log πθ(at|st)
]
, (1)

where Aπ is the so-called advantage function.

Intuitively, the advantage function is positive if an explored action yields better rewards than ex-
pected. Updating θ in the direction of g makes negative advantage actions less likely and positive
advantage actions more likely (Schulman et al. (2015b)). In practice, using modern compute graph
frameworks like TensorFlow (Abadi et al. (2016)), one often does not directly operate on the gradi-
ents, but instead uses an optimizer like Adam (Kingma & Ba (2014)) to minimize the corresponding
loss

L = − 1

M

M∑
i=1

Aπ(si,ai) log πθ(ai|si), (2)

where i denotes minibatch sample index and M is minibatch size. In summary, this type of policy
gradient RL simply requires a differentiable expression of πθ and a way to measure Aπ for each
explored state-action pair.

More specifically, the advantage function is defined as:

Aπ(st,at) = Qπ(st,at)− V π(st). (3)

Here, V π is the state value function, i.e., the expected future-discounted sum of rewards for running
the agent on-policy starting from state st. Qπ(st,at) is the state-action value function, i.e., expected
sum of rewards for taking action at in state st and then following the policy,Qπ(st,at) = r(st,at)+
γV π(st+1). Thus, the advantage can also be expressed as

Aπ(st,at) = r(st,at) + γV π(st+1)− V π(st). (4)

In practice, V π is usually approximated by a critic network trained with the observed rewards
summed over simulation trajectories. However, plugging such an approximation directly to Equa-
tion 4 tends to be unstable due to approximation bias. Instead, same as PPO, we use Generalized
Advantage Estimation (GAE) (Schulman et al. (2015b)), which is a simple but effective way to
estimate Aπ such that one can trade variance for bias.

3 UNDERSTANDING VARIANCE ADAPTATION IN GAUSSIAN POLICY
OPTIMIZATION

This paper focuses on the case of continuous control using a Gaussian policy. In other words, the
policy network outputs state-dependent mean µθ(s) and covariance Cθ(s) for sampling the actions.
The covariance defines the exploration-exploitation balance. In practice, one often uses a diagonal
covariance matrix parameterized by a vector cθ(s) = diag(Cθ(s)). In the most simple case of
isotropic unit Gaussian exploration, C = I, the loss function in Equation 2 becomes:
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L = − 1

M

M∑
i=1

Aπ(si,ai)||ai − µθ(s)||2, (5)

Following the original PPO paper, this paper uses diagonal covariance. This results in a slightly
more complex loss function:

L = − 1

M

M∑
i=1

Aπ(si,ai)
∑
j

[(ai,j − µj;θ(si))2/cj;θ(si) + 0.5 log cj;θ(si)], (6)

where i indexes over a minibatch and j indexes over action variables.

3.1 THE INSTABILITY CAUSED BY NEGATIVE ADVANTAGES

To gain an intuitive understanding of the training dynamics, it is important to note the following:

• Equation 5 indicates that the policy is trained to approximate the sampled actions, with
each action weighted by Aπ . Equation 5 uses an L2 loss, while Equation 6 uses a Bayesian
loss that allows the network to model aleatoric uncertainty, expressed as the free covariance
parameters (Kendall & Gal (2017)).

• As elaborated below, actions with a negative Aπ may cause instability, especially when
one considers training for several epochs at each iteration using the same data; as pointed
out by Schulman et al. (2017), this would be desirable to get the most out of the collected
experience.

For negative advantages, each minibatch gradient step drives the policy Gaussian further away
from the sampled actions. This can easily result in divergence, as shown at the top of Figure 2.
In contrast, the bottom of Figure 2 shows how using only the positive advantage actions is stable;
the policy Gaussian simply approximates the positive advantage action distribution. However, in
this case the exploration variance shrinks prematurely, leading to poor final convergence. Note that
Figure 2 shows the convergence/divergence over policy gradient iterations; Appendix D provides an
illustration of gradient steps within an iteration.

Similar to Figure 1, Figure 2 depicts a ”stateless” didactic example, a special case of Algorithm 1 that
allows clear visualization of how the action distribution adapts. We set γ = 0, which simplifies the
policy optimization objective E[

∑∞
t=0 γ

trt] = E[r0] = E[r(s,a)], where s,a denote the first state
and action of an episode. Further, we use a state-agnostic r(a) = −aTa. Thus, Qπ(s,a) = −aTa,
V π(s) = V π = E[r(a)] ≈ 1

N

∑N−1
i=0 r(ai), where i is episode index, and we can compute Aπ

directly using Equation 3. As everything is agnostic of agent state, a simulator is not even needed and
one can feed an arbitrary constant input to a policy network. Equivalently, one can simply replace
the policy network with optimized variables for the mean and variance of the action distribution.

3.2 PROXIMAL POLICY OPTIMIZATION: VARIANCE ADAPTATION PROBLEM

The basic idea of PPO is that one performs minibatch policy gradient updates for several epochs on
the data from each iteration of Algorithm 1, while limiting changes to the policy such that it stays
in the proximity of the sampled actions (Schulman et al. (2017)). PPO is a simplification of Trust
Region Policy Optimization (TRPO) (Schulman et al. (2015a)), which uses a more computationally
expensive approach to achieve the same.

The original PPO paper proposes two variants: 1) using a loss function that penalizes KL-divergence
between the old and updated policies, and 2) using the so-called clipped surrogate loss function that
limits the likelihood ratio of old and updated policies πθ(ai|si)/πold(ai|si). In extensive testing,
Schulman et al. (2017) concluded that the clipped surrogate loss with the clipping hyperparameter
ε = 0.2 is the recommended choice. This is also the version that we use in this paper in all PPO vs.
PPO-CMA comparisons.

Comparing Figure 1 and Figure 2 shows that PPO is more stable than vanilla policy gradient, but can
result in somewhat similar premature shrinkage of exploration variance as in the case of only using
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Figure 2: Comparing policy gradient variants in the didactic example of Figure 1, when doing mul-
tiple minibatch updates with the data from each iteration. Actions with positive advantage estimates
are shown in green, and negative advantages in red. Top: Basic policy gradient is highly unstable.
Bottom: Using only positive advantage actions, policy gradient is stable but converges prematurely.

the positive advantages for policy gradient. Although Schulman et al. (2017) demonstrated good
results in MuJoCo problems with a Gaussian policy, the most impressive Roboschool results did not
adapt the variance through gradient updates. Instead, the policy network only output the Gaussian
mean and a linearly decaying variance with manually tuned decay rate was used.

3.3 COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY

The Evolution Strategies (ES) community has worked on similar variance adaptation and Gaussian
exploration problems for decades, culminating in the widely used CMA-ES optimization method
and its recent variants (Hansen & Ostermeier (2001); Hansen (2006); Beyer & Sendhoff (2017);
Loshchilov et al. (2017)). CMA-ES is a black-box optimization method for finding a parameter
vector x that maximizes some objective or fitness function f(x). The CMA-ES core iteration is
summarized in Algorithm 2.

Algorithm 2 High-level summary of CMA-ES
1: for iteration=1,2,... do
2: Draw samples xi ∼ N (µ,C).
3: Evaluate f(xi)
4: Sort the samples based on f(xi) and compute weights wi based on the ranks such that best

samples have highest weights.
5: Update µ and C using the samples and weights.
6: end for

Using the default CMA-ES parameters, the weights of the worst 50% of samples are set to 0, i.e.,
those samples are pruned and have no effect. The mean µ is updated as a weighted average of the
samples, but the covariance update is more involved. Although there is no convergence quarantee,
CMA-ES performs remarkably well on multimodal and/or noisy functions such as Rastrigin if using
enough samples per iteration (Hansen & Kern (2004)). For full details of the update process, the
reader is referred to Hansen’s excellent tutorial (Hansen (2016)).

Usually, CMA-ES and other ES variants are applied to policy optimization in the form of neuroevo-
lution, i.e., directly optimizing the policy network parameters, x ≡ θ, with f(x) evaluated as the
sum of rewards over one or more simulation episodes (Wang et al. (2010); Geijtenbeek et al. (2013);
Such et al. (2017)). This is both a benefit and a drawback; neuroevolution is simple to implement
and requires no critic network, but on the other hand, the sum of rewards may not be very informa-
tive in guiding the optimization. Especially in long episodes, some explored actions may be good
and should be learned, but the sum may still be low. In this paper, we are interested in whether ideas
from CMA-ES could improve the sampling of actions in RL, using x ≡ a.
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Instead of a single action optimization task, RL is in effect solving multiple action optimization tasks
in parallel, one for each possible state. The accumulation of rewards over time further complicates
matters. However, we can directly apply CMA-ES to our ”stateless” didactic example with f(x) ≡
r(a), illustrated in Figure 3. Comparing this to Figure 2 reveals two key insights:

• CMA-ES prunes samples based on sorted fitness values and discards the worst half. This
is visually and conceptually similar to computing the policy gradient only using positive
advantages, i.e., pruning action samples based on advantage sign. Thus, the advantage
function can be thought analogous to the fitness function, although in policy optimization
with a continuous state space, one can’t directly enumerate, sort, and prune the actions and
advantages for each state.

• Unlike PPO and policy gradient with only positive advantages, CMA-ES avoids the pre-
mature variance shrinkage problem. Instead, it increases the variance on objective function
slopes to speed up progress and shrinks the variance once the optimum has been found.
This can be thought as a form of momentum that acts indirectly through the exploration
variance.

Figure 3: Our didactic example solved by CMA-ES using x ≡ a and f(x) ≡ r(a). Red denotes
pruned samples that have zero weights in updating the exploration distribution. CMA-ES expands
the exploration variance while progressing on an objective function slope, and shrinks the variance
when reaching the optimum.

Considering the above, a good policy optimization approach might be to only use actions with
positive advantages, if one could just borrow the variance adaptation techniques of CMA-ES. In the
next section, we show that this is indeed possible, resulting in our proposed PPO-CMA algorithm.

4 PPO-CMA

Our proposed PPO-CMA algorithm is summarized in Algorithm 3. Source code is available at
GitHub2. PPO-CMA is simple to implement, only requiring the following minor changes to PPO:

• We use the standard policy gradient loss in Equation 6 and train only on actions with pos-
itive advantage estimates. This means that 1) we implement CMA-ES -style pruning of
actions, but based on advantage sign instead of sorted fitness function values, and 2) sim-
ilar to CMA-ES, the updated exploration Gaussian mean equals a weighted mean of the
actions; in CMA-ES, the weights are based on the fitness sorting, whereas we use the ad-
vantages as the weights. The updated Gaussian variance is also affected by the two features
below:

• We use separate neural networks for policy mean and variance, trained in separate passes.
This implements the CMA-ES two-step update, as elaborated in Section 4.1.

• We maintain a history of training data over H iterations, used for training the variance
network. This approximates the CMA-ES evolution path heuristic, as explained in Section
4.2.

Together, the features above result in the emergence of the CMA-ES -style variance adaptation
behavior shown in Figure 1. Section 4.3 also presents an optional technique for utilizing negative
advantage actions, resulting in a variant of PPO-CMA we call PPO-CMA-m.

2https://github.com/ppocma/ppocma
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Algorithm 3 PPO-CMA
1: for iteration=1,2,... do
2: while iteration simulation budget N not exceeded do
3: Reset the simulation to a (random) initial state
4: Run agent on policy πθ for T timesteps or until a terminal state
5: end while
6: Train critic network for K epochs using the experience from the current iteration
7: Estimate advantages Aπ using GAE (Schulman et al. (2015b))
8: Clip negative advantages to zero, Aπ ← max(Aπ, 0)
9: Train policy variance for K epochs using experience from past H iterations and Eq. 6

10: Train policy mean for K epochs using the experience from this iteration and Eq. 6
11: end for

4.1 TWO-STEP UPDATING OF MEAN AND COVARIANCE

Superficially, the core iteration loop of CMA-ES is similar to other optimization approaches with
recursive sampling and distribution fitting such as the Cross-Entropy Method (De Boer et al. (2005))
and Estimation of Multivariate Normal Algorithm (EMNA) (Larrañaga & Lozano (2001)). However,
there is a crucial difference: in the so-called Rank-µ update, CMA-ES first updates the covariance
and only then updates the mean (Hansen (2016)). This has the effect of elongating the exploration
distribution along the best search directions instead of shrinking the variance prematurely, as shown
in Figure 4. This has also been shown to correspond to a natural gradient update of the exploration
distribution (Ollivier et al. (2017)).

In PPO-CMA, we implement the two-step update by using separate neural networks for the mean
and variance. We first train the variance network while keeping the mean fixed, and then vice versa,
using the Gaussian policy gradient loss in Equation 6.

Figure 4: The difference between joint and separate updating of mean and covariance, denoted by
the black dot and ellipse. A) sampling, B) pruning and weighting of samples based on fitness, C)
EMNA-style update, i.e., estimating mean and covariance based on weighted samples, D) CMA-ES
update, where covariance is estimated before updating the mean.

4.2 EVOLUTION PATH

CMA-ES also features the so-called evolution path heuristic, where a component αp(i)p(i)T is
added to the covariance, where α is a scalar, the (i) superscript denotes iteration index, and p is the
evolution path (Hansen (2016)):

p(i) = β0p
(i−1) + β1(µ

(i) − µ(i−1)). (7)

Although the exact computation of the default β0 and β1 multipliers is rather involved, Equation 7
essentially amounts to first-order low-pass filtering of the steps taken by the distribution mean be-
tween iterations. When CMA-ES progresses along a continuous slope of the fitness landscape, ||p||
is large, and the covariance is elongated and exploration is increased along the progress direction.
Near convergence, when CMA-ES zigzags around the optimum in a random walk, ||p|| ≈ 0 and the
evolution path heuristic has no effect.

PPO-CMA approximates the evolution path heuristic by keeping a history ofH iterations of data and
sampling the variance training minibatches from the history instead of only the latest data. Same
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Figure 5: Means and standard deviations of training curves in OpenAI Gym MuJoCo tasks. The
humanoid results are from 5 runs and others from 10 runs. Red denotes our vanilla PPO imple-
mentation with the same hyperparameters as PPO-CMA and PPO-CMA-m, providing a controlled
comparison of the effect of algorithm changes. Gray denotes OpenAI’s baseline PPO implementa-
tion using their default hyperparameters and training scripts for these MuJoCo tasks.

as the original evolution path heuristic, this elongates the variance for a given state if the mean
is moving in a consistent direction. We do not implement the CMA-ES evolution path heuristic
directly, because this would need yet another neural network to maintain and approximate a state-
dependent p(s). Similar to exploration mean and variance, p is a CMA-ES algorithm state variable;
in policy optimization, such variables become functions of agent state and need to be encoded as
neural network weights.

Appendix B provides an empirical analysis of the effect of different H values. Values larger than
1 minimize the probability of low-reward outliers, and PPO-CMA does not appear to be highly
sensitive to the exact choice.

4.3 LEVERAGING NEGATIVE ADVANTAGES: PPO-CMA-M

Disregarding negative-advantage actions may potentially discard valuable information. We observe
that assuming linearity of advantage around the current policy mean µ(si), it is possible to mirror
negative-advantage actions about the mean to convert them to positive-advantage actions. More
precisely, we set a′i = 2µ(si) − ai, A

π(a′i) = −Aπ(ai)ψ(ai, si), where ψ(ai, si) is a Gaussian
kernel (we use the same shape as the policy) that assigns less weight to actions far from the mean.
We call this PPO-CMA variant PPO-CMA-m. The mirroring drives the policy Gaussian away from
worse than average actions, but in a way that does not diverge (see Appendix D for details). If the
linearity assumption holds, the mirroring effectively doubles the available experience.

In the CMA-ES literature, a related technique is to use a negative covariance matrix update procedure
(Jastrebski & Arnold (2006); Hansen & Ros (2010)).

5 EVALUATION

We evaluate PPO-CMA using the 7-task MuJoCo-1M benchmark used by Schulman et al. (2017)
plus the more difficult 3D humanoid locomotion task. We performed the following experiments:

• The green, blue, and red curves in Figure 5 visualize the results using PPO-CMA, PPO-
CMA-m, and PPO with exactly same implementation and hyperparameters. This ensures
that the differences are due to algorithm changes instead of hyperparameters. PPO-CMA
and PPO-CMA-m perform better than PPO in 7 out of 8 tasks. The hyperparameters are
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detailed in Appendix B. PPO-CMA and PPO-CMA-m yield roughly similar results, except
for the humanoid task where PPO-CMA-m is clearly superior.

• To test whether our results generalize to other hyperparameter settings, we generated 50
random hyperparameter combinations as detailed in Appendix C, and used them to train
the 2D walker using both PPO and PPO-CMA. After 1M simulation steps, PPO-CMA and
PPO achieved mean episode reward of 393 and 161, respectively. The standard deviations
were 208 and 81. A Welch t-test indicates that the difference is statistically significant
(p < 0.001). Although the individual training runs have high reward variance, PPO-CMA
wins in 47 out of 50 runs.

• Reinforcement learning algorithms are notoriously sensitive to implementation details, and
even closely related algorithms might have different optimal parameters. Thus, to compare
our results against a finetuned PPO implementation, Figure 5 also shows the performance
of OpenAI’s baseline PPO 3. In this case, PPO-CMA produces better results than PPO in 4
out of 8 tasks.

Overall, PPO-CMA and PPO-CMA-m often progress somewhat slower than PPO, but appear less
likely to diverge or stop improving.

Appendix A provides further comparisons that also visualize the variance adaptation behavior. To
augment the visual comparison, Appendix C presents statistical significance testing results.

6 RELATED WORK

In addition to PPO, our work is closely related to Continuous Actor Critic Learning Automaton
(CACLA) (van Hasselt & Wiering (2007)). Similar to PPO-CMA, CACLA uses the sign of the
advantage estimate – in their case the TD-residual – in the updates, shifting policy mean towards
actions with positive sign. The paper also observes that using actions with negative advantages can
have an adverse effect. In light of our discussion of how only using positive advantage actions
guarantees that the policy stays in the proximity of the collected experience, CACLA can be viewed
as an early Proximal Policy Optimization approach, which we extend with CMA-ES style variance
adaptation.

Although PPO is based on a traditional policy gradient formulation, there is a line of research sug-
gesting that the so-called natural gradient can be more efficient in optimization (Amari (1998);
Wierstra et al. (2008); Ollivier et al. (2017)). Through the connection between CMA-ES and natural
gradient, PPO-CMA is related to various natural gradient RL methods (Kakade (2002); Peters &
Schaal (2008); Wu et al. (2017)), although the evolution path heuristic is not motivated from the
natural gradient perspective (Ollivier et al. (2017)).

PPO represents on-policy RL methods, i.e., experience is assumed to be collected on-policy and
thus must be discarded after the policy is updated. Theoretically, off-policy RL should allow better
sample efficiency through the reuse of old experience, often implemented using an experience replay
buffer, introduced by Lin (1993) and recently brought back to fashion (e.g, Mnih et al. (2015);
Lillicrap et al. (2015); Schaul et al. (2015); Wang et al. (2016)). PPO-CMA can be considered as
a hybrid method, since the policy mean is updated using on-policy experience, but the history or
replay buffer for the variance update also includes older off-policy experience.

In addition to neuroevolution (discussed in Section 3.3), CMA-ES has been applied to continuous
control in the form of trajectory optimization. In this case, one searches for a sequence of opti-
mal controls given an initial state, and CMA-ES and other sampling-based approaches (Al Borno
et al. (2013); Hämäläinen et al. (2014; 2015); Liu et al. (2016)) complement variants of Differential
Dynamic Programming, where the optimization utilizes gradient information (Tassa et al. (2012;
2014)). Although trajectory optimization approaches have demonstrated impressive results with
complex humanoid characters, they require more computing resources in run-time.

Finally, it should be noted that PPO-CMA falls in the domain of model-free reinforcement learn-
ing approaches. In contrast, there are several model-based methods that learn approximate models

3https://github.com/openai/baselines, we use the default parameters of run mujoco.py,
run humanoid.py
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of the simulation dynamics and use the models for policy optimization, potentially requiring less
simulated or real experience. Both ES and RL approaches can be used for the optimization (Chatzi-
lygeroudis et al. (2018)). Model-based algorithms are an active area of research, with recent work
demonstrating excellent results in limited MuJoCo benchmarks (Chua et al. (2018)), but model-free
approaches still dominate the most complex continuous problems such as humanoid movement.

For a more in-depth review of continuous control policy optimization methods the reader is referred
to Sigaud & Stulp (2018) or the older but mathematically more detailed Deisenroth et al. (2013).

7 CONCLUSION

Proximal Policy Optimization (PPO) is a simple, powerful, and widely used model-free reinforce-
ment learning approach. However, we have shown that in continous control with Gaussian policy,
PPO can adapt the exploration variance in an unreliable manner, which explains how PPO may
converge slowly or get stuck in local optima.

As a solution to the variance adaptation problem, we have proposed the PPO-CMA algorithm that
implements two-step update and evolution path heuristics inspired by the CMA-ES black-box opti-
mization method. This results in an improved PPO version that is simple to implement but beats the
original method in many MuJoCo tasks and is less prone to getting stuck in local optima.

Additionally, our simulations in Appendix A show that PPO’s premature convergence can also be
prevented with simple clipping of the policy variance or using the entropy loss term proposed by
Schulman et al. (2017). However, the clipping limit or entropy loss weight needs delicate finetuning
and both techniques also result in a more noisy final policy.

On a more general level, one can draw the following conclusions and algorithm design insights from
our work:

• We provide a new link between RL and ES approaches to policy optimization. Typically,
ES is used for policy optimization in the form of neuroevolution, i.e., directly sampling the
neural network weights. In contrast, we demonstrate how CMA-ES can be used to sample
actions, but such that the sampling Gaussian is conditional on agent state, implemented
using the policy network. Essentially, multiple parallel CMA-ES optimizations of actions
are done for different agent states, and the neural networks store and interpolate algorithm
state – exploration mean and variance – as a function of agent state. This is enabled by
treating the advantage function as the fitness function, and approximating the CMA-ES
sorting and pruning operations by clipping advantage values below a limit to zero. Sorting
actions based on advantage or fitness is not possible because with a continuous state space,
one can’t enumerate all the actions sampled for a given state.

• Our work highlights how gradient-based RL can have problems if the gradient affects ex-
ploration in subsequent iterations, which is the case with Gaussian policies. The funda-
mental problem is that a gradient that causes an increase in the expected rewards does not
quarantee further increases in subsequent iterations. Instead, one should adapt exploration
such that it provides good results over the whole training process. We have shown that one
way to achieve this can be through an approximation of CMA-ES variance adaptation.

• To understand the differences, similarities, and problems of policy optimization methods,
it can be useful to visualize ”stateless” special cases such as the one in Figure 1. PPO’s
problems were not at all clear to us until we created the visualizations, originally meant for
teaching.

Thinking of the advantage function not as a way to compute accurate gradient but as a tool for prun-
ing the learned actions also begs the question of what other pruning methods might be applicable.
Presently, we are experimenting with continuous control Monte Carlo Tree Search methods (e.g.,
Rajamäki & Hämäläinen (2018)) for better exploration and pruning.
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climbing movements. ACM Transactions on Graphics (TOG), 36(4):43, 2017.

Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-geometric opti-
mization algorithms: A unifying picture via invariance principles. Journal of Machine Learning
Research, 18(18):1–65, 2017.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. arXiv preprint
arXiv:1804.02717, 2018.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.
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A FURTHER ANALYSIS OF PPO’S VARIANCE ADAPTATION

A.1 VARIANCE ADAPTATION IN HOPPER-V2

To further inspect the variance adaptation problem, we use the Hopper-V2 MuJoCo environment,
where the monopedal agent gets rewards for traveling forward while keeping the upper part of the
body upright. There is a local optimum that tends to attract policy optimization: Instead of discov-
ering a stable gait, the agent may greedily lunge forward and fall, either right at episode start or after
one or a few steps.

Figure 6 shows the training trajectories from 20 independent runs with different random seeds.
The figure shows both the growth of rewards and adaptation of variance, the latter plotted as the
policy standard deviation averaged over all episodes and explored actions of each iteration. The
figure also includes results of the same using our proposed PPO-CMA algorithm with the same
hyperparameters.
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Figure 6 uses red color to denote the training runs where the policy failed to escape the local opti-
mum. Looking at the reward and variance curves together, one sees that PPO produces worse results
than PPO-CMA and PPO’s average standard deviation decreases faster. Some of PPO’s failure cases
also exhibit erratic sharp changes in standard deviation. PPO-CMA has no clear low-reward outliers
adapts variance robustly and consistently.

Many PPO implementations, including OpenAI’s baseline, use some form of automatic normaliza-
tion of state observations, as some MuJoCo environments have observation variables with both very
large and very small scales. Figure 7 shows 20 Hopper training curves with the same normalization
we use in our evaluation in Section 5. PPO-CMA is more robust to the normalization.

Figure 6: Comparing PPO and PPO-CMA in 20 training runs with the Hopper-V2 environment. Red
trajectories denote clear failure cases where the reward plateaus and the agent only falls forward or
takes one or a few steps. PPO’s variance decreases faster and there is also some instability with
variance peaking suddenly, associated with a decrease of rewards. PPO-CMA has no similar plateaus
and adapts variance robustly and consistently.

Figure 7: Same as Figure 6 but with the automatic state observation normalization described in
Appendix B. PPO-CMA is more robust to the normalization. PPO failure cases are associated with
lower variance.

A.2 CLIPPING AND INITIALIZING THE POLICY NETWORK

Similar to previous work, we use a fully connected policy network with a linear output layer and
treat the variance output as log variance v = log(c). In our initial tests with PPO, we ran into
numerical precision errors which could be prevented by soft-clipping the mean as µclipped = amin+
(amax − amin) ⊗ σ(µ), where amax and amin are the action space limits. Similarly, we clip the
log variance as vclipped = vmin + (vmax − vmin) ⊗ σ(v), where vmin is a lower limit parameter,
and vmax = 2 log(amax − amin).

To ensure a good initialization, we pretrain the policy in supervised manner with randomly sampled
observation vectors and a fixed target output vclipped = 2 log(0.5(amax − amin)) and µclipped =
0.5(amax + amin). The rationale behind this choice is that the initial exploration Gaussian should
cover the whole action space but the variance should be lower than the upper clipping limit to prevent
zero gradients. Without the pretraining, nothing quarantees sufficient exploration for all observed
states.

One might think that premature convergence could be prevented simply by increasing the lower
clipping limit. However, Figure 8 shows how a fairly high lower limit – considering the valid action
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range (-1,1) – is needed for the policy’s standard deviation in order to ensure that all training runs
escape the local optimum. This is not ideal, as it causes considerable motor noise that does not
vanish as training progresses. Excessive motor noise is undesireable especially in animation and
robotics applications. Finetuning the limit is also tedious, as to large values rapidly lead to worse
results.

A.3 ENTROPY LOSS

The original PPO paper (Schulman et al. (2017)) discusses adding an entropy loss term to penalize
low variance and prevent premature convergence, although their recommended settings for contin-
uous control tasks do not use the entropy loss and the effect of the loss weight was not empirically
investigated. Figure 8 shows how the entropy loss works similarly to the lower clipping limit, i.e.,
increasing the entropy loss weight helps to mimimize getting stuck in the local optimum. Too large
values cause a rapid decrease in average performance and the entropy loss also results in a more
noisy final policy. To mitigate this, some PPO implementations such as the one in Unity Machine
Learning Agents framework anneal the entropy loss weight to zero during training; however, this
adds the cost of finetuning even more hyperparameters. Ideally, one would like the variance adapta-
tion to be both efficient and automatic.

If one wants to use PPO with variance clipping or entropy loss instead of PPO-CMA, our recom-
mendation is to try variance clipping, as it results in better results in Figure 8. Figure 9 also shows
how the entropy loss results in less stable variance curves.

Figure 8: Boxplot of PPO results of 20 training runs of Hopper-V2 with different entropy loss
weights and lower clipping limits for policy’s standard deviation. The plots are from the last iteration
where a limit of 1M total simulation steps was reached. The upper standard deviation limit is 1 in
all plots and the entropy loss weight plots use a lower clipping limit of 0.01. Large values of either
parameter can help escaping the local optimum of simply falling forward or taking only 1 or few
steps (rewards below 1000), but at the same time, too large values impair average and best-case
performance.

Figure 9: Comparing the effect of PPO variance clipping and entropy loss. Even with a fairly low
weight, the entropy loss can lead to worse results and cause unstable increases in variance that yield
low rewards (the red trajectory in the rightmost images).
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B HYPERPARAMETERS AND IMPLEMENTATION DETAILS

This section describes details of our PPO-CMA and PPO implementations. OpenAI’s baseline PPO
was used in Section 5 without any modifications.

We use the policy network output clipping described in Section A.2 with a lower standard deviation
limit of 0.01. Thus, the clipping only ensures numerical precision but has little effect on conver-
gence, as illustrated in Figure 8. We use the clipping because without it, we ran into numerical
precision problems in PPO (but not with PPO-CMA) in environments such as the Walker2d-V2.
The clipping is not necessary for PPO-CMA in our experience, but we still use with both algorithms
it to ensure a controlled and fair comparison. Following Schulman’s original PPO code, we also use
episode time as an extra feature for the critic network to help minimize the value function prediction
variance arising from episode termination at the environment time limit. Note that as the feature
augmentation is not done for the policy, this has no effect on the usability of the training results.

Table 1 lists all our hyperparameters.

Hyperparameter Value
Iteration simulation budget (N ) 16000 (32000 for humanoid)

Training epochs per iteration (K) 20
Variance history length (H) 3 (7 for humanoid)

Minibatch size 256
Learning rate 3e-4

Network width 128 (64 for humanoid)
Num. hidden layers 2
Activation function Leaky ReLU

Action repeat 2
Critic loss L1

Table 1: Hyperparameters used in our PPO and PPO-CMA implementation

We use the same network architecture for all neural networks. Action repeat of 2 means that the
policy network is only queried for every other simulation step and the same action is used for two
steps. This speeds up training. N is specified in simulation steps. H is used only for PPO-CMA.
Figure 5 is generated assuming early termination to reduce variance, i.e., for each training run, the
graphs use the best scoring iteration’s results so far.

The choice of H = 3 gives slightly better results than H = 7 in environments other than the 3D
humanoid. The humanoid also needs a larger N to learn; the default value of 16000 results in very
noisy episode rewards that quickly plateau instead of climbing steadily. This is in line with CMA-
ES, which is said to be quasi-parameter-free; one mainly needs to increase the iteration sampling
budget for high-dimensional and difficult optimization problems.

Figure 11 shows the effect of different H in the Hopper task. Values H > 1 remove low-reward
outliers, but PPO-CMA does not appear to be highly sensitive to the exact choice. Comparing
figures 8 and 11 suggests that the variance clipping limit, entropy loss weight and history length H
all behave similarly in that one of them has to be large enough to produce good results. The crucial
difference is that setting H to a value larger than the required one does not cause a rapid decrease in
performance; thus, we find H easier to adjust.

We use L1 critic loss as it seems to make both PPO and PPO-CMA less sensitive to the reward
scaling. For better tolerance to varying state observation scales, we use an automatic normaliza-
tion scheme where observation variable j is scaled by k(i)j = min

(
k
(i−1)
j , 1/ (ρj + κ)

)
, where

κ = 0.001 and ρj is the root mean square of the variable over all iterations so far. This way,
large observations are scaled down but the scaling does not constantly keep adapting as training
progresses. OpenAI’s baseline PPO normalizes observations based on running mean and standard
deviation, but we have found our normalization slightly more stable.
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B.1 ON FINETUNING AND STABILITY OF PPO-CMA AND PPO

In light of our experiments, it is reasonable to ask why OpenAI’s baseline PPO gives better results
than our PPO implementation in most tasks, and why our own PPO implementation is unstable in
the Humanoid and Double Inverted Pendulum tasks. Our understanding is that this is due to multiple
implementation details and hyperparameters that regularize the baseline PPO:

• A small iteration simulation budget of N = 2048, considerably less than what we use.
The small N yields more iterations with the same total simulation budget; however, each
iteration only results in a small update because of the details below that slow down the
policy adaptation, in addition to the clipped surrogate loss.

• Training only forK = 10 epochs, which together with the smallN amounts to significantly
less minibatch updates per iteration.

• Using heavy gradient norm clipping with a clipping threshold of 0.5.

• Using smooth and saturating tanh activation functions in the neural networks, which slow
down learning and result in smooth function approximations without sharp discontinuities.

• Using a smaller neural network with 64 units per layer.

In addition to the above, some PPO implementations such as the one in Unity Machine Learning
Agents framework use a global diagonal covariance independent of state, which adapts more slowly
as a compromise over actions of all states. As a downside, the global covariance is at least theoret-
ically less powerful because the agent may encounter both states where it should already converge
and states where it should keep exploring.

In summary, PPO may need other regularizers in addition to the epsilon parameter of the clipped
surrogate loss, which can make it difficult to finetune. In contrast, PPO-CMA does not seem to need
such regularization. On the other hand, PPO-CMA can make large updates and a large N may be
needed to reduce noise of the updates in high-dimensional and/or difficult problems. This is similar
to CMA-ES, where the population size is typically the main parameter to adjust. In addition, it may
be beneficial to also experiment with different values forH if PPO-CMA does not give good results.
In such finetuning, it is useful to visualize full learning curve distributions like in Figure 11 instead
of only plotting means and standard deviations, in order to see whether there are low-reward outliers
where learning gets stuck in local optima. If there are, increasing H may help.

C STATISTICAL SIGNIFICANCE TESTING DETAILS

To supplement the visual comparison of Figure 5, Table 2 compares PPO-CMA with OpenAI’s
baseline PPO using two-sided Welch t-tests.

Environment PPO-CMA PPO (OpenAI baseline) p-value
Hopper-v2 2035.1 2023.3 0.9479

Walker2d-v2 1329.1 2345.3 0.0104
HalfCheetah-v2 2874.7 2103.8 0.0313

Reacher-v2 -4.1 -7.6 0.0003
Swimmer-v2 179.9 80.1 0.0000

InvertedPendulum-v2 715.5 945.5 0.0103
InvertedDoublePendulum-v2 7836.0 7838.2 0.9955

Humanoid-v2 1491.6 49.8 0.0238

Table 2: Final mean episode rewards in the training runs of Figure 5, together with p-values from
two-sided Welch t-tests. Bolded values indicate statistically significantly better results using the
0.05 significance level.

In section 5, we compare PPO-CMA and PPO on average, over a set of randomized hyperparameter
combinations. The parameters were sampled uniformly in the ranges given in Table 3.
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Hyperparameter Randomization range
Action repeat {1, 2}
Learning rate

[
10−4, 10−3

]
Network width {16, ..., 256}

Activation function tanh or Leaky ReLU
N {2000, ..., 64000}
K {1, ..., 20}

Minibatch size {32, ..., 1024}

Table 3: Randomization ranges of the random hyperparameter comparison of Section 5.

D FURTHER VISUALIZATION OF ALGORITHM DIFFERENCES

Figure 10: Algorithm differences in the didactic example of Figure 1. Here, instead of showing
the results of each iteration, we show how the policy is updated in the minibatch gradient steps
inside a single iteration. Actions with positive advantage estimates are shown in green, and negative
advantages in red. The black ellipses denote the policy mean and standard deviation. The green
non-filled circles visualize the negative-advantage actions converted to positive-advantage actions
through the mirroring trick of PPO-CMA-m.

Figure 10 visualizes the effect of minibatch gradient steps taken inside one algorithm iteration in our
didactic example. This complements Figures 1 and 2, which show the results of multiple iterations.
The figure reveals the following:

• 1st row: Vanilla policy gradient diverges outside the data when taking multiple gradient
steps with the same actions and advantages. The divergence is not caused by excessive
gradient step size; each minibatch only causes a tiny change. Recall that the motivation
to take multiple steps comes from PPO and TRPO; the goal is to get the most out of the
collected experience.
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• 2nd row: Policy gradient becomes stable when only using positive advantage actions. The
policy converges to approximate the distribution of the positive advantage actions (green).
• 3rd row: PPO limits the policy change, which prevents divergence. On the other hand, it

does not make as much progress as could be done based on the data.
• 4th row: PPO-CMA is stable and elongates the search distribution along the progress di-

rection. This makes it more likely that the next iteration will generate samples close to the
optimum; it lies within the unit standard deviation ellipse of the updated policy.
• 5th row: PPO-CMA-m behaves visually similar to PPO-CMA. This is in line with our

other experimental results; PPO-CMA-m gives similar results as PPO-CMA in easy tasks,
where the extra information of the negative advantage actions is not needed. The figure
also shows how using the negative-advantage actions through the mirroring is stable; the
policy converges similar to when only using positive advantages, but half of the positive-
advantage actions are created through the mirroring.

E LIMITATIONS

We only implement an approximation of the full CMA-ES algorithm, because in addition to the
mean and covariance of the search distribution, CMA-ES maintains several other auxiliary vari-
ables. In policy optimization, all algorithm state and auxiliary variables are functions of agent state
and must be encoded as neural network weights, and CMA-ES has some delicately fine-tuned mech-
anisms which might be unstable with such approximations. We defer further investigations of this
to future work, since even our simple approximation yields benefits over vanillla PPO.

We have also only focused on Gaussian policies, and the special case of diagonal covariance, i.e.,
the sep-CMA-ES variant (Ros & Hansen (2008)). Obviously, other exploration noise distributions
such as Laplace might also work. However, Gaussian exploration is common in the literature, and
the success of CMA-ES shows that it results in state-of-the-art performance in many optimization
tasks beyond policy optimization.

Finally, treating the advantage function as fitness function assumes that the advantage landscape
does not change significantly when policy is updated. This assumption does not hold in general
for γ > 0. Thus, it is perhaps surprising that PPO-CMA works as well as it does. In future work,
we plan to test whether PPO-CMA is particularly effective in problems that can be modeled using
γ = 0, e.g., finding an optimal billiards shot that pockets as many balls as possible, or the humanoid
climbing moves of Naderi et al. (2017), with actions parameterized as control splines instead of
instantaneous torques.
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Figure 11: Training curves and final reward boxplots of PPO-CMA in 20 training runs of Hopper-
V2 with different history lengths H . The orange lines show medians and the whiskers show the
percentile range 10...90. With H = 1, there are outliers below a reward of 500, in which case the
agent only lunges forward and falls without taking any steps.
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