
Published as a conference paper at ICLR 2019

SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON
CONNECTION SENSITIVITY

Namhoon Lee, Thalaiyasingam Ajanthan & Philip H. S. Torr
University of Oxford
{namhoon,ajanthan,phst}@robots.ox.ac.uk

ABSTRACT

Pruning large neural networks while maintaining their performance is often desir-
able due to the reduced space and time complexity. In existing methods, pruning is
done within an iterative optimization procedure with either heuristically designed
pruning schedules or additional hyperparameters, undermining their utility. In this
work, we present a new approach that prunes a given network once at initialization
prior to training. To achieve this, we introduce a saliency criterion based on con-
nection sensitivity that identifies structurally important connections in the network
for the given task. This eliminates the need for both pretraining and the complex
pruning schedule while making it robust to architecture variations. After pruning,
the sparse network is trained in the standard way. Our method obtains extremely
sparse networks with virtually the same accuracy as the reference network on the
MNIST, CIFAR-10, and Tiny-ImageNet classification tasks and is broadly applicable
to various architectures including convolutional, residual and recurrent networks.
Unlike existing methods, our approach enables us to demonstrate that the retained
connections are indeed relevant to the given task.

1 INTRODUCTION

Despite the success of deep neural networks in machine learning, they are often found to be highly
overparametrized making them computationally expensive with excessive memory requirements.
Pruning such large networks with minimal loss in performance is appealing for real-time applica-
tions, especially on resource-limited devices. In addition, compressed neural networks utilize the
model capacity efficiently, and this interpretation can be used to derive better generalization bounds
for neural networks (Arora et al. (2018)).

In network pruning, given a large reference neural network, the goal is to learn a much smaller
subnetwork that mimics the performance of the reference network. The majority of existing methods
in the literature attempt to find a subset of weights from the pretrained reference network either
based on a saliency criterion (Mozer & Smolensky (1989); LeCun et al. (1990); Han et al. (2015))
or utilizing sparsity enforcing penalties (Chauvin (1989); Carreira-Perpiñán & Idelbayev (2018)).
Unfortunately, since pruning is included as a part of an iterative optimization procedure, all these
methods require many expensive prune – retrain cycles and heuristic design choices with additional
hyperparameters, making them non-trivial to extend to new architectures and tasks.

In this work, we introduce a saliency criterion that identifies connections in the network that are
important to the given task in a data-dependent way before training. Specifically, we discover im-
portant connections based on their influence on the loss function at a variance scaling initialization,
which we call connection sensitivity. Given the desired sparsity level, redundant connections are
pruned once prior to training (i.e., single-shot), and then the sparse pruned network is trained in the
standard way. Our approach has several attractive properties:
• Simplicity. Since the network is pruned once prior to training, there is no need for pretraining

and complex pruning schedules. Our method has no additional hyperparameters and once pruned,
training of the sparse network is performed in the standard way.

• Versatility. Since our saliency criterion chooses structurally important connections, it is robust
to architecture variations. Therefore our method can be applied to various architectures including
convolutional, residual and recurrent networks with no modifications.

i

Published as a conference paper at ICLR 2019

• Interpretability. Our method determines important connections with a mini-batch of data at
single-shot. By varying this mini-batch used for pruning, our method enables us to verify that
the retained connections are indeed essential for the given task.

We evaluate our method on MNIST, CIFAR-10, and Tiny-ImageNet classification datasets with widely
varying architectures. Despite being the simplest, our method obtains extremely sparse networks
with virtually the same accuracy as the existing baselines across all tested architectures. Further-
more, we investigate the relevance of the retained connections as well as the effect of the network
initialization and the dataset on the saliency score.

2 RELATED WORK

Classical methods. Essentially, early works in network pruning can be categorized into two
groups (Reed (1993)): 1) those that utilize sparsity enforcing penalties; and 2) methods that prune
the network based on some saliency criterion. The methods from the former category (Chauvin
(1989); Weigend et al. (1991); Ishikawa (1996)) augment the loss function with some sparsity en-
forcing penalty terms (e.g., L0 or L1 norm), so that back-propagation effectively penalizes the mag-
nitude of the weights during training. Then weights below a certain threshold may be removed.
On the other hand, classical saliency criteria include the sensitivity of the loss with respect to the
neurons (Mozer & Smolensky (1989)) or the weights (Karnin (1990)) and Hessian of the loss with
respect to the weights (LeCun et al. (1990); Hassibi et al. (1993)). Since these criteria are heavily
dependent on the scale of the weights and are designed to be incorporated within the learning pro-
cess, these methods are prohibitively slow requiring many iterations of pruning and learning steps.
Our approach identifies redundant weights from an architectural point of view and prunes them once
at the beginning before training.

Modern advances. In recent years, the increased space and time complexities as well as the risk
of overfitting in deep neural networks prompted a surge of further investigation in network pruning.
While Hessian based approaches employ the diagonal approximation due to its computational sim-
plicity, impressive results (i.e., extreme sparsity without loss in accuracy) are achieved using magni-
tude of the weights as the criterion (Han et al. (2015)). This made them the de facto standard method
for network pruning and led to various implementations (Guo et al. (2016); Carreira-Perpiñán &
Idelbayev (2018)). The magnitude criterion is also extended to recurrent neural networks (Narang
et al. (2017)), yet with heavily tuned hyperparameter setting. Unlike our approach, the main draw-
backs of magnitude based approaches are the reliance on pretraining and the expensive prune –
retrain cycles. Furthermore, since pruning and learning steps are intertwined, they often require
highly heuristic design choices which make them non-trivial to be extended to new architectures
and different tasks. Meanwhile, Bayesian methods are also applied to network pruning (Ullrich
et al. (2017); Molchanov et al. (2017a)) where the former extends the soft weight sharing in Nowlan
& Hinton (1992) to obtain a sparse and compressed network, and the latter uses variational inference
to learn the dropout rate which can then be used to prune the network. Unlike the above methods,
our approach is simple and easily adaptable to any given architecture or task without modifying the
pruning procedure.

Network compression in general. Apart from weight pruning, there are approaches focused
on structured simplification such as pruning filters (Li et al. (2017); Molchanov et al. (2017b)),
structured sparsity with regularizers (Wen et al. (2016)), low-rank approximation (Jaderberg et al.
(2014)), matrix and tensor factorization (Novikov et al. (2015)), and sparsification using expander
graphs (Prabhu et al. (2018)) or Erdős-Rényi random graph (Mocanu et al. (2018)). In addition,
there is a large body of work on compressing the representation of weights. A non-exhaustive
list includes quantization (Gong et al. (2014)), reduced precision (Gupta et al. (2015)) and binary
weights (Hubara et al. (2016)). In this work, we focus on weight pruning that is free from structural
constraints and amenable to further compression schemes.

3 NEURAL NETWORK PRUNING

The main hypothesis behind the neural network pruning literature is that neural networks are usually
overparametrized, and comparable performance can be obtained by a much smaller network (Reed
(1993)) while improving generalization (Arora et al. (2018)). To this end, the objective is to learn

ii

Published as a conference paper at ICLR 2019

a sparse network while maintaining the accuracy of the standard reference network. Let us first
formulate neural network pruning as an optimization problem.

Given a dataset D = {(xi,yi)}ni=1, and a desired sparsity level κ (i.e., the number of non-zero
weights) neural network pruning can be written as the following constrained optimization problem:

min
w

L(w;D) = min
w

1

n

n∑
i=1

`(w; (xi,yi)) , (1)

s.t. w ∈ Rm, ‖w‖0 ≤ κ .
Here, `(·) is the standard loss function (e.g., cross-entropy loss), w is the set of parameters of the
neural network, m is the total number of parameters and ‖ · ‖0 is the standard L0 norm.

The conventional approach to optimize the above problem is by adding sparsity enforcing penalty
terms (Chauvin (1989); Weigend et al. (1991); Ishikawa (1996)). Recently, Carreira-Perpiñán
& Idelbayev (2018) attempts to minimize the above constrained optimization problem using the
stochastic version of projected gradient descent (where the projection is accomplished by pruning).
However, these methods often turn out to be inferior to saliency based methods in terms of resulting
sparsity and require heavily tuned hyperparameter settings to obtain comparable results.

On the other hand, saliency based methods treat the above problem as selectively removing redun-
dant parameters (or connections) in the neural network. In order to do so, one has to come up with
a good criterion to identify such redundant connections. Popular criteria include magnitude of the
weights, i.e., weights below a certain threshold are redundant (Han et al. (2015); Guo et al. (2016))
and Hessian of the loss with respect to the weights, i.e., the higher the value of Hessian, the higher
the importance of the parameters (LeCun et al. (1990); Hassibi et al. (1993)), defined as follows:

sj =

|wj | , for magnitude based
w2

jHjj

2 or
w2

j

2H−1
jj

for Hessian based .
(2)

Here, for connection j, sj is the saliency score, wj is the weight, and Hjj is the value of the
Hessian matrix, where the Hessian H = ∂2L/∂w2 ∈ Rm×m. Considering Hessian based methods,
the Hessian matrix is neither diagonal nor positive definite in general, approximate at best, and
intractable to compute for large networks.

Despite being popular, both of these criteria depend on the scale of the weights and in turn require
pretraining and are very sensitive to the architectural choices. For instance, different normaliza-
tion layers affect the scale of the weights in a different way, and this would non-trivially affect the
saliency score. Furthermore, pruning and the optimization steps are alternated many times through-
out training, resulting in highly expensive prune – retrain cycles. Such an exorbitant requirement
hinders the use of pruning methods in large-scale applications and raises questions about the credi-
bility of the existing pruning criteria.

In this work, we design a criterion which directly measures the connection importance in a data-
dependent manner. This alleviates the dependency on the weights and enables us to prune the
network once at the beginning, and then the training can be performed on the sparse pruned net-
work. Therefore, our method eliminates the need for the expensive prune – retrain cycles, and in
theory, it can be an order of magnitude faster than the standard neural network training as it can be
implemented using software libraries that support sparse matrix computations.

4 SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY

Given a neural network and a dataset, our goal is to design a method that can selectively prune
redundant connections for the given task in a data-dependent way even before training. To this end,
we first introduce a criterion to identify important connections and then discuss its benefits.

4.1 CONNECTION SENSITIVITY: ARCHITECTURAL PERSPECTIVE

Since we intend to measure the importance (or sensitivity) of each connection independently of
its weight, we introduce auxiliary indicator variables c ∈ {0, 1}m representing the connectivity of

iii

Published as a conference paper at ICLR 2019

parameters w.1 Now, given the sparsity level κ, Equation 1 can be correspondingly modified as:

min
c,w

L(c�w;D) = min
c,w

1

n

n∑
i=1

`(c�w; (xi,yi)) , (3)

s.t. w ∈ Rm ,

c ∈ {0, 1}m, ‖c‖0 ≤ κ ,
where � denotes the Hadamard product. Compared to Equation 1, we have doubled the number
of learnable parameters in the network and directly optimizing the above problem is even more
difficult. However, the idea here is that since we have separated the weight of the connection (w)
from whether the connection is present or not (c), we may be able to determine the importance of
each connection by measuring its effect on the loss function.

For instance, the value of cj indicates whether the connection j is active (cj = 1) in the network
or pruned (cj = 0). Therefore, to measure the effect of connection j on the loss, one can try to
measure the difference in loss when cj = 1 and cj = 0, keeping everything else constant. Precisely,
the effect of removing connection j can be measured by,

∆Lj(w;D) = L(1�w;D)− L((1− ej)�w;D) , (4)

where ej is the indicator vector of element j (i.e., zeros everywhere except at the index j where it is
one) and 1 is the vector of dimension m.

Note that computing ∆Lj for each j ∈ {1 . . .m} is prohibitively expensive as it requires m + 1
(usually in the order of millions) forward passes over the dataset. In fact, since c is binary, L is not
differentiable with respect to c, and it is easy to see that ∆Lj attempts to measure the influence of
connection j on the loss function in this discrete setting. Therefore, by relaxing the binary constraint
on the indicator variables c, ∆Lj can be approximated by the derivative of L with respect to cj ,
which we denote gj(w;D). Hence, the effect of connection j on the loss can be written as:

∆Lj(w;D) ≈ gj(w;D) =
∂L(c�w;D)

∂cj

∣∣∣∣
c=1

= lim
δ→0

L(c�w;D)− L((c− δ ej)�w;D)

δ

∣∣∣∣
c=1

.

(5)
In fact, ∂L/∂cj is an infinitesimal version of ∆Lj , that measures the rate of change of L with
respect to an infinitesimal change in cj from 1 → 1 − δ. This can be computed efficiently in one
forward-backward pass using automatic differentiation, for all j at once. Notice, this formulation
can be viewed as perturbing the weight wj by a multiplicative factor δ and measuring the change
in loss. This approximation is similar in spirit to Koh & Liang (2017) where they try to measure
the influence of a datapoint to the loss function. Here we measure the influence of connections.
Furthermore, ∂L/∂cj is not to be confused with the gradient with respect to the weights (∂L/∂wj),
where the change in loss is measured with respect to an additive change in weight wj .

Notably, our interest is to discover important (or sensitive) connections in the architecture, so that
we can prune unimportant ones in single-shot, disentangling the pruning process from the iterative
optimization cycles. To this end, we take the magnitude of the derivatives gj as the saliency criterion.
Note that if the magnitude of the derivative is high (regardless of the sign), it essentially means that
the connection cj has a considerable effect on the loss (either positive or negative), and it has to be
preserved to allow learning on wj . Based on this hypothesis, we define connection sensitivity as the
normalized magnitude of the derivatives:

sj =
|gj(w;D)|∑m
k=1 |gk(w;D)|

. (6)

Once the sensitivity is computed, only the top-κ connections are retained, where κ denotes the
desired number of non-zero weights. Precisely, the indicator variables c are set as follows:

cj = 1[sj − s̃κ ≥ 0] , ∀ j ∈ {1 . . .m} , (7)

where s̃κ is the κ-th largest element in the vector s and 1[·] is the indicator function. Here, for
exactly κ connections to be retained, ties can be broken arbitrarily.

We would like to clarify that the above criterion (Equation 6) is different from the criteria used
in early works by Mozer & Smolensky (1989) or Karnin (1990) which do not entirely capture the

1Multiplicative coefficients (similar to c) were also used for subset regression in Breiman (1995).

iv

Published as a conference paper at ICLR 2019

Algorithm 1 SNIP: Single-shot Network Pruning based on Connection Sensitivity

Require: Loss function L, training dataset D, sparsity level κ . Refer Equation 3
Ensure: ‖w∗‖0 ≤ κ

1: w← VarianceScalingInitialization . Refer Section 4.2
2: Db = {(xi,yi)}bi=1 ∼ D . Sample a mini-batch of training data

3: sj ←
|gj(w;Db)|∑m
k=1|gk(w;Db)| , ∀j ∈ {1 . . .m} . Connection sensitivity

4: s̃← SortDescending(s)
5: cj ← 1[sj − s̃κ ≥ 0] , ∀ j ∈ {1 . . .m} . Pruning: choose top-κ connections
6: w∗ ← arg minw∈Rm L(c�w;D) . Regular training
7: w∗ ← c�w∗

connection sensitivity. The fundamental idea behind them is to identify elements (e.g. weights or
neurons) that least degrade the performance when removed. This means that their saliency criteria
(i.e. −∂L/∂w or −∂L/∂α; α refers to the connectivity of neurons), in fact, depend on the loss
value before pruning, which in turn, require the network to be pre-trained and iterative optimization
cycles to ensure minimal loss in performance. They also suffer from the same drawbacks as the
magnitude and Hessian based methods as discussed in Section 3. In contrast, our saliency criterion
(Equation 6) is designed to measure the sensitivity as to how much influence elements have on the
loss function regardless of whether it is positive or negative. This criterion alleviates the dependency
on the value of the loss, eliminating the need for pre-training. These fundamental differences enable
the network to be pruned at single-shot prior to training, which we discuss further in the next section.

4.2 SINGLE-SHOT PRUNING AT INITIALIZATION

Note that the saliency measure defined in Equation 6 depends on the value of weights w used to
evaluate the derivative as well as the dataset D and the loss function L. In this section, we discuss
the effect of each of them and show that it can be used to prune the network in single-shot with
initial weights w.

Firstly, in order to minimize the impact of weights on the derivatives ∂L/∂cj , we need to choose
these weights carefully. For instance, if the weights are too large, the activations after the non-linear
function (e.g., sigmoid) will be saturated, which would result in uninformative gradients. Therefore,
the weights should be within a sensible range. In particular, there is a body of work on neural
network initialization (Goodfellow et al. (2016)) that ensures the gradients to be in a reasonable
range, and our saliency measure can be used to prune neural networks at any such initialization.

Furthermore, we are interested in making our saliency measure robust to architecture variations.
Note that initializing neural networks is a random process, typically done using normal distribution.
However, if the initial weights have a fixed variance, the signal passing through each layer no longer
guarantees to have the same variance, as noted by LeCun et al. (1998). This would make the gradient
and in turn our saliency measure, to be dependent on the architectural characteristics. Thus, we
advocate the use of variance scaling methods (e.g., Glorot & Bengio (2010)) to initialize the weights,
such that the variance remains the same throughout the network. By ensuring this, we empirically
show that our saliency measure computed at initialization is robust to variations in the architecture.

Next, since the dataset and the loss function defines the task at hand, by relying on both of them,
our saliency criterion in fact discovers the connections in the network that are important to the given
task. However, the practitioner needs to make a choice on whether to use the whole training set,
or a mini-batch or the validation set to compute the connection saliency. Moreover, in case there
are memory limitations (e.g., large model or dataset), one can accumulate the saliency measure over
multiple batches or take an exponential moving average. In our experiments, we show that using
only one mini-batch of a reasonable number of training examples can lead to effective pruning.

Finally, in contrast to the previous approaches, our criterion for finding redundant connections is
simple and directly based on the sensitivity of the connections. This allows us to effectively iden-
tify and prune redundant connections in a single step even before training. Then, training can be
performed on the resulting pruned (sparse) network. We name our method SNIP for Single-shot
Network Pruning, and the complete algorithm is given in Algorithm 1.

v

Published as a conference paper at ICLR 2019

0 10 20 30 40 50 60 70 80 90
Sparsity (%)

1.2

1.4

1.6

1.8

2.0

2.2

Er
ro
r (
%
)

(a) LeNet-300-100

0 10 20 30 40 50 60 70 80 90
Sparsity (%)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Er
ro
r (
%
)

(b) LeNet-5-Caffe

Figure 1: Test errors of LeNets pruned at varying sparsity levels κ̄, where κ̄ = 0 refers to the reference
network trained without pruning. Our approach performs as good as the reference network across
varying sparsity levels on both the models.

5 EXPERIMENTS

We evaluate our method, SNIP, on MNIST, CIFAR-10 and Tiny-ImageNet classification tasks with a
variety of network architectures. Our results show that SNIP yields extremely sparse models with
minimal or no loss in accuracy across all tested architectures, while being much simpler than other
state-of-the-art alternatives. We also provide clear evidence that our method prunes genuinely ex-
plainable connections rather than performing blind pruning.

Experiment setup For brevity, we define the sparsity level to be κ̄ = (m − κ)/m · 100 (%),
where m is the total number of parameters and κ is the desired number of non-zero weights. For a
given sparsity level κ̄, the sensitivity scores are computed using a batch of 100 and 128 examples
for MNIST and CIFAR experiments, respectively. After pruning, the pruned network is trained in the
standard way. Specifically, we train the models using SGD with momentum of 0.9, batch size of
100 for MNIST and 128 for CIFAR experiments and the weight decay rate of 0.0005, unless stated
otherwise. The initial learning rate is set to 0.1 and decayed by 0.1 at every 25k or 30k iterations
for MNIST and CIFAR, respectively. Our algorithm requires no other hyperparameters or complex
learning/pruning schedules as in most pruning algorithms. We spare 10% of the training data as a
validation set and used only 90% for training. For CIFAR experiments, we use the standard data
augmentation (i.e., random horizontal flip and translation up to 4 pixels) for both the reference and
sparse models. The code can be found here: https://github.com/namhoonlee/snip-public.

5.1 PRUNING LENETS WITH VARYING LEVELS OF SPARSITY

We first test our approach on two standard networks for pruning, LeNet-300-100 and LeNet-5-Caffe.
LeNet-300-100 consists of three fully-connected (fc) layers with 267k parameters and LeNet-5-Caffe
consists of two convolutional (conv) layers and two fc layers with 431k parameters. We prune
the LeNets for different sparsity levels κ̄ and report the performance in error on the MNIST image
classification task. We run the experiment 20 times for each κ̄ by changing random seeds for dataset
and network initialization. The results are reported in Figure 1.

The pruned sparse LeNet-300-100 achieves performances similar to the reference (κ̄ = 0), only
with negligible loss at κ̄ = 90. For LeNet-5-Caffe, the performance degradation is nearly invisible.
Note that our saliency measure does not require the network to be pre-trained and is computed at
random initialization. Despite such simplicity, our approach prunes LeNets quickly (single-shot) and
effectively (minimal accuracy loss) at varying sparsity levels.

5.2 COMPARISONS TO EXISTING APPROACHES

What happens if we increase the target sparsity to an extreme level? For example, would a model
with only 1% of the total parameters still be trainable and perform well? We test our approach for
extreme sparsity levels (e.g., up to 99% sparsity on LeNet-5-Caffe) and compare with various pruning
algorithms as follows: LWC (Han et al. (2015)), DNS (Guo et al. (2016)), LC (Carreira-Perpiñán &

vi

https://github.com/namhoonlee/snip-public

Published as a conference paper at ICLR 2019

Method Criterion LeNet-300-100 LeNet-5-Caffe Pretrain # Prune Additional Augment Arch.
κ̄ (%) err. (%) κ̄ (%) err. (%) hyperparam. objective constraints

Ref. – – 1.7 – 0.9 – – – – –
LWC Magnitude 91.7 1.6 91.7 0.8 X many X 7 X
DNS Magnitude 98.2 2.0 99.1 0.9 X many X 7 X
LC Magnitude 99.0 3.2 99.0 1.1 X many X X 7
SWS Bayesian 95.6 1.9 99.5 1.0 X soft X X 7
SVD Bayesian 98.5 1.9 99.6 0.8 X soft X X 7
OBD Hessian 92.0 2.0 92.0 2.7 X many X 7 7
L-OBS Hessian 98.5 2.0 99.0 2.1 X many X 7 X

SNIP (ours) Connection 95.0 1.6 98.0 0.8
7 1 7 7 7sensitivity 98.0 2.4 99.0 1.1

Table 1: Pruning results on LeNets and comparisons to other approaches. Here, “many” refers to
an arbitrary number often in the order of total learning steps, and “soft” refers to soft pruning in
Bayesian based methods. Our approach is capable of pruning up to 98% for LeNet-300-100 and 99%
for LeNet-5-Caffe with marginal increases in error from the reference network. Notably, our approach
is considerably simpler than other approaches, with no requirements such as pretraining, additional
hyperparameters, augmented training objective or architecture dependent constraints.

Idelbayev (2018)), SWS (Ullrich et al. (2017)), SVD (Molchanov et al. (2017a)), OBD (LeCun et al.
(1990)), L-OBS (Dong et al. (2017)). The results are summarized in Table 1.

We achieve errors that are comparable to the reference model, degrading approximately 0.7% and
0.3% while pruning 98% and 99% of the parameters in LeNet-300-100 and LeNet-5-Caffe respectively.
For slightly relaxed sparsities (i.e., 95% for LeNet-300-100 and 98% for LeNet-5-Caffe), the sparse
models pruned by SNIP record better performances than the dense reference network. Considering
99% sparsity, our method efficiently finds 1% of the connections even before training, that are
sufficient to learn as good as the reference network. Moreover, SNIP is competitive to other methods,
yet it is unparalleled in terms of algorithm simplicity.

To be more specific, we enumerate some key points and non-trivial aspects of other algorithms and
highlight the benefit of our approach. First of all, the aforementioned methods require networks to
be fully trained (if not partly) before pruning. These approaches typically perform many pruning op-
erations even if the network is well pretrained, and require additional hyperparameters (e.g., pruning
frequency in Guo et al. (2016), annealing schedule in Carreira-Perpiñán & Idelbayev (2018)). Some
methods augment the training objective to handle pruning together with training, increasing the
complexity of the algorithm (e.g., augmented Lagrangian in Carreira-Perpiñán & Idelbayev (2018),
variational inference in Molchanov et al. (2017a)). Furthermore, there are approaches designed to
include architecture dependent constraints (e.g., layer-wise pruning schemes in Dong et al. (2017)).

Compared to the above approaches, ours seems to cost almost nothing; it requires no pretraining or
additional hyperparameters, and is applied only once at initialization. This means that one can easily
plug-in SNIP as a preprocessor before training neural networks. Since SNIP prunes the network at the
beginning, we could potentially expedite the training phase by training only the survived parameters
(e.g., reduced expected FLOPs in Louizos et al. (2018)). Notice that this is not possible for the
aforementioned approaches as they obtain the maximum sparsity at the end of the process.

5.3 VARIOUS MODERN ARCHITECTURES

In this section we show that our approach is generally applicable to more complex modern network
architectures including deep convolutional, residual and recurrent ones. Specifically, our method is
applied to the following models:

• AlexNet-s and AlexNet-b: Models similar to Krizhevsky et al. (2012) in terms of the number of
layers and size of kernels. We set the size of fc layers to 512 (AlexNet-s) and to 1024 (AlexNet-b)
to adapt for CIFAR-10 and use strides of 2 for all conv layers instead of using pooling layers.

• VGG-C, VGG-D and VGG-like: Models similar to the original VGG models described in Simonyan
& Zisserman (2015). VGG-like (Zagoruyko (2015)) is a popular variant adapted for CIFAR-10
which has one less fc layers. For all VGG models, we set the size of fc layers to 512, remove
dropout layers to avoid any effect on sparsification and use batch normalization instead.

• WRN-16-8, WRN-16-10 and WRN-22-8: Same models as in Zagoruyko & Komodakis (2016).

vii

Published as a conference paper at ICLR 2019

Architecture Model Sparsity (%) # Parameters Error (%) ∆

Convolutional

AlexNet-s 90.0 5.1m → 507k 14.12 → 14.99 +0.87
AlexNet-b 90.0 8.5m → 849k 13.92 → 14.50 +0.58
VGG-C 95.0 10.5m → 526k 6.82 → 7.27 +0.45
VGG-D 95.0 15.2m → 762k 6.76 → 7.09 +0.33
VGG-like 97.0 15.0m → 449k 8.26 → 8.00 −0.26

Residual
WRN-16-8 95.0 10.0m → 548k 6.21 → 6.63 +0.42
WRN-16-10 95.0 17.1m → 856k 5.91 → 6.43 +0.52
WRN-22-8 95.0 17.2m → 858k 6.14 → 5.85 −0.29

Recurrent

LSTM-s 95.0 137k → 6.8k 1.88 → 1.57 −0.31
LSTM-b 95.0 535k → 26.8k 1.15 → 1.35 +0.20
GRU-s 95.0 104k → 5.2k 1.87 → 2.41 +0.54
GRU-b 95.0 404k → 20.2k 1.71 → 1.52 −0.19

Table 2: Pruning results of the proposed approach on various modern architectures (before→ after).
AlexNets, VGGs and WRNs are evaluated on CIFAR-10, and LSTMs and GRUs are evaluated on the
sequential MNIST classification task. The approach is generally applicable regardless of architecture
types and models and results in a significant amount of reduction in the number of parameters with
minimal or no loss in performance.

• LSTM-s, LSTM-b, GRU-s, GRU-b: One layer RNN networks with either LSTM (Zaremba et al.
(2014)) or GRU (Cho et al. (2014)) cells. We develop two unit sizes for each cell type, 128 and
256 for {·}-s and {·}-b, respectively. The model is adapted for the sequential MNIST classification
task, similar to Le et al. (2015). Instead of processing pixel-by-pixel, however, we perform row-
by-row processing (i.e., the RNN cell receives each row at a time).

The results are summarized in Table 2. Overall, our approach prunes a substantial amount of param-
eters in a variety of network models with minimal or no loss in accuracy (< 1%). Our pruning proce-
dure does not need to be modified for specific architectural variations (e.g., recurrent connections),
indicating that it is indeed versatile and scalable. Note that prior art that use a saliency criterion
based on the weights (i.e., magnitude or Hessian based) would require considerable adjustments in
their pruning schedules as per changes in the model.

We note of a few challenges in directly comparing against others: different network specifications,
learning policies, datasets and tasks. Nonetheless, we provide a few comparison points that we
found in the literature. On CIFAR-10, SVD prunes 97.9% of the connections in VGG-like with no
loss in accuracy (ours: 97% sparsity) while SWS obtained 93.4% sparsity on WRN-16-4 but with
a non-negligible loss in accuracy of 2%. There are a couple of works attempting to prune RNNs
(e.g., GRU in Narang et al. (2017) and LSTM in See et al. (2016)). Even though these methods are
specifically designed for RNNs, none of them are able to obtain extreme sparsity without substantial
loss in accuracy reflecting the challenges of pruning RNNs. To the best of our knowledge, we are the
first to demonstrate on convolutional, residual and recurrent networks for extreme sparsities without
requiring additional hyperparameters or modifying the pruning procedure.

5.4 UNDERSTANDING WHICH CONNECTIONS ARE BEING PRUNED

So far we have shown that our approach can prune a variety of deep neural network architectures for
extreme sparsities without losing much on accuracy. However, it is not clear yet which connections
are actually being pruned away or whether we are pruning the right (i.e., unimportant) ones. What
if we could actually peep through our approach into this inspection?

Consider the first layer in LeNet-300-100 parameterized by wl=1 ∈ R784×300. This is a layer
fully connected to the input where input images are of size 28 × 28 = 784. In order to un-
derstand which connections are retained, we can visualize the binary connectivity mask for this
layer cl=1, by averaging across columns and then reshaping the vector into 2D matrix (i.e.,
cl=1 ∈ {0, 1}784×300 → R784 → R28×28). Recall that our method computes c using a mini-
batch of examples. In this experiment, we curate the mini-batch of examples of the same class and
see which weights are retained for that mini-batch of data. We repeat this experiment for all classes

viii

Published as a conference paper at ICLR 2019

(a) MNIST (b) Fashion-MNIST

Figure 2: Visualizations of pruned parameters of the first layer in LeNet-300-100; the parameters are
reshaped to be visualized as an image. Each column represents the visualizations for a particular
class obtained using a batch of 100 examples with varying levels of sparsity κ̄, from 10 (top) to 90
(bottom). Bright pixels indicate that the parameters connected to these region had high importance
scores (s) and survived from pruning. As the sparsity increases, the parameters connected to the
discriminative part of the image for classification survive and the irrelevant parts get pruned.

(i.e., digits for MNIST and fashion items for Fashion-MNIST) with varying sparsity levels κ̄. The
results are displayed in Figure 2 (see Appendix A for more results).

The results are significant; important connections seem to reconstruct either the complete image
(MNIST) or silhouettes (Fashion-MNIST) of input class. When we use a batch of examples of the digit
0 (i.e., the first column of MNIST results), for example, the parameters connected to the foreground
of the digit 0 survive from pruning while the majority of background is removed. Also, one can
easily determine the identity of items from Fashion-MNIST results. This clearly indicates that our
method indeed prunes the unimportant connections in performing the classification task, receiving
signals only from the most discriminative part of the input. This stands in stark contrast to other
pruning methods from which carrying out such inspection is not straightforward.

5.5 EFFECTS OF DATA AND WEIGHT INITIALIZATION

Recall that our connection saliency measure depends on the network weights w as well as the given
data D (Section 4.2). We study the effect of each of these in this section.

Effect of data. Our connection saliency measure depends on a mini-batch of train examples Db
(see Algorithm 1). To study the effect of data, we vary the batch size used to compute the saliency
(|Db|) and check which connections are being pruned as well as how much performance change
this results in on the corresponding sparse network. We test with LeNet-300-100 to visualize the
remaining parameters, and set the sparsity level κ̄ = 90. Note that the batch size used for training
remains the same as 100 for all cases. The results are displayed in Figure 3.

Effect of initialization. Our approach prunes a network at a stochastic initialization as discussed.
We study the effect of the following initialization methods: 1) RN (random normal), 2) TN (truncated
random normal), 3) VS-X (a variance scaling method using Glorot & Bengio (2010)), and 4) VS-H
(a variance scaling method He et al. (2015)). We test on LeNets and RNNs on MNIST and run 20 sets
of experiments by varying the seed for initialization. We set the sparsity level κ̄ = 90, and train with
Adam optimizer (Kingma & Ba (2015)) with learning rate of 0.001 without weight decay. Note that
for training VS-X initialization is used in all the cases. The results are reported in Figure 3.

For all models, VS-H achieves the best performance. The differences between initializers are
marginal on LeNets, however, variance scaling methods indeed turns out to be essential for complex
RNN models. This effect is significant especially for GRU where without variance scaling initial-
ization, the pruned networks are unable to achieve good accuracies, even with different optimizers.
Overall, initializing with a variance scaling method seems crucial to making our saliency measure
reliable and model-agnostic.

ix

Published as a conference paper at ICLR 2019

|Db| = 1 |Db| = 10 |Db| = 100 |Db| = 1000 |Db| = 10000 train set
(1.94%) (1.72%) (1.64%) (1.56%) (1.40%) –

Figure 3: The effect of different batch sizes: (top-row) survived parameters in the first layer of
LeNet-300-100 from pruning visualized as images; (bottom-row) the performance in errors of the
pruned networks. For |Db| = 1, the sampled example was 8; our pruning precisely retains the valid
connections. As |Db| increases, survived parameters get close to the average of all examples in the
train set (last column), and the error decreases.

Init. LeNet-300-100 LeNet-5-Caffe LSTM-s GRU-s

RN 1.90± (0.09) 0.89± (0.04) 2.93± (0.20) 47.61± (20.49)
TN 1.96± (0.11) 0.87± (0.05) 3.03± (0.17) 46.48± (22.25)

VS-X 1.91± (0.10) 0.88± (0.07) 1.48± (0.09) 1.80± (0.10)
VS-H 1.88± (0.10) 0.85± (0.05) 1.47± (0.08) 1.80± (0.14)

Table 3: The effect of initialization on our saliency score. We report the classification errors (±std).
Variance scaling initialization (VS-X, VS-H) improves the performance, especially for RNNs.

5.6 FITTING RANDOM LABELS

0 5 10 15 20 25 30
Iteration (×103)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

true labels
true labels (prune)
random labels
random labels + reg
random labels (prune)

Figure 4: The sparse model pruned by
SNIP does not fit the random labels.

To further explore the use cases of SNIP, we run the ex-
periment introduced in Zhang et al. (2017) and check
whether the sparse network obtained by SNIP memorizes
the dataset. Specifically, we train LeNet-5-Caffe for both
the reference model and pruned model (with κ̄ = 99) on
MNIST with either true or randomly shuffled labels. To
compute the connection sensitivity, always true labels are
used. The results are plotted in Figure 4.

Given true labels, both the reference (red) and pruned
(blue) models quickly reach to almost zero training loss.
However, the reference model provided with random la-
bels (green) also reaches to very low training loss, even
with an explicit L2 regularizer (purple), indicating that neural networks have enough capacity to
memorize completely random data. In contrast, the model pruned by SNIP (orange) fails to fit the
random labels (high training error). The potential explanation is that the pruned network does not
have sufficient capacity to fit the random labels, but it is able to classify MNIST with true labels, rein-
forcing the significance of our saliency criterion. It is possible that a similar experiment can be done
with other pruning methods (Molchanov et al. (2017a)), however, being simple, SNIP enables such
exploration much easier. We provide a further analysis on the effect of varying κ̄ in Appendix B.

6 DISCUSSION AND FUTURE WORK

In this work, we have presented a new approach, SNIP, that is simple, versatile and interpretable;
it prunes irrelevant connections for a given task at single-shot prior to training and is applicable to
a variety of neural network models without modifications. While SNIP results in extremely sparse
models, we find that our connection sensitivity measure itself is noteworthy in that it diagnoses
important connections in the network from a purely untrained network. We believe that this opens
up new possibilities beyond pruning in the topics of understanding of neural network architectures,
multi-task transfer learning and structural regularization, to name a few. In addition to these potential
directions, we intend to explore the generalization capabilities of sparse networks.

x

Published as a conference paper at ICLR 2019

ACKNOWLEDGEMENTS

This work was supported by the Korean Government Graduate Scholarship, the ERC grant ERC-
2012-AdG 321162-HELIOS, EPSRC grant Seebibyte EP/M013774/1 and EPSRC/MURI grant
EP/N019474/1. We would also like to acknowledge the Royal Academy of Engineering and FiveAI.

REFERENCES

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. ICML, 2018.

Leo Breiman. Better subset regression using the nonnegative garrote. Technometrics, 1995.

Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev. “Learning-compression” algorithms for neural
net pruning. CVPR, 2018.

Yves Chauvin. A back-propagation algorithm with optimal use of hidden units. NIPS, 1989.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. EMNLP, 2014.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. NIPS, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. AISTATS, 2010.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. MIT press
Cambridge, 2016.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. NIPS,
2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. ICML, 2015.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. NIPS, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. Neural Networks, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. ICCV, 2015.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. NIPS, 2016.

Masumi Ishikawa. Structural learning with forgetting. Neural Networks, 1996.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. BMVC, 2014.

Ehud D Karnin. A simple procedure for pruning back-propagation trained neural networks. Neural
Networks, 1990.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. ICML,
2017.

xi

Published as a conference paper at ICLR 2019

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. 2012.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks
of rectified linear units. CoRR, 2015.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. NIPS, 1990.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient backprop. Neural
Networks: Tricks of the Trade, 1998.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. ICLR, 2017.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l0 regularization. ICLR, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature Communications, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. ICML, 2017a.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. ICLR, 2017b.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. NIPS, 1989.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in recurrent
neural networks. ICLR, 2017.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. NIPS, 2015.

Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by soft weight-sharing.
Neural Computation, 1992.

Ameya Prabhu, Girish Varma, and Anoop Namboodiri. Deep expander networks: Efficient deep
networks from graph theory. ECCV, 2018.

Russell Reed. Pruning algorithms-a survey. Neural Networks, 1993.

Abigail See, Minh-Thang Luong, and Christopher D Manning. Compression of neural machine
translation models via pruning. CoNLL, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. ICLR, 2017.

Andreas S Weigend, David E Rumelhart, and Bernardo A Huberman. Generalization by weight-
elimination with application to forecasting. NIPS, 1991.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. NIPS, 2016.

Sergey Zagoruyko. 92.45% on cifar-10 in torch. Torch Blog, 2015.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ICLR, 2017.

xii

Published as a conference paper at ICLR 2019

A VISUALIZING PRUNED PARAMETERS ON (INVERTED) (FASHION-)MNIST

(a) MNIST-Invert (b) Fashion-MNIST-Invert

Figure 5: Results of pruning with SNIP on inverted (Fashion-)MNIST (i.e., dark and bright regions are
swapped). Notably, even if the data is inverted, the results are the same as the ones on the original
(Fashion-)MNIST in Figure 2.

(a) MNIST (b) MNIST-Invert

(c) Fashion-MNIST (d) Fashion-MNIST-Invert

Figure 6: Results of pruning with ∂L/∂w on the original and inverted (Fashion-)MNIST. Notably,
compared to the case of using SNIP (Figures 2 and 5), the results are different: Firstly, the results on
the original (Fashion-)MNIST (i.e., (a) and (c) above) are not the same as the ones using SNIP (i.e., (a)
and (b) in Figure 2). Moreover, the pruning patterns are inconsistent with different sparsity levels,
either intra-class or inter-class. Furthermore, using ∂L/∂w results in different pruning patterns
between the original and inverted data in some cases (e.g., the 2nd columns between (c) and (d)).

xiii

Published as a conference paper at ICLR 2019

B FITTING RANDOM LABELS: VARYING SPARSITY LEVELS

0 5 10 15 20 25 30
Iteration (×103)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

̄κ= 10
̄κ= 30
̄κ= 50
̄κ= 70
̄κ= 90
̄κ= 99

Figure 7: The effect of varying sparsity levels (κ̄). The lower κ̄ becomes, the lower training loss is
recorded, meaning that a network with more parameters is more vulnerable to fitting random labels.
Recall, however, that all pruned models are able to learn to perform the classification task without
losing much accuracy (see Figure 1). This potentially indicates that the pruned network does not
have sufficient capacity to fit the random labels, but it is capable of performing the classification.

C TINY-IMAGENET

Architecture Model Sparsity (%) # Parameters Error (%) ∆

Convolutional

AlexNet-s 90.0 5.1m → 507k 62.52 → 65.27 +2.75
AlexNet-b 90.0 8.5m → 849k 62.76 → 65.54 +2.78
VGG-C 95.0 10.5m → 526k 56.49 → 57.48 +0.99
VGG-D 95.0 15.2m → 762k 56.85 → 57.00 +0.15
VGG-like 95.0 15.0m → 749k 54.86 → 55.73 +0.87

Table 4: Pruning results of SNIP on Tiny-ImageNet (before → after). Tiny-ImageNet2 is a subset of
the full ImageNet: there are 200 classes in total, each class has 500 and 50 images for training and
validation respectively, and each image has the spatial resolution of 64×64. Compared to CIFAR-10,
the resolution is doubled, and to deal with this, the stride of the first convolution in all architectures is
doubled, following the standard practice for this dataset. In general, the Tiny-ImageNet classification
task is considered much more complex than MNIST or CIFAR-10. Even on Tiny-ImageNet, however,
SNIP is still able to prune a large amount of parameters with minimal loss in performance. AlexNet
models lose more accuracies than VGGs, which may be attributed to the fact that the first convolution
stride for AlexNet is set to be 4 (by its design of no pooling) which is too large and could lead to high
loss of information when pruned.

2https://tiny-imagenet.herokuapp.com/

xiv

Published as a conference paper at ICLR 2019

D ARCHITECTURE DETAILS

Module Weight Stride Bias BatchNorm ReLU

Conv [11, 11, 3, 96] [2, 2] [96] X X
Conv [5, 5, 96, 256] [2, 2] [256] X X
Conv [3, 3, 256, 384] [2, 2] [384] X X
Conv [3, 3, 384, 384] [2, 2] [384] X X
Conv [3, 3, 384, 256] [2, 2] [256] X X
Linear [256, 1024× k] – [1024× k] X X
Linear [1024× k, 1024× k] – [1024× k] X X
Linear [1024× k, c] – [c] 7 7

Table 5: AlexNet-s (k = 1) and AlexNet-b (k = 2). In the last layer, c denotes the number of possible
classes: c = 10 for CIFAR-10 and c = 200 for Tiny-ImageNet. The strides in the first convolution
layer for Tiny-ImageNet are set [4, 4] instead of [2, 2] to deal with the increase in the image resolution.

Module Weight Stride Bias BatchNorm ReLU

Conv [3, 3, 3, 64] [1, 1] [64] X X
Conv [3, 3, 64, 64] [1, 1] [64] X X
Pool – [2, 2] – 7 7
Conv [3, 3, 64, 128] [1, 1] [128] X X
Conv [3, 3, 128, 128] [1, 1] [128] X X
Pool – [2, 2] – 7 7
Conv [3, 3, 128, 256] [1, 1] [256] X X
Conv [3, 3, 256, 256] [1, 1] [256] X X
Conv [1/3/3, 1/3/3, 256, 256] [1, 1] [256] X X
Pool – [2, 2] – 7 7
Conv [3, 3, 256, 512] [1, 1] [512] X X
Conv [3, 3, 512, 512] [1, 1] [512] X X
Conv [1/3/3, 1/3/3, 512, 512] [1, 1] [512] X X
Pool – [2, 2] – 7 7
Conv [3, 3, 512, 512] [1, 1] [512] X X
Conv [3, 3, 512, 512] [1, 1] [512] X X
Conv [1/3/3, 1/3/3, 512, 512] [1, 1] [512] X X
Pool – [2, 2] – 7 7

Linear [512, 512] – [512] X X
Linear [512, 512] – [512] X X
Linear [512, c] – [c] 7 7

Table 6: VGG-C/D/like. In the last layer, c denotes the number of possible classes: c = 10 for CIFAR-
10 and c = 200 for Tiny-ImageNet. The strides in the first convolution layer for Tiny-ImageNet are set
[2, 2] instead of [1, 1] to deal with the increase in the image resolution. The second Linear layer is
only used in VGG-C/D.

xv

	Introduction
	Related work
	Neural network pruning
	Single-shot network pruning based on connection sensitivity
	Connection sensitivity: architectural perspective
	Single-shot pruning at initialization

	Experiments
	Pruning LeNets with varying levels of sparsity
	Comparisons to existing approaches
	Various modern architectures
	Understanding which connections are being pruned
	Effects of data and weight initialization
	Fitting random labels

	Discussion and future work
	Visualizing pruned parameters on (inverted) (fashion-)mnist
	Fitting random labels: varying sparsity levels
	Tiny-imagenet
	Architecture details

