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1 INTRODUCTION

Many recent domain adaptation methods attempt to learn transformations that map both domains into
a common feature space. This is generally achieved by optimizing the representation to minimize
some measure of domain shift such as maximum mean discrepancy (Tzeng et al., 2014; Long & Wang,
2015) or correlation distances (Sun et al., 2016). Adversarial adaptation methods, which are related
to generative adversarial learning (Goodfellow et al., 2014), have become an increasingly popular
incarnation of this type of approach which seeks to minimize an approximate domain discrepancy
distance through an adversarial objective with respect to a domain discriminator.

In this work, we propose a unified view of recent adversarial domain adaptation methods, allowing
us to effectively examine the different factors of variation between the approaches and clearly
view the similarities they each share. By comparing their properties such as weight-sharing, base
models, and adversarial losses, we are able to facilitate understanding of the effect these choices
have on the resulting adaptation method. We use this insight to propose a simple yet novel and
powerful unsupervised adversarial adaptation method, Adversarial Discriminative Domain Adaptation
(ADDA), and show state-of-the-art visual adaptation results on the standard Office adaptation dataset.
Additional discussion and results are available in the long form of this report (Tzeng et al., 2017).

2 ADVERSARIAL DOMAIN ADAPTATION: A UNIFIED VIEW

Existing adversarial adaptation methods all share a basic core idea: representations effective for adap-
tation are learned via the inclusion of an adversarial loss. However, these methods vary considerably
in the particular details of their instantiations. Some methods seek to minimize the domain distance
in a latent discriminatively learned recognition space (Tzeng et al., 2015; Ganin et al., 2016) while
others look to minimize a domain distance in pixel space (Liu & Tuzel, 2016). Other approaches
include optimizing both spaces simultaneously (Donahue et al., 2016). Some argue that a single
shared representation should be learned (Ganin et al., 2016), while others claim that only part of
the representation should be shared to enable the most effective adaptation (Liu & Tuzel, 2016; Yoo
et al., 2016). Then there are more subtle differences in terms of the adversarial learning objective,
using either a minimax loss (Goodfellow et al., 2014; Ganin et al., 2016), an inverted label minimax
loss (Goodfellow et al., 2014), or a combination confusion loss (Tzeng et al., 2015). Each subsequent
algorithm presents a new setting across these factors, but offers limited motivation or connection to
prior work. This inherently limits our ability to understand the crucial components of each algorithm
and, more importantly, determine how to combine them. We unify the existing methods and highlight
their variations in Figure 1.

All methods learn mappings from source and target inputs to a common high-level feature space.
The mappings are instantiated by a base network that can be discriminative, or can include both
a discriminative and a generative component. Although there are many similarities to generative
adversarial networks, we use the more general term “mapping,” since many adversarial adaptation
methods do not rely on an actual image generator. The output of this mapping is fed into both a
classifier (trained on source) and an adversarial loss that encourages a common feature space. The
adversarial loss is minimized when a discriminator network cannot distinguish the domain label of
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Figure 1: Adversarial adaptation methods can be viewed as instantiations of the same framework
with different choices regarding their properties.

Table 1: Overview of adversarial domain adaption methods and their various properties. Viewing
methods under a unified framework enables us to easily propose a new adaptation method, adversarial
discriminative domain adaptation (ADDA).

Method Base model Weight sharing Adversarial loss
Gradient reversal (Ganin et al., 2016) discriminative shared minimax
Domain confusion (Tzeng et al., 2015) discriminative shared confusion
CoGAN (Liu & Tuzel, 2016) generative unshared GAN
ADDA (Ours) discriminative unshared GAN

the input. The choices include whether the base mapping is generative or discriminative, whether its
weights are tied or untied across domains, and which adversarial loss is used. We provide a summary
of recent adversarial adaptation methods and their choices in Table 1.

Base model Because unsupervised domain adaptation generally considers discriminative tasks such
as classification, previous adaptation methods have generally relied on adapting discriminative models
between domains. With a discriminative base model, input images are mapped into a feature space
that is useful for a discriminative task such as image classification. However, Liu and Tuzel achieve
state of the art results on unsupervised MNIST-USPS using two generative adversarial networks Liu
& Tuzel (2016). These generative models use random noise as input to generate samples in image
space—generally, an intermediate feature of an adversarial discriminator is then used as a feature for
training a task-specific classifier.

Weight sharing Previous adversarial adaptation methods learn a single, symmetric transformation by
sharing weights between the source and target networks in order to map images from either domain
into a common feature space. Learning a symmetric transformation reduces the number of parameters
in the model. However, it may make the optimization more poorly conditioned, since the same
network must handle images from two separate domains. Rozantsev et al. (2016) showed that untied
but related weights can lead to effective adaptation in both supervised and unsupervised settings.
As a result, some recent methods have favored untying weights (fully or partially) between the two
domains, allowing models to learn parameters for each domain individually.

Adversarial loss Finally, these adaptation methods employ different adversarial loss functions for
their various use cases. The gradient reversal layer of Ganin et al. (2016) optimizes the mapping to
maximize the discriminator loss directly:

min
MS ,MT

max
D

V (D,MS ,MT ) = Ex∼pS(x)[logD(MS(x))] + Ex∼pT (x)[log(1−D(MT (x)))] (1)

where pS(x) and pT (x) represent the source and target distributions, respectively, MS and MT

represent our source and target mappings, which may or may not be identical, and D represents the
discriminator. This optimization corresponds to the true minimax objective for generative adversarial
networks. However, this objective can be problematic, since early on during training the discriminator
converges quickly, causing the gradient to vanish.

When training GANs, rather than directly using the minimax loss, it is typical to train the generator
with the standard loss function with inverted labels (Goodfellow et al., 2014). This splits the
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optimization into two independent objectives, one for the generator and one for the discriminator.
The parallel objectives for adversarial adaptation are thus:

max
D

Ex∼pS(x)[logD(MS(x))] + Ex∼pT (x)[log(1−D(MT (x)))] (2)

max
MT

Ex∼pT (x)[logD(MT (x))]. (3)

This objective has the same fixed-point properties as the minimax loss but provides stronger gradients
to the target mapping. We refer to this modified loss function as the “GAN loss function” for the
remainder of this paper. Note that, in this setting, we use independent mappings for source and target,
denoted as MS and MT , and learn only MT adversarially. This mimics the GAN setting, where the
real image distribution remains fixed, and the generating distribution is learned to match it.

The GAN loss function is the standard choice in the setting where the generator is attempting to
mimic another unchanging distribution. However, in the setting where both distributions are changing,
this objective will lead to oscillation—when the mapping converges to its optimum, the discriminator
can simply flip the sign of its prediction in response. Tzeng et al. (2015) instead proposed the domain
confusion objective, under which the mapping is trained using a cross-entropy loss function against a
uniform distribution, replacing Equation 3 with:

max
MS ,MT

∑
d∈{S,T}

Ex∼pd(x)

[
1

2
logD(Md(x)) +

1

2
log(1−D(Md(x)))

]
. (4)

3 ADVERSARIAL DISCRIMINATIVE DOMAIN ADAPTATION

Table 2: Unsupervised adaptation performance on the
Office dataset in the fully-transductive setting. ADDA
achieves state-of-the-art results on all three evaluated
domain shifts and demonstrates the largest improve-
ment on the hardest shift, A→W .

Method A→ W D → W W → D

DDC (Tzeng et al., 2014) 0.618 0.950 0.985
DAN (Long & Wang, 2015) 0.685 0.960 0.990
DRCN (Ghifary et al., 2016) 0.687 0.964 0.990
DANN (Ganin et al., 2016) 0.730 0.964 0.992

ADDA (Ours) 0.751 0.970 0.996

The benefit of our unified view for domain
adversarial methods is that it directly enables
the development of novel adaptive methods.
In fact, designing a new method has now
been simplified to the space of making three
design choices: whether to use a generative
or discriminative base model, whether to
tie or untie the weights, and which adver-
sarial learning objective to use. In light of
this view we can summarize our method, ad-
versarial discriminative domain adaptation
(ADDA), as well as its connection to prior
work, according to our choices (see Table 1
“ADDA”). Specifically, we use a discrimina-
tive base model, unshared weights, and the standard GAN loss.

First, we choose a discriminative base model, as we hypothesize that much of the parameters required
to generate convincing in-domain samples are irrelevant for discriminative adaptation tasks. Next,
we choose to allow independent source and target mappings by untying the weights. We use the
pre-trained source model as an intitialization for the target representation space and fix the source
model during adversarial training. In doing so, we are learn an asymmetric mapping, in which we
modify the target model so as to match the source distribution. This is most similar to the original
generative adversarial learning setting, where a generated space is updated until it is indistinguishable
with a fixed real space. Therefore, we opt to use the inverted label GAN loss.

We note that the unified framework presented in the previous section has enabled us to compare prior
domain adversarial methods and make informed decisions about the different factors of variation.
Through this framework we are able to motivate a novel domain adaptation method, ADDA, and
offer insight into our design decisions.

We evaluate ADDA on the standard Office dataset for domain adaptation, which consists of images
from 3 domains: Amazon (A), DSLR (D), and Webcam (W ) (Saenko et al., 2010). We use the fully
transductive setting and evaluate across 3 domain shifts commonly used for evaluation. The results
of this experiment are presented in Table 2. ADDA achieves state of the art on all 3 domain shifts,
achieving the largest improvement on the hardest shift, A→W , indicating the effectiveness of our
method. For additional results and analysis of our method in other adaptation settings, we refer the
reader to the long-form version of this report (Tzeng et al., 2017).
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