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∗IIT Kanpur
† INRS-EMT
‡CIFAR Fellow
§Senior CIFAR Fellow

ABSTRACT

We present Char2Wav, an end-to-end model for speech synthesis. Char2Wav has
two components: a reader and a neural vocoder. The reader is an encoder-
decoder model with attention. The encoder is a bidirectional recurrent neural net-
work that accepts text or phonemes as inputs, while the decoder is a recurrent neu-
ral network (RNN) with attention that produces vocoder acoustic features. Neural
vocoder refers to a conditional extension of SampleRNN which generates raw
waveform samples from intermediate representations. Unlike traditional models
for speech synthesis, Char2Wav learns to produce audio directly from text.

1 INTRODUCTION

The main task in speech synthesis consists of mapping text to audio signal. There are two primary
goals in speech synthesis: intelligibility and naturalness. Intelligibility describes the clarity of the
synthesized audio, specifically how well a listener is able to extract the original message. Natural-
ness describes information not directly captured by intelligibility, such as overall ease of listening,
global stylistic consistency, regional or language level nuances, among others.

With traditional speech synthesis approaches, this task has been accomplished by dividing the prob-
lem into two stages. The first stage, known as the frontend, transforms the text into linguistic
features. These linguistic features usually include phone, syllable, word, phrase and utterance-level
features (Zen, 2006; Zen et al., 2013; van den Oord et al., 2016). The second stage, known as the
backend, takes as input the linguistic features generated by the frontend and produces the corre-
sponding sound. WaveNets (van den Oord et al., 2016) are a high quality approach to a ”neural
backend”. For a more detailed review of traditional models for speech synthesis, we recommend
consulting Taylor (2009).

Defining good linguistic features is often time-consuming and language specific. In this paper, we
integrate the frontend and the backend and learn the whole process end-to-end. This procedure
eliminates the need for expert linguistic knowledge, which removes a major bottleneck in creating
synthesizers for new languages. We use a powerful model to learn this information from the data.

2 RELATED WORK

Attention based models have been previously used in machine translation (Cho et al., 2014; Bah-
danau et al., 2015), speech recognition (Chorowski et al., 2015; Chan et al., 2016), and computer
vision Xu et al. (2015) among other applications. Our work has been heavily influenced by the work
of Alex Graves (Graves, 2013; 2015). In a guest lecture Graves demonstrated a speech synthesis
model using an attention mechanism, an extension of his previous work on handwriting generation.
Unfortunately, the speech extension was never published, so we cannot directly compare our ap-
proach to his work. However, his results were a key inspiration to us, and we hope that this work
can be useful as a starting point for further developments in end-to-end speech synthesis.
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3 MODEL DESCRIPTION

3.1 READER

We adopt the notation of Chorowski et al. (2015). An attention-based recurrent sequence gener-
ator (ARSG) is a recurrent neural network that generates a sequence Y = (y1, . . . , yT ) condi-
tioned on an input sequence X . X is preprocessed by an encoder that outputs a sequence h =
(h1, . . . , hL). In this work, the output Y is a sequence of acoustic features and X is the text or the
phoneme sequence to be generated. Furthermore, the encoder is a bidirectional recurrent network.
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Figure 1: Char2Wav: An end-to-end speech
synthesis model.

At the i-th step the ARSG focuses on h and gener-
ates yi:

αi = Attend(si−1, αi−1, h) (1)

gi =

L∑
j=1

αi,jhj (2)

yi ∼ Generate(si−1, gi) (3)
si = RNN(si−1, gi, yi) (4)

where si−1 is the (i − 1)-th state of the generator
recurrent neural network and αi ∈ RL are the atten-
tion weights or alignment.

In this work, we use the location-based attention
mechanism developed by Graves (2013). We have
αi = Attend(si−1, αi−1) and given a length L con-
ditioning sequence h, we have:

φ(i, l) =

K∑
k=1

ρki exp(−βk
i (κ

k
i − l)2) (5)

αi =

L∑
l=1

φ(i, l) (6)

where κi, βi, and ρi represent the location, width
and importance of the window respectively.

3.2 NEURAL VOCODER

Speech generation using a vocoder is limited by the reconstruction quality of that specific vocoder.
To enable high quality output, we replace the vocoder with a learned parametric neural module. We
use SampleRNN (Mehri et al., 2016) as an enhanced function approximator for this purpose.

SampleRNN has recently been proposed to model extremely long-term dependencies in sequential
data such as audio signals. The hierarchical structure in SampleRNN is designed to capture dy-
namics of a sequence at different time scales. This is necessary to capture long range correlations
between distant audio timesteps (e.g. word-level correlations in speech signals) as well as nearby
audio timesteps dynamics.

We use a conditional version of the same model to learn the mapping from a sequence of vocoder
features to corresponding audio samples. Each vocoder feature frame is added as an extra input to
the corresponding state in the top tier. This allows the module to use the past audio samples and
vocoder feature frames to generate the current audio samples.

2



Workshop track - ICLR 2017

4 TRAINING DETAILS

First, we pretrained the reader and the neural vocoder separately. We used normalized WORLD
vocoder features (Morise et al., 2016; Wu et al., 2016) as targets for the reader and as inputs for the
neural vocoder. Finally, we fine-tuned the whole model end-to-end. Our code is available online.1

5 RESULTS

We do not provide a comprehensive quantitative analysis of results at this time. Instead, we pro-
vide samples from our model.2. In Figure 2, we show samples generated by our model and their
corresponding alignments to the text.
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Figure 2: Samples from the models conditioned on a) English phonemes, b) English text and c)
Spanish text. The models for a) and b) were trained on the VCTK dataset (Yamagishi, 2012) whereas
the model for c) was trained on the DIMEX-100 dataset (Pineda et al., 2010).
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