
Published as a conference paper at ICLR 2018

FIDELITY-WEIGHTED LEARNING

Mostafa Dehghani Arash Mehrjou Stephan Gouws
University of Amsterdam MPI for Intelligent Systems Google Brain
dehghani@uva.nl amehrjou@tuebingen.mpg.de sgouws@google.com

Jaap Kamps Bernhard Schölkopf
University of Amsterdam MPI for Intelligent Systems
kamps@uva.nl bs@tuebingen.mpg.de

ABSTRACT

Training deep neural networks requires many training samples, but in practice
training labels are expensive to obtain and may be of varying quality, as some may
be from trusted expert labelers while others might be from heuristics or other sources
of weak supervision such as crowd-sourcing. This creates a fundamental quality-
versus-quantity trade-off in the learning process. Do we learn from the small amount
of high-quality data or the potentially large amount of weakly-labeled data? We
argue that if the learner could somehow know and take the label-quality into account
when learning the data representation, we could get the best of both worlds. To this
end, we propose “fidelity-weighted learning” (FWL), a semi-supervised student-
teacher approach for training deep neural networks using weakly-labeled data. FWL
modulates the parameter updates to a student network (trained on the task we care
about) on a per-sample basis according to the posterior confidence of its label-quality
estimated by a teacher (who has access to the high-quality labels). Both student and
teacher are learned from the data. We evaluate FWL on two tasks in information
retrieval and natural language processing where we outperform state-of-the-art
alternative semi-supervised methods, indicating that our approach makes better use
of strong and weak labels, and leads to better task-dependent data representations.

1 INTRODUCTION

The success of deep neural networks to date depends strongly on the availability of labeled data
which is costly and not always easy to obtain. Usually it is much easier to obtain small quantities
of high-quality labeled data and large quantities of unlabeled data. The problem of how to best
integrate these two different sources of information during training is an active pursuit in the field
of semi-supervised learning (Chapelle et al., 2006). However, for a large class of tasks it is also easy to
define one or more so-called “weak annotators”, additional (albeit noisy) sources of weak supervision
based on heuristics or “weaker”, biased classifiers trained on e.g. non-expert crowd-sourced data or
data from different domains that are related. While easy and cheap to generate, it is not immediately
clear if and how these additional weakly-labeled data can be used to train a stronger classifier for the
task we care about. More generally, in almost all practical applications machine learning systems
have to deal with data samples of variable quality. For example, in a large dataset of images only
a small fraction of samples may be labeled by experts and the rest may be crowd-sourced using e.g.
Amazon Mechanical Turk (Veit et al., 2017). In addition, in some applications, labels are intentionally
perturbed due to privacy issues (Wainwright et al., 2012; Papernot et al., 2017).

Assuming we can obtain a large set of weakly-labeled data in addition to a much smaller training set of
“strong” labels, the simplest approach is to expand the training set by including the weakly-supervised
samples (all samples are equal). Alternatively, one may pretrain on the weak data and then fine-tune on
observations from the true function or distribution (which we call strong data). Indeed, it has recently
been shown that a small amount of expert-labeled data can be augmented in such a way by a large
set of raw data, with labels coming from a heuristic function, to train a more accurate neural ranking
model (Dehghani et al., 2017d). The downside is that such approaches are oblivious to the amount
or source of noise in the labels.

1

Published as a conference paper at ICLR 2018

			

Representation Learning

Weak
Annotator

Prediction
loss

wrt. the
weak labels

Student

(a) Step 1

Learned Representations

Teacher

Training the
teacher on the

observations from
true function
(strong data)

(b) Step 2

			

Representation Learning

Prediction loss
wrt. the labels

generated by the teacher

Learned Representations

Teacher

Student

(c) Step 3

Figure 1: Illustration of Fidelity-Weighted Learning: Step 1: Pre-train student on weak data, Step 2: Fit teacher to observations
from the true function, and Step 3: Fine-tune student on labels generated by teacher, taking the confidence into account. Red
dotted borders and blue solid borders depict components with trainable and non-trainable parameters, respectively.

In this paper, we argue that treating weakly-labeled samples uniformly (i.e. each weak sample
contributes equally to the final classifier) ignores potentially valuable information of the label
quality. Instead, we propose Fidelity-Weighted Learning (FWL), a Bayesian semi-supervised
approach that leverages a small amount of data with true labels to generate a larger training set with
confidence-weighted weakly-labeled samples, which can then be used to modulate the fine-tuning
process based on the fidelity (or quality) of each weak sample. By directly modeling the inaccuracies
introduced by the weak annotator in this way, we can control the extent to which we make use of this
additional source of weak supervision: more for confidently-labeled weak samples close to the true
observed data, and less for uncertain samples further away from the observed data.

We propose a setting consisting of two main modules. One is called the student and is in charge of
learning a suitable data representation and performing the main prediction task, the other is the teacher
which modulates the learning process by modeling the inaccuracies in the labels. We explain our
approach in much more detail in Section 2, but at a high level it works as follows (see Figure 1): We
pretrain the student network on weak data to learn an initial task-dependent data representation which
we pass to the teacher along with the strong data. The teacher then learns to predict the strong data, but
crucially, based on the student’s learned representation. This then allows the teacher to generate new
labeled training data from unlabeled data, and in the process correct the student’s mistakes, leading
to a better final data representation and better final predictor.

We introduce the proposed FWL approach in more detail in Section 2. We then present our experimental
setup in Section 3 where we evaluate FWL on a toy task and two real-world tasks, namely document
ranking and sentence sentiment classification. In all cases, FWL outperforms competitive baselines
and yields state-of-the-art results, indicating that FWL makes better use of the limited true labeled
data and is thereby able to learn a better and more meaningful task-specific representation of the data.
Section 4 provides analysis of the bias-variance trade-off and the learning rate, suggesting also to view
FWL from the perspective of Vapnik’s learning with privileged information (LUPI) framework (Vapnik
& Izmailov, 2015). Section 5 situates FWL relative to related work, and we end the paper by drawing
the main conclusions in Section 6.

2 FIDELITY-WEIGHTED LEARNING (FWL)

In this section, we describe our proposed FWL approach for semi-supervised learning when we have
access to weak supervision (e.g. heuristics or weak annotators). We assume we are given a large set of
unlabeled data samples, a heuristic labeling function called the weak annotator, and a small set of high-
quality samples labeled by experts, called the strong dataset, consisting of tuples of training samples xi
and their true labels yi, i.e. Ds ={(xi,yi)}. We consider the latter to be observations from the true target
function that we are trying to learn. We use the weak annotator to generate labels for the unlabeled sam-
ples. Generated labels are noisy due to the limited accuracy of the weak annotator. This gives us the weak
dataset consisting of tuples of training samples xi and their weak labels ỹi, i.e. Dw ={(xi,ỹi)}. Note
that we can generate a large amount of weak training dataDw at almost no cost using the weak annotator.
In contrast, we have only a limited amount of observations from the true function, i.e. |Ds|�|Dw|.

2

Published as a conference paper at ICLR 2018

Algorithm 1 Fidelity-Weighted Learning.

1: Train the student on samples from the weakly-annotated dataDw.
2: Freeze the representation-learning component ψ(.) of the student and train teacher on the strong data
Ds = (ψ(xj),yj). Apply teacher to unlabeled samples xt to obtain soft dataset Dsw = {(xt,ȳt)} where
ȳt =T (xt) is the soft label and for each instance xt, the uncertainty of its label, Σ(xt), is provided by the
teacher.

3: Train the student on samples fromDsw with SGD and modulate the step-size ηt according to the per-sample
quality estimated using the teacher (Equation 1).

Our proposed setup comprises a neural network called the student and a Bayesian function
approximator called the teacher. The training process consists of three phases which we summarize
in Algorithm 1 and Figure 1.

Step 1 Pre-train the student onDw using weak labels generated by the weak annotator.

The main goal of this step is to learn a task dependent representation of the data as well as pretraining
the student. The student function is a neural network consisting of two parts. The first part ψ(.) learns
the data representation and the second part φ(.) performs the prediction task (e.g. classification).
Therefore the overall function is ŷ=φ(ψ(xi)). The student is trained on all samples of the weak dataset
Dw ={(xi,ỹi)}. For brevity, in the following, we will refer to both data samplexi and its representation
ψ(xi) by xi when it is obvious from the context. From the self-supervised feature learning point of
view, we can say that representation learning in this step is solving a surrogate task of approximating
the expert knowledge, for which a noisy supervision signal is provided by the weak annotator.

Step 2 Train the teacher on the strong data (ψ(xj), yj) ∈ Ds represented in terms of the stu-
dent representation ψ(.) and then use the teacher to generate a soft dataset Dsw consisting of
〈sample,predicted label, confidence〉 for all data samples.

We use a Gaussian process as the teacher to capture the label uncertainty in terms of the student
representation, estimated w.r.t the strong data. We explain the finer details of the GP in Appendix C,
and just present the overall description here. A prior mean and co-variance function is chosen for GP .
The learned embedding function ψ(·) in Step 1 is then used to map the data samples to dense vectors
as input to the GP . We use the learned representation by the student in the previous step to compensate
lack of data in Ds and the teacher can enjoy the learned knowledge from the large quantity of the
weakly annotated data. This way, we also let the teacher see the data through the lens of the student.

The GP is trained on the samples fromDs to learn the posterior mean mpost (used to generate soft
labels) and posterior co-varianceKpost(.,.) (which represents label uncertainty). We then create the
soft datasetDsw ={(xt,ȳt)} using the posterior GP , input samples xt fromDw∪Ds, and predicted
labels ȳt with their associated uncertainties as computed by T (xt) and Σ(xt):

T (xt) = g(mpost(xt))

Σ(xt) = h(Kpost(xt,xt))

The generated labels are called soft labels. Therefore, we refer toDsw as a soft dataset. g(.) transforms
the output of GP to the suitable output space. For example in classification tasks, g(.) would be the
softmax function to produce probabilities that sum up to one. For multidimensional-output tasks where
a vector of variances is provided by the GP , the vectorKpost(xt,xt) is passed through an aggregating
function h(.) to generate a scalar value for the uncertainty of each sample. Note that we train GP only
on the strong datasetDs but then use it to generate soft labels ȳt =T (xt) and uncertainty Σ(xt) for
samples belonging toDsw =Dw∪Ds.

In practice, we furthermore divide the space of data into several regions and assign each region a
separate GP trained on samples from that region. This leads to a better exploration of the data space
and makes use of the inherent structure of data. The algorithm called clustered GP gave better results
compared to a single GP. See Appendix A for the detailed description and empirical observations
which makes the use of multiple GPs reasonable.

Step 3 Fine-tune the weights of the student network on the soft dataset, while modulating the magnitude
of each parameter update by the corresponding teacher-confidence in its label.

The student network of Step 1 is fine-tuned using samples from the soft datasetDsw ={(xt,ȳt)}where
ȳt = T (xt). The corresponding uncertainty Σ(xt) of each sample is mapped to a confidence value

3

Published as a conference paper at ICLR 2018

according to Equation 1 below, and this is then used to determine the step size for each iteration of
the stochastic gradient descent (SGD). So, intuitively, for data points where we have true labels, the
uncertainty of the teacher is almost zero, which means we have high confidence and a large step-size for
updating the parameters. However, for data points where the teacher is not confident, we down-weight
the training steps of the student. This means that at these points, we keep the student function as it
was trained on the weak data in Step 1.

More specifically, we update the parameters of the student by training onDsw using SGD:

www∗ = argmin
www∈W

1

N

∑
(xt,ȳt)∈Dsw

l(www,xt,ȳt)+R(www),

wwwt+1 = wwwt−ηt(∇l(www,xt,ȳt)+∇R(www))

where l(·) is the per-example loss, ηt is the total learning rate, N is the size of the soft datasetDsw,
www is the parameters of the student network, andR(.) is the regularization term.

We define the total learning rate as ηt = η1(t)η2(xt), where η1(t) is the usual learning rate of our
chosen optimization algorithm that anneals over training iterations, and η2(xt) is a function of the label
uncertainty Σ(xt) that is computed by the teacher for each data point. Multiplying these two terms
gives us the total learning rate. In other words, η2 represents the fidelity (quality) of the current sample,
and is used to multiplicatively modulate η1. Note that the first term does not necessarily depend on
each data point, whereas the second term does. We propose

η2(xt)=exp[−βΣ(xt)], (1)

to exponentially decrease the learning rate for data point xt if its corresponding soft label ȳt is
unreliable (far from a true sample). In Equation 1, β is a positive scalar hyper-parameter. Intuitively,
small β results in a student which listens more carefully to the teacher and copies its knowledge, while
a large β makes the student pay less attention to the teacher, staying with its initial weak knowledge.
More concretely speaking, as β→0 student places more trust in the labels ȳt estimated by the teacher
and the student copies the knowledge of the teacher. On the other hand, as β→∞, student puts less
weight on the extrapolation ability of GP and the parameters of the student are not affected by the
correcting information from the teacher.

3 EXPERIMENTS

In this section, we apply FWL first to a toy problem and then to two different real tasks: document
ranking and sentiment classification. The neural networks are implemented in TensorFlow (Abadi
et al., 2015; Tang, 2016). GPflow (Matthews et al., 2017) is employed for developing the GP modules.
For both tasks, we evaluate the performance of our method compared to the following baselines:

1. WA. The weak annotator, i.e. the unsupervised method used for annotating the unlabeled data.
2. NNW. The student trained only on weak data.
3. NNS. The student trained only on strong data.
4. NNS+/W. The student trained on samples that are alternately drawn fromDw without replacement,

andDs with replacement. Since |Ds|�|Dw|, it oversamples the strong data.
5. NNW→S. The student trained on weak datasetDw and fine-tuned on strong datasetDs.
6. NNWω→S. The student trained on the weak data, but the step-size of each weak sample is weighted

by a fixed value 0≤ ω≤ 1, and fine-tuned on strong data. As an approximation for the optimal
value for ω, we have used the mean of η2 of our model (below).

7. FWL unsuprep. The representation in the first step is trained in an unsupervised way1 and the
student is trained on examples labeled by the teacher using the confidence scores.

8. FWL \Σ. The student trained on the weakly labeled data and fine-tuned on examples labeled by
the teacher without taking the confidence into account. This baseline is similar to (Veit et al., 2017).

9. FWL. Our FWL model, i.e. the student trained on the weakly labeled data and fine-tuned on
examples labeled by the teacher using the confidence scores.

In the following, we introduce each task and the results produced for it, more detail about the exact
student network and teacher GP for each task are in the appendix.

1In the document ranking task, as the representation of documents and queries, we use weighted averaging over pretrained embeddings of their words based on their
inverse document frequency (Dehghani et al., 2017d). In the sentiment analysis task, we use skip-thoughts vectors(Kiros et al., 2015)

4

Published as a conference paper at ICLR 2018

(a) Training student on 100 examples from the weak function. (b) Fitting teacher based on 10 observations from the true function.

(c) Fine-tuning the student based on observations from the true function. (d) Fine-tuning the student based on label/confidence from teacher.

Figure 2: Toy example: The true function we want to learn is y=sin(x) and the weak function is y=2sinc(x).

3.1 TOY PROBLEM

We first apply FWL to a one-dimensional toy problem to illustrate the various steps. Let ft(x)=sin(x)
be the true function (red dotted line in Figure 2a) from which a small set of observationsDs ={xj ,yj}
is provided (red points in Figure 2b). These observation might be noisy, in the same way that labels
obtained from a human labeler could be noisy. A weak annotator function fw(x)=2sinc(x) (magenta
line in Figure 2a) is provided, as an approximation to ft(.).

The task is to obtain a good estimate of ft(.) given the set Ds of strong observations and the weak
annotator function fw(.). We can easily obtain a large set of observationsDw ={xi,ỹi} from fw(.)
with almost no cost (magenta points in Figure 2a).

We consider two experiments:

1. A neural network trained on weak data and then fine-tuned on strong data from the true function,
which is the most common semi-supervised approach (Figure 2c).

2. A teacher-student framework working by the proposed FWL approach.

As can be seen in Figure 2d, FWL by taking into account label confidence, gives a better approximation
of the true hidden function. We repeated the above experiment 10 times. The average RMSE with respect
to the true function on a set of test points over those 10 experiments for the student, were as follows:

1. Student is trained on weak data (blue line in Figure 2a): 0.8406,
2. Student is trained on weak data then fine tuned on true observations (blue line in Figure 2c): 0.5451,
3. Student is trained on weak data, then fine tuned by soft labels and confidence information provided

by the teacher (blue line in Figure 2d): 0.4143 (best).

More details of the neural network and GP along with the specification of the data used in the above
experiment are presented in Appendix C and E.1.

3.2 DOCUMENT RANKING

This task is the core information retrieval problem and is challenging as the ranking model needs
to learn a representation for long documents and capture the notion of relevance between queries
and documents. Furthermore, the size of publicly available datasets with query-document relevance
judgments is unfortunately quite small (∼250 queries). We employ a state-of-the-art pairwise neural
ranker architecture as the student (Dehghani et al., 2017d). In this model, ranking is cast as a regression
task. Given each training sample x as a triple of query q, and two documents d+ and d−, the goal is
to learn a functionF :{<q,d+,d−>}→R, which maps each data sample x to a scalar output value
y indicating the probability of d+ being ranked higher than d− with respect to q.

5

Published as a conference paper at ICLR 2018

Table 1: Performance of FWL approach and baseline methods for ranking task. Ĳi indicates that the improvements with
respect to the baseline i are statistically significant at the 0.05 level using the paired two-tailed t-test with Bonferroni correction.

Method Robust04 ClueWeb

MAP nDCG@20 MAP nDCG@20

1 WABM25 0.2503Ĳ37 0.4102Ĳ37 0.1021Ĳ37 0.2070Ĳ37

2 NNW (Dehghani et al., 2017d) 0.2702Ĳ137 0.4290Ĳ137 0.1297Ĳ137 0.2201Ĳ137

3 NNS 0.1790 0.3519 0.0782 0.1730

4 NNS+/W 0.2763Ĳ1237 0.4330Ĳ1237 0.1354Ĳ1237 0.2319Ĳ1237

5 NNW→S 0.2810Ĳ1237 0.4372Ĳ1237 0.1346Ĳ1237 0.2317Ĳ1237

6 NNWω→S 0.2899Ĳ123457 0.4431Ĳ123457 0.1320Ĳ12347 0.2309Ĳ12347

7 FWLunsuprep 0.2211Ĳ37 0.3700Ĳ37 0.0831Ĳ37 0.1964Ĳ37

8 FWL \Σ 0.2980Ĳ123457 0.4516Ĳ123457 0.1386Ĳ123457 0.2340Ĳ123457

9 FWL 0.3124Ĳ12345678 0.4607Ĳ12345678 0.1472Ĳ12345678 0.2453Ĳ12345678

Ranker

		 		

Weights

Compositionality

Embedding

			

Figure 3: The student for the docu-
ment ranking task.

The student follows the architecture proposed in (Dehghani et al.,
2017d). The first layer of the network, i.e. representation learning
layer ψ : {< q,d+, d− >} → Rm maps each input sample to an
m- dimensional real-valued vector. In general, besides learning em-
beddings for words, function ψ learns to compose word embedding
based on their global importance in order to generate query/document
embeddings. The representation layer is followed by a simple fully-
connected feed-forward network with a sigmoidal output unit to
predict the probability of ranking d+ higher than d−. The general
schema of the student is illustrated in Figure 3. More details are
provided in Appendix B.1.

The teacher is implemented by clustered GP algorithm. See Ap-
pendix C for more details.

The weak annotator is BM25 (Robertson & Zaragoza, 2009), a
well-known unsupervised method for scoring query-document pairs based on statistics of the matched
terms. More details are provided in Appendix D.1.

Description of the data with weak labels and data with true labels as well as the setup of the document-
ranking experiments is presented in Appendix E.2 in more details.

Results and Discussions We conducted k-fold cross validation on Ds (the strong data) and report
two standard evaluation metrics for ranking: mean average precision (MAP) of the top-ranked 1,000
documents and normalized discounted cumulative gain calculated for the top 20 retrieved documents
(nDCG@20). Table 1 shows the performance on both datasets. As can be seen, FWL provides a
significant boost on the performance over all datasets. In the ranking task, the student is designed in
particular to be trained on weak annotations (Dehghani et al., 2017d), hence training the network only
on weak supervision, i.e. NNW performs better than NNS. This can be due to the fact that ranking is a
complex task requiring many training samples, while relatively few data with true labels are available.

Alternating between strong and weak data during training, i.e. NNS+/W seems to bring little (but
statistically significant) improvement. However, we can gain better results by the typical fine-tuning
strategy, NNW→S. Comparing the performance of FWLunsuprep to FWL indicates that, first of all
learning the representation of the input data downstream of the main task leads to better results
compared to a task-independent unsupervised or self-supervised way. Also the dramatic drop in the
performance compared to the FWL, emphasizes the importance of the preretraining the student on
weakly labeled data. We can gain improvement by fine-tuning the NNW using labels generated by the
teacher without considering their confidence score, i.e. FWL \Σ. This means we just augmented the
fine-tuning process by generating a fine-tuning set using teacher which is better thanDs in terms of
quantity andDw in terms of quality. This baseline is equivalent to setting β=0 in Equation 1. However,
we see a big jump in performance when we use FWL to include the estimated label quality from the
teacher, leading to the best overall results.

3.3 SENTIMENT CLASSIFICATION

In sentiment classification, the goal is to predict the sentiment (e.g., positive, negative, or neutral) of a
sentence. Each training sample x consists of a sentence s and its sentiment label ỹ.

6

Published as a conference paper at ICLR 2018

Table 2: Performance of the proposed FWL approach and baseline methods for
sentiment classification task. Ĳi indicates that the improvements with respect to the
baseline#i are statistically significant, at the 0.05 level using the paired two-tailed
t-test, with Bonferroni correction.

Method SemEval-14 SemEval-15

1 WALexicon 0.5141 0.4471

2 NNW 0.6719Ĳ137 0.5606Ĳ1

3 NNS 0.6307Ĳ1 0.5811Ĳ12

4 NNS+/W 0.7032Ĳ1237 0.6319Ĳ1237

5 NNW→S 0.7080Ĳ1237 0.6441Ĳ1237

6 NNWω→S 0.7166Ĳ12347 0.6603Ĳ123457

7 FWLunsuprep 0.6588 Ĳ13 0.6954Ĳ123

8 FWL \Σ 0.7202 Ĳ123457 0.6590Ĳ123457

9 FWL 0.7470 Ĳ12345678 0.6830Ĳ12345678

10 SemEvalBest 0.7162 0.6618
(Rouvier & Favre, 2016) (Deriu et al., 2016)

Embedding

Classifier

Embedding

Conv.
Feature Map

Pooled Repr.

			

Figure 4: The student for the senti-
ment classification task.

The student for the sentiment classification task is a convolutional model which has been shown to
perform best on the dataset we used (Deriu et al., 2017; Severyn & Moschitti, 2015a;b; Deriu et al.,
2016). The first layer of the network learns the function ψ(.) which maps input sentence s to a dense
vector as its representation. The inputs are first passed through an embedding layer mapping the
sentence to a matrixS∈Rm×|s|, followed by a series of 1d convolutional layers with max-pooling. The
representation layer is followed by feed-forward layers and a softmax output layer which returns the
probability distribution over all three classes. Figure 4 presents the general schema of the architecture
of the student. See Appendix B.2 for more details.

The teacher for this task is modeled by a GP . See Appendix C for more details.

The weak annotator is a simple unsupervised lexicon-based method (Hamdan et al., 2013; Kiritchenko
et al., 2014), which estimate a distribution over sentiments for each sentence, based on sentiment labels
of its terms. More details are provided in Appendix D.2.

Specification of the data with weak labels and data with true labels along with the detailed experimental
setup are given in Appendix E.3.

Results and Discussion We report Macro-F1, the official SemEval metric, in Table 2. We see that the
proposed FWL is the best performing approach.

For this task, since the amount of data with true labels are larger compared to the ranking task, the
performance of NNS is acceptable. Alternately sampling from weak and strong data gives better
results. Pretraining on weak labels then fine-tuning the network on true labels, further improves the
performance. Weighting the gradient updates from weak labels during pretraining and fine-tuning the
network with true labels, i.e. NNWω→S seems to work quite well in this task. For this task, like ranking
task, learning the representation in an unsupervised task independent fashion, i.e. FWLunsuprep, does
not lead to good results compared to the FWL. Similar to the ranking task, fine-tuning NNS based on
labels generated by GP instead of data with true labels, regardless of the confidence score, works better
than standard fine-tuning.

Besides the baselines, we also report the best performing systems which are also convolution-based
models (Rouvier & Favre 2016 on SemEval-14; Deriu et al. 2016 on SemEval-15). Using FWL and
taking the confidence into consideration outperforms the best systems and leads to the highest reported
results on both datasets.

4 ANALYSIS

In this section, we provide further analysis of FWL by investigating the bias-variance trade-off and the
learning rate.

4.1 HANDLING THE BIAS-VARIANCE TRADE-OFF

As mentioned in Section 2, β is a hyperparameter that controls the contribution of weak and strong data
to the training procedure. In order to investigate its influence, we fixed everything in the model and ran
the fine-tuning step with different values of β∈{0.0,0.1,1.0,2.0,5.0} in all the experiments.

7

Published as a conference paper at ICLR 2018

(a) Models trained on different amount weak data. (b) Models trained on different amount of strong data.

Figure 6: Performance of FWL and the baseline model trained on different amount of data.

Figure 5: Effect of different values for β.

Figure 5 illustrates the performance on the rank-
ing (on Robust04 dataset) and sentiment classi-
fication tasks (on SemEval14 dataset). For both
sentiment classification and ranking, β=1 gives
the best results (higher scores are better). We
also experimented on the toy problem with dif-
ferent values of β in three cases: 1) having 10
observations from the true function (same setup
as Section 3.1), marked as “Toy Data” in the plot,
2) having only 5 observations from the true func-
tion, marked as “Toy Data *” in the plot, and 3)
having f(x)=x+1 as the weak function, which is an extremely bad approximator of the true function,
marked as “Toy Data **” in the plot. For the “Toy Data” experiment, β=1 turned out to be optimal
(here, lower scores are better). However, for “Toy Data *”, where we have an extremely small number
of observations from the true function, setting β to a higher value acts as a regularizer by relying more
on weak signals, and eventually leads to better generalization. On the other hand, for “Toy Data **”,
where the quality of the weak annotator is extremely low, lower values of β put more focus on the true
observations. Therefore, β lets us control the bias-variance trade-off in these extreme cases.

4.2 A GOOD TEACHER IS BETTER THAN MANY OBSERVATIONS

We now look at the rate of learning for the student as the amount of training data is varied. We performed
two types of experiments for all tasks: In the first experiment, we use all the available strong data but
consider different percentages of the entire weak dataset. In the second experiment, we fix the amount
of weak data and provide the model with varying amounts of strong data. We use standard fine-tuning
with similar setups as for the baseline models. Details on the experiments for the toy problem are
provided in Appendix E.1.

Figure 6 presents the results of these experiments. In general, for all tasks and both setups, the student
learns faster when there is a teacher. One caveat is in the case where we have a very small amount of
weak data. In this case the student cannot learn a suitable representation in the first step, and hence the
performance of FWL is pretty low, as expected. It is highly unlikely that this situation occurs in reality
as obtaining weakly labeled data is much easier than strong data.

The empirical observation of Figure 6 that our model learns more with less data can also be seen as
evidence in support of another perspective to FWL, called learning using privileged information (Vapnik
& Izmailov, 2015). We elaborate more on this connection in Appendix F.

4.3 SENSITIVITY OF THE FWL TO THE QUALITY OF THE WEAK ANNOTATOR

Our proposed setup in FWL requires defining a so-called “weak annotator” to provide a source of weak
supervision for unlabelled data. In Section 4.1 we discussed the role of parameter β for controlling the
bias-variance trade-off by trying two weak annotators for the toy problem. Now, in this section, we
study how the quality of the weak annotator may affect the performance of the FWL, for the task of
document ranking as a real-world problem.

To do so, besides BM25 (Robertson & Zaragoza, 2009), we use three other weak annotators:

8

Published as a conference paper at ICLR 2018

Figure 7: Performance of FWL versus perfor-
mance of the corespondence weak annotator in the
document ranking task, on Robust04 dataset.

vector space model (Salton & Yang, 1973) with binary
term occurrence (BTO) weighting schema and vector space
model with TF-IDF weighting schema, which are both
weaker than BM25, and BM25+RM3 (Abdul-jaleel et al.,
2004) that uses RM3 as the pseudo-relevance feedback
method on top of BM25, leading to better labels.

Figure 7 illustrates the performance of these four weak an-
notators in terms of their mean average precision (MAP)
on the test data, versus the performance of FWL given the
corresponding weak annotator. As it is expected, the per-
formance of FWL depends on the quality of the employed
weak annotator. The percentage of improvement of FWL
over its corresponding weak annotator on the test data is
also presented in Figure 7. As can be seen, the better the performance of the weak annotator is, the less
the improvement of the FWL would be.

4.4 FROM MODIFYING THE LEARNING RATE TO WEIGHTED SAMPLING

Figure 8: Performance of FWL and FWLs with
respect to different batch of data for the task of doc-
ument ranking (Robust04 dataset) and sentiment
classification (SemEval14 dataset).

FWL provides confidence score based on the certainty asso-
ciated with each generated label ȳt, given sample xt∈Dsw.
We can translate the confidence score as how likely includ-
ing (xt,ȳt) in the training set for the student model improves
the performance, and rather than using this score as the mul-
tiplicative factor in the learning rate, we can use it to bias
sampling procedure of mini-batches so that the frequency
of training samples are proportional to the confidence score
of their labels.

We design an experiment to try FWL with this setup
(FWLs), in which we keep the architectures of the stu-
dent and the teacher and the procedure of the first two steps
of the FWL fixed, but we changed the step 3 as follows:
Given the soft datasetDsw, consisting of xt, its label ȳt and
the associated confidence score generated by the teacher,
we normalize the confidence scores over all training samples and set the normalized score of each
sample as its probability to be sampled. Afterward, we train the student model by mini-batches sampled
from this set with respect to the probabilities associated with each sample, but without considering the
original confidence scores in parameter updating. This means the more confident the teacher is about
the generated label for each sample, the more chance that sample has to be seen by the student model.

Figure 8 illustrates the performance of both FWL and FWLs trained on different amount of data sampled
fromDsw, in the document ranking and sentiment classification tasks. As can be seen, compared to
FWL, the performance of FWLs increases rapidly in the beginning but it slows down afterward. We
have looked into the sampling procedure and noticed that the confidence scores provided by the teacher
form a rather skewed distribution and there is a strong bias in FWLs toward sampling from data points
that are either in or closed to the points inDs, as GP has less uncertainty around these points and the
confidence scores are high. We observed that the performance of FWLs gets closer to the performance
of FWL after many epochs, while FWL had already a log convergence. The skewness of the confidence
distribution makes FWLs to have a tendency for more exploitation than exploration, however, FWL
has more chance to explore the input space, while it controls the effect of updates on the parameters for
samples based on their merit.

5 RELATED WORK

In this section, we position our FWL approach relative to related work.

Learning from imperfect labels has been thoroughly studied in the literature (Frénay & Verleysen,
2014). The imperfect (weak) signal can come from non-expert crowd workers, be the output of other
models that are weaker (for instance with low accuracy or coverage), biased, or models trained on
data from different related domains. Among these forms, in the distant supervision setup, a heuristic
labeling rule (Deriu et al., 2016; Severyn & Moschitti, 2015b) or function (Dehghani et al., 2017d)

9

Published as a conference paper at ICLR 2018

which can be relying on a knowledge base (Mintz et al., 2009; Min et al., 2013; Han & Sun, 2016) is
employed to devise noisy labels.

Learning from weak data sometimes aims at encoding various forms of domain expertise or cheaper
supervision from lay annotators. For instance, in the structured learning, the label space is pretty
complex and obtaining a training set with strong labels is extremely expensive, hence this class of
problems leads to a wide range of works on learning from weak labels (Roth, 2017). Indirect supervision
is considered as a form of learning from weak labels that is employed in particular in the structured
learning, in which a companion binary task is defined for which obtaining training data is easier (Chang
et al., 2010; Raghunathan et al., 2016). In the response-based supervision, the model receives feedback
from interacting with an environment in a task, and converts this feedback into a supervision signal
to update its parameters (Roth, 2017; Clarke et al., 2010; Riezler et al., 2014). Constraint-based
supervision is another form of weak supervision in which constraints that are represented as weak
label distributions are taken as signals for updating the model parameters. For instance, physics-based
constraints on the output (Stewart & Ermon, 2017) or output constraints on execution of logical
forms (Clarke et al., 2010).

In the proposed FWL model, we can employ these approaches as the weak annotator to provide
imperfect labels for the unlabeled data, however, a small amount of data with strong labels is also
needed, which put our model in the class of semi-supervised models. In the semi-supervised setup,
some ideas were developed to utilize weakly or even unlabeled data. For instance, the idea of
self(incremental)-training (Rosenberg et al., 2005), pseudo-labeling (Lee, 2013; Hinton et al., 2014),
and Co-training (Blum & Mitchell, 1998) are introduced for augmenting the training set by unlabeled
data with predicted labels. Some research used the idea of self-supervised (or unsupervised) feature
learning (Noroozi & Favaro, 2016; Dosovitskiy et al., 2016; Donahue et al., 2017) to exploit different
labelings that are freely available besides or within the data, and to use them as intrinsic signals to
learn general-purpose features. These features, that are learned using a proxy task, are then used in a
supervised task like object classification/detection or description matching.

As a common approach in semi-supervised learning, the unlabeled set can be used for learning the
distribution of the data. In particular for neural networks, greedy layer-wise pre-training of weights
using unlabeled data is followed by supervised fine-tuning (Hinton et al., 2006; Deriu et al., 2017;
Severyn & Moschitti, 2015b;a; Go et al., 2009). Other methods learn unsupervised encoding at multiple
levels of the architecture jointly with a supervised signal (Ororbia II et al., 2015; Weston et al., 2012).

Alternatively, some noise cleansing methods have been proposed to remove or correct mislabeled
samples (Brodley & Friedl, 1999). There are some studies showing that weak or noisy labels can be
leveraged by modifying the loss function (Reed et al., 2015; Patrini et al., 2017; 2016; Vahdat, 2017) or
changing the update rule to avoid imperfections of the noisy data (Malach & Shalev-Shwartz, 2017;
Dehghani et al., 2017b;c).

One direction of research focuses on modeling the pattern of the noise or weakness in the labels.
For instance, methods that use a generative model to correct weak labels such that a discriminative
model can be trained more effectively (Ratner et al., 2016; Rekatsinas et al., 2017; Varma et al.,
2017). Furthermore, methods that aim at capturing the pattern of the noise by inserting an extra
layer (Goldberger & Ben-Reuven, 2017) or a separate module tries to infer better labels from noisy
ones and use them to supervise the training of the network (Sukhbaatar et al., 2015; Veit et al., 2017;
Dehghani et al., 2017b). Our proposed FWL can be categorized in this class as the teacher tries to infer
better labels and provide certainty information which is incorporated as the update rule for the student
model.

6 CONCLUSION

Training neural networks using large amounts of weakly annotated data is an attractive approach in
scenarios where an adequate amount of data with true labels is not available, a situation which often
arises in practice. In this paper, we introduced fidelity-weighted learning (FWL), a new student-teacher
framework for semi-supervised learning in the presence of weakly labeled data. We applied FWL
to document ranking and sentiment classification, and empirically verified that FWL speeds up the
training process and improves over state-of-the-art semi-supervised alternatives.

10

Published as a conference paper at ICLR 2018

REFERENCES

Martı́n Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/. Software available from tensorflow.org.

Nasreen Abdul-jaleel, James Allan, W. Bruce Croft, O Diaz, Leah Larkey, Xiaoyan Li, Mark D.
Smucker, and Courtney Wade. Umass at trec 2004: Novelty and hard. In TREC-13, 2004.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining. In LREC, volume 10, pp. 2200–2204, 2010.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings
of the Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pp. 92–100,
1998.

Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training data. Journal of artificial
intelligence research, 11:131–167, 1999.

Ming-Wei Chang, Vivek Srikumar, Dan Goldwasser, and Dan Roth. Structured output learning with
indirect supervision. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pp. 199–206, 2010.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning. The MIT
Press, 1st edition, 2006.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving semantic parsing from the
world’s response. In Proceedings of the fourteenth conference on computational natural language
learning, pp. 18–27, 2010.

Gordon V. Cormack, Mark D. Smucker, and Charles L. Clarke. Efficient and effective spam filtering
and re-ranking for large web datasets. Inf. Retr., 14(5):441–465, 2011.

Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury. Learning to attend, copy, and
generate for session-based query suggestion. In Proceedings of The international Conference on
Information and Knowledge Management (CIKM’17), 2017a.

Mostafa Dehghani, Aliaksei Severyn, Sascha Rothe, and Jaap Kamps. Learning to learn from weak
supervision by full supervision. In NIPS2017 workshop on Meta-Learning (MetaLearn 2017),
2017b.

Mostafa Dehghani, Aliaksei Severyn, Sascha Rothe, and Jaap Kamps. Avoiding your teacher’s mistakes:
Training neural networks with controlled weak supervision. arXiv preprint arXiv:1711.00313,
2017c.

Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce Croft. Neural
ranking models with weak supervision. In SIGIR’17, 2017d.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Aurelien Lucchi, Valeria De Luca, and Martin Jaggi.
Swisscheese at semeval-2016 task 4: Sentiment classification using an ensemble of convolutional
neural networks with distant supervision. Proceedings of SemEval, pp. 1124–1128, 2016.

Jan Deriu, Aurelien Lucchi, Valeria De Luca, Aliaksei Severyn, Simon Müller, Mark Cieliebak, Thomas
Hofmann, and Martin Jaggi. Leveraging large amounts of weakly supervised data for multi-language
sentiment classification. In Proceedings of the 26th international International World Wide Web
Conference (WWW’17), pp. 1045–1052, 2017.

Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing exploration-exploitation
tradeoffs in gaussian process bandit optimization. Journal of Machine Learning Research, 15(1):
3873–3923, 2014.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. In ICLR2017,
2017.

Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox.
Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE
transactions on pattern analysis and machine intelligence, 38(9):1734–1747, 2016.

11

http://tensorflow.org/

Published as a conference paper at ICLR 2018

Benoı̂t Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. IEEE
transactions on neural networks and learning systems, 25(5):845–869, 2014.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12), 2009.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. In ICLR2017, 2017.

Hussam Hamdan, Frederic Béchet, and Patrice Bellot. Experiments with dbpedia, wordnet and
sentiwordnet as resources for sentiment analysis in micro-blogging. In Second Joint Conference on
Lexical and Computational Semantics (* SEM), volume 2, pp. 455–459, 2013.

Xianpei Han and Le Sun. Global distant supervision for relation extraction. In AAAI’16, pp. 2950–2956,
2016.

James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. Scalable variational gaussian
process classification. In Proceedings of AISTATS, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In NIPS
2014 Deep Learning Workshop, 2014. arXiv preprint arXiv:1503.02531.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural Comput., 18(7):1527–1554, 2006.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. arXiv
preprint arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mohammad. Sentiment analysis of short informal
texts. Journal of Artificial Intelligence Research, 50:723–762, 2014.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. In Advances in neural information processing systems, pp.
3294–3302, 2015.

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. In Workshop on Challenges in Representation Learning, ICML, volume 3, pp. 2,
2013.

David Lopez-Paz, Léon Bottou, Bernhard Schölkopf, and Vladimir Vapnik. Unifying distillation and
privileged information. In ICLR’16, 2016. arXiv preprint arXiv:1511.03643.

Eran Malach and Shai Shalev-Shwartz. Decoupling” when to update” from” how to update”. In
NIPS2017, 2017.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas,
Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process library
using TensorFlow. Journal of Machine Learning Research, 18(40):1–6, 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed Representations
of Words and Phrases and their Compositionality. In NIPS ’13, pp. 3111–3119, 2013.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant supervision for
relation extraction with an incomplete knowledge base. In HLT-NAACL, pp. 777–782, 2013.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extraction
without labeled data. In ACL, pp. 1003–1011, 2009.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin Stoyanov. Semeval-2016
task 4: Sentiment analysis in twitter. Proceedings of SemEval, pp. 1–18, 2016.

12

Published as a conference paper at ICLR 2018

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision, pp. 69–84. Springer, 2016.

Alexander G. Ororbia II, C. Lee Giles, and David Reitter. Learning a deep hybrid model for semi-
supervised text classification. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2015.

Nicolas Papernot, Martı́n Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private training data. In ICLR, 2017. arXiv preprint
arXiv:1610.05755.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In InfoScale ’06, 2006.

Giorgio Patrini, Frank Nielsen, Richard Nock, and Marcello Carioni. Loss factorization, weakly
supervised learning and label noise robustness. In International Conference on Machine Learning,
pp. 708–717, 2016.

Giorgio Patrini, Alessandro Rozza, Aditya Menon, Richard Nock, and Lizhen Qu. Making neural
networks robust to label noise: a loss correction approach. In CVPR, 2017. arXiv preprint
arXiv:1609.03683.

Aditi Raghunathan, Roy Frostig, John Duchi, and Percy Liang. Estimation from indirect supervision
with linear moments. In International Conference on Machine Learning, pp. 2568–2577, 2016.

Alexander J. Ratner, Christopher M. De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. In Advances in Neural Information Processing
Systems, pp. 3567–3575, 2016.

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich. Training deep neural networks on noisy labels with bootstrapping. In ICLR2015-
Workshop, 2015.

Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holistic data repairs
with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

Stefan Riezler, Patrick Simianer, and Carolin Haas. Response-based learning for grounded machine
translation. In ACL (1), pp. 881–891, 2014.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends in Information Retrieval, 3(4):333–389, 2009.

Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. Semi-supervised self-training of object
detection models. In Seventh IEEE Workshop on Applications of Computer Vision, 2005.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko, Saif M. Mohammad, Alan Ritter, and Veselin
Stoyanov. Semeval-2015 task 10: Sentiment analysis in twitter. In Proceedings of the 9th interna-
tional workshop on semantic evaluation (SemEval 2015), pp. 451–463, 2015.

Dan Roth. Incidental supervision: Moving beyond supervised learning. In AAAI, pp. 4885–4890, 2017.

Mickael Rouvier and Benoit Favre. Sensei-lif at semeval-2016 task 4: Polarity embedding fusion for
robust sentiment analysis. Proceedings of SemEval, pp. 202–208, 2016.

Gerard Salton and Chung-Shu Yang. On the specification of term values in automatic indexing. Journal
of documentation, 29(4):351–372, 1973.

Aliaksei Severyn and Alessandro Moschitti. Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 959–962. ACM, 2015a.

Aliaksei Severyn and Alessandro Moschitti. Unitn: Training deep convolutional neural network for
twitter sentiment classification. In Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), Association for Computational Linguistics, Denver, Colorado, pp.
464–469, 2015b.

13

Published as a conference paper at ICLR 2018

Yirong Shen, Matthias Seeger, and Andrew Y. Ng. Fast gaussian process regression using kd-trees. In
Advances in neural information processing systems, pp. 1225–1232, 2006.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, 2014.

Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and
domain knowledge. In AAAI, pp. 2576–2582, 2017.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. Training
convolutional networks with noisy labels. In Workshop contribution at ICLR 2015, 2015.

Yuan Tang. Tf.learn: Tensorflow’s high-level module for distributed machine learning. arXiv preprint
arXiv:1612.04251, 2016.

Michalis K. Titsias. Variational learning of inducing variables in sparse gaussian processes. In
International Conference on Artificial Intelligence and Statistics, pp. 567–574, 2009.

Arash Vahdat. Toward robustness against label noise in training deep discriminative neural networks.
In NIPS ’17, 2017.

Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity control and
knowledge transfer. Journal of machine learning research, 16(20232049):55, 2015.

Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using privileged information.
Neural networks, 22(5):544–557, 2009.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

Paroma Varma, Bryan He, Dan Iter, Peng Xu, Rose Yu, Christopher De Sa, and Christopher Ré. Socratic
learning: Correcting misspecified generative models using discriminative models. arXiv preprint
arXiv:1610.08123, 2017.

Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge Belongie. Learning
from noisy large-scale datasets with minimal supervision. In The Conference on Computer Vision
and Pattern Recognition, 2017.

Martin J. Wainwright, Michael I. Jordan, and John C. Duchi. Privacy aware learning. In Advances in
Neural Information Processing Systems, pp. 1430–1438, 2012.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In Neural Networks: Tricks of the Trade, pp. 639–655. Springer, 2012.

Andrew Gordon Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian pro-
cesses (kiss-gp). In Proceedings of the 32Nd International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, pp. 1775–1784, 2015.

14

Published as a conference paper at ICLR 2018

APPENDICES

We moved additional details to the appendices in order to keep the main text focused on the overall idea of the
Fidelity-Weighted Learning approach. Specifically, we include further details on the clustered Gaussian process
approach (Appendix A); on the student network architectures (Appendix B); on the teacher Gaussian process
model (Appendix C); on the weak annotators (Appendix D); on the experimental data and setup (Appendix E); and
on the connection to “learning with privileged information” (Appendix F).

A DETAILED DESCRIPTION OF CLUSTERED GP

We suggest using several GP={GPci} to explore the entire data space more effectively. Even though inducing
points and stochastic methods makeGPs more scalable we still observed poor performance when the entire dataset
was modeled by a single GP . Therefore, the reason for using multiple GPs is mainly empirical inspired by (Shen
et al., 2006) which is explained in the following:
We used Sparse Gaussian Process implemented in GPflow. The algorithm is scalable in the sense that it is not
O(N3) as original GP is. It introduces inducing points in the data space and defines a variational lower bound
for the marginal likelihood. The variational bound can now be optimized by stochastic methods which make the
algorithm applicable in large datasets. However, the tightness of the bound depends on the location of inducing
points which are found through the optimization process. We empirically observed that a single GP does not give a
satisfactory accuracy on left-out test dataset. We hypothesized that this can be due to the inability of the algorithm
to find good inducing points when the number of inducing points is restricted to just a few. Then we increased the
number of inducing pointsM which trades off the scalability of the algorithm because it scales withO(NM2).
Moreover, apart from scalability which is partly solved by stochastic methods, we argue that the structure of the
entire space may not be explored well by a single GP and its inducing points. We guess this can be due to the
observation that our datasets are distributed in a highly sparse way within the high dimensional embedding space.
We also tried to cure the problem by means of PCA to reduce input dimensions and give a denser representation,
but it did not result in a considerable improvement. The results are presented in Tabel 3.

Table 3: Performance of FWL using a single GP , a single GP after applying PCA on the input data, and the clustered GP as
the teacher.

Document Ranking Sentiment Classification

Method Robust04 ClueWeb Robust04 ClueWeb

MAP nDCG@20 MAP nDCG@20 F1 F1
FWLGP 0.2614 0.4192 0.1205 0.2121 0.6904 0.6173
FWLPCA→GP 0.2864 0.4411 0.1331 0.2388 0.7022 0.6340
FWLClusteredGP 0.3124 0.4607 0.1472 0.2453 0.7470 0.6830

We may be able to argue that clustered GP makes better use of the data structure roughly close to the idea of
KISS-GP (Wilson & Nickisch, 2015). In inducing point methods, it is normally assumed that M�N (M is
the number of inducing points andN is the number of training samples) for computational and storage saving.
However, we have this intuition that few number of inducing points make the model unable to explore the inherent
structure of data. By employing several GPs, we were able to use a large number of inducing points even when
M >N (M is the total number of inducing points) which seemingly better exploits the structure of datasets.
Because our work was not aimed to be a close investigation of GP, we considered clustered GP as the engineering
side of the work which is a tool to give us a measure of confidence. Other tools such as a single GP with inducing
points that form a Kronecker or Toeplitz covariance matrix are also conceivable. Therefore, we do not of course
claim that we have proposed a new method of inference for GPs. Here is practical description of clustered GP
algorithm:
Clustered GP: LetN be the size of the dataset on which we train the teacher. Assume we allocateK teachers to
the entire data space. Therefore, each GP sees a dataset of sizen=N/K. Then we use a simple clustering method
(e.g. k-means) to find centroids ofK clustersC1,C2,...,CK whereCi consists of samples {xi,1,xi,2,...,xi,n}. We
take the centroid ci of clusterCi as the representative sample for all its content. Note that ci does not necessarily
belong to {xi,1,xi,2,...,xi,n}. We assign each cluster a GP trained by samples belonging to that cluster. More
precisely, clusterCi is assigned a GP whose data points are {xi,1,xi,2,...,xi,n}. Because there is no dependency
among different clusters, we train them in parallel to speed-up the procedure more.

The pseudo-code of the clustered GP is presented in Algorithm 2. When the main issue is computational resources
(when the number of inducing points for each GP is large), we can first choose the number n which is the
maximum size of the dataset on which our resources allow to train aGP , then find the number of clustersK=N/n
accordingly. The rest of the algorithm remains unchanged.

15

Published as a conference paper at ICLR 2018

Algorithm 2 Clustered Gaussian processes.

1: LetN be the sample size, n the sample size of each cluster,K the number of clusters, and ci the center of
cluster i.

2: Run K-means withK clusters over all samples with true labelsDs={xi,yi}.

K-means(xi)→c1,c2,...,cK

where ci represents the center of clusterCi containing samplesDci
s ={xi,1,xi,2,...xi,n}.

3: Assign each of K clusters a Gaussian process and train them in parallel to approximate the label of each
sample.

GPci(m
ci
post,K

ci
post) = GP(mprior,Kprior)|Dci

s ={(ψ(xs,ci),ys,ci)}
Tci(xt) = g(mci

post(xt))

Σci(xt) = h(Kci
post(xt,xt))

where GPci is trained onDcis containing samples belonging to the cluster ci. Other elements are defined in
Section 2

4: Use trained teacher Tci(.) to evaluate the soft label and uncertainty for samples fromDsw to compute η2(xt)
required for step 3 of Algorithm 1. We use T (.) as a wrapper for all teachers {Tci}.

B DETAILED ARCHITECTURE OF THE STUDENTS

B.1 RANKING TASK

For the ranking task, the employed student is proposed in (Dehghani et al., 2017d). The first layer of the network
models function ψ that learns the representation of the input data samples, i.e. (q,d+,d−), and consists of
three components: (1) an embedding function ε : V →Rm (where V denotes the vocabulary set and m is the
number of embedding dimensions), (2) a weighting function ω : V → R, and (3) a compositionality function
� : (Rm,R)n→Rm. More formally, the functionψ is defined as:

ψ(q,d+,d−)=[�|q|i=1(ε(tqi),ω(tqi)) ||

�|d
+|

i=1 (ε(td
+

i),ω(td
+

i)) ||

�|d
−|

i=1 (ε(td
−
i),ω(td

−
i))],

(2)

where tqi and tdi denote the ith term in query q respectively document d. The embedding function εmaps each term
to a densem- dimensional real value vector, which is learned during the training phase. The weighting function ω
assigns a weight to each term in the vocabulary. It has been shown that ω simulates the effect of inverse document
frequency (IDF), which is an important feature in information retrieval (Dehghani et al., 2017d).

The compositionality function� projects a set of n embedding-weighting pairs to anm- dimensional representa-
tion, independent from the value of n:

n⊙
i=1

(ε(ti),ω(ti))=

∑n
i=1exp(ω(ti))·ε(ti)∑n

j=1exp(ω(tj))
, (3)

which is in fact the normalized weighted element-wise summation of the terms’ embedding vectors. Again, it has
been shown that having global term weighting function along with embedding function improves the performance
of ranking as it simulates the effect of inverse document frequency (IDF). In our experiments, we initialize the
embedding function εwith word2vec embeddings (Mikolov et al., 2013) pre-trained on Google News and the
weighting function ω with IDF.

The representation layer is followed by a simple fully connected feed-forward network with l hidden layers
followed by a softmax which receives the vector representation of the inputs processed by the representation
learning layer and outputs a prediction ỹ. Each hidden layer zk in this network computes zk=α(Wkzk−1+bk),
whereWk and bk denote the weight matrix and the bias term corresponding to the kth hidden layer and α(.) is the
non-linearity. These layers follow a sigmoid output. We employ the cross entropy loss:

Lt=
∑
i∈B

[−yilog(ŷi)−(1−yi)log(1−ŷi)], (4)

whereB is a batch of data samples.

16

Published as a conference paper at ICLR 2018

B.2 SENTIMENT CLASSIFICATION TASK

The student for the sentiment classification task is a convolutional model which has been shown to perform best
in the dataset we used (Deriu et al., 2017; Severyn & Moschitti, 2015a;b; Deriu et al., 2016). The first layer
of the network learns the function ψ which maps input sentence s to a vector as its representation consists of
an embedding function ε : V → Rm, where V denotes the vocabulary set and m is the number of embedding
dimensions.

This function maps the sentence to a matrix S∈Rm×|s|, where each column represents the embedding of a word
at the corresponding position in the sentence. Matrix S is passed through a convolution layer. In this layer, a set of
f filters is applied to a sliding window of length h over S to generate a feature map matrixC. Each feature map ci
for a given filter F is generated by ci=

∑
k,jS[i : i+h]k,jFk,j , where S[i : i+h] denotes the concatenation of

word vectors from position i to i+h. The concatenation of all ci produces a feature vector c∈R|s|−h+1. The
vectors c are then aggregated over all f filters into a feature map matrixC∈Rf×(|s|−h+1).

We also add a bias vector b∈Rf to the result of a convolution. Each convolutional layer is followed by a non-linear
activation function (we use ReLU(Nair & Hinton, 2010)) which is applied element-wise. Afterward, the output
is passed to the max pooling layer which operates on columns of the feature map matrixC returning the largest
value: pool(ci) :R1×(|s|−h+1)→R (see Figure 4). This architecture is similar to the state-of-the-art model for
Twitter sentiment classification from Semeval 2015 and 2016 (Severyn & Moschitti, 2015b; Deriu et al., 2016).

We initialize the embedding matrix with word2vec embeddings (Mikolov et al., 2013) pretrained on a collection of
50M tweets.

The representation layer then is followed by a feed-forward layer similar to the ranking task (with different width
and depth) but with softmax instead of sigmoid as the output layer which returns ŷi, the probability distribution
over all three classes. We employ the cross entropy loss:

Lt=
∑
i∈B

∑
k∈K

−yki log(ŷki), (5)

whereB is a batch of data samples, andK is a set of classes.

C DETAILED ARCHITECTURE OF THE TEACHERS

We use Gaussian Process as the teacher in all the experiments. For each task, either regression or (multi-class)
classification, in order to generate soft labels, we pass the mean of GP through the same function g(.) that is
applied on the output of the student network for that task, e.g. softmax, or sigmoid. For binary classification or one
dimensional regression, Σ(xt) is scalar and h(.) is identity. For multi-class classification or multi-dimensional
regression tasks, h(.) is an aggregation function that takes variance over several dimensions and outputs a single
measure of variance. As a reasonable choice, the aggregating function h(.) in our sentiment classification task
(three classes) is mean of variances over dimensions.

In the teacher, linear combinations of different kernels are used for different tasks in our experiments.

Toy Problem: We use standard Gaussian process regression2 with this kernel:

k(xi,xj)=kRBF(xi,xj)+kWhite(xi,xj) (6)

Document Ranking: We use sparse variational GP regression3 (Titsias, 2009) with this kernel:

k(xi,xj)=kMatern3/2(xi,xj)+kLinear(xi,xj)+kWhite(xi,xj) (7)

Sentiment Classification: We use sparse variational GP for multiclass classification4 (Hensman et al., 2015)
with the following kernel:

k(xi,xj)=kRBF(xi,xj)+kLinear(xi,xj)+kWhite(xi,xj) (8)

2http://gpflow.readthedocs.io/en/latest/notebooks/regression.html
3http://gpflow.readthedocs.io/en/latest/notebooks/SGPR_notes.html
4http://gpflow.readthedocs.io/en/latest/notebooks/multiclass.html

17

http://gpflow.readthedocs.io/en/latest/notebooks/regression.html
http://gpflow.readthedocs.io/en/latest/notebooks/SGPR_notes.html
http://gpflow.readthedocs.io/en/latest/notebooks/multiclass.html

Published as a conference paper at ICLR 2018

where,

kRBF(xi,xj)=exp

(
‖xi−xj‖2

2l2

)
kMatern3/2(xi,xj)=

(
1+

√
3‖xi−xj‖

l

)
exp

(
−
√

3‖xi−xj‖
l

)
kLinear(xi,xj)=σ2

0+xi.xj

kWhite(xi,xj)=constant value, ∀x1 =x2 and 0 otherwise

We empirically found l=1 satisfying value for the length scale of RBF and Matern3/2 kernels. We also set σ0 =0
to obtain a homogeneous linear kernel. The constant value ofKWhite(.,.) determines the level of noise in the
labels. This is different from the noise in weak labels. This term explains the fact that even in true labels there
might be a trace of noise due to the inaccuracy of human labelers.

We set the number of clusters in the clustered GP algorithm for the ranking task to 50 and for the sentiment
classification task to 30.

D WEAK ANNOTATORS

D.1 DOCUMENT RANKING

The weak annotator in the document ranking task is BM25 (Robertson & Zaragoza, 2009), a well-known
unsupervised retrieval method. This method heuristically scores a given pair of query-document based on the
statistics of their matched terms. In the pairwise document ranking setup, ỹi for a given sample xj =(q,d+,d−) is
the probability of document d+ being ranked higher than d−: ỹi=Pq,d+,d− =s

q,d+/sq,d++s
q,d− , where sq,d is

the score obtained from the weak annotator.

D.2 SENTIMENT CLASSIFICATION

The weak annotator for the sentiment classification task is a simple lexicon-based method (Hamdan et al., 2013;
Kiritchenko et al., 2014). We use SentiWordNet03 (Baccianella et al., 2010) to assign probabilities (positive,
negative and neutral) for each token in setDw. We use a bag-of-words model for the sentence-level probabilities
(i.e. just averaging the distributions of the terms), yielding a noisy label ỹi∈R|K|, where |K|=3 is the number of
classes. We found empirically that using soft labels from the weak annotator works better than assigning a single
hard label.

E DATA COLLECTION, PARAMETERS AND SETUP

E.1 TOY PROBLEM

Weak/True Data In all the experiments with the toy problem, we have randomly sampled 100 data points from the
weak function and 10 data points from the true function. We introduce a small amount of noise to the observation
of the true function to model the noise in the human labeled data.

Setup The neural network employed in the toy problem experiments is a simple feed-forward network with the
depth of 3 layers and width of 128 neurons per layer. We have used tanh as the nonlinearity for the intermediate
layers and a linear output layer. As the optimizer, we used Adam (Kingma & Ba, 2015) and the initial learning
rate has been set to 0.001. For the teacher in the toy problem, we fit only one GP on all the data points (i.e. no
clustering). Also during fine-tuning, we set β=1.

Setup of experiments in Section 4.2 We fixed everything in the model and tried running the fine-tuning step
with different values for β∈{0.0,0.1,1.0,2.0,5.0} in all the experiments. For the experiments on toy problem in
Section 4.2, the reported numbers are averaged over 10 trials. In the first experiment (i.e. Figure 6a), the size of
sampled data data is: |Ds|=50 and |Dw|=100 (Fixed) and for the second one (i.e. Figure 6a): |Dw|=100 and
|Ds|=10 (fixed).

E.2 RANKING TASK

Collections We use two standard TREC collections for the task of ad-hoc retrieval: The first collection (Robust04)
consists of 500k news articles from different news agencies as a homogeneous collection. The second collection
(ClueWeb) is ClueWeb09 Category B, a large-scale web collection with over 50 million English documents,

18

Published as a conference paper at ICLR 2018

which is considered as a heterogeneous collection. Spam documents were filtered out using the Waterloo spam
scorer 5 (Cormack et al., 2011) with the default threshold 70%.

Data with true labels We take query sets that contain human-labeled judgments: a set of 250 queries (TREC
topics 301–450 and 601–700) for the Robust04 collection and a set of 200 queries (topics 1-200) for the experiments
on the ClueWeb collection. For each query, we take all documents judged as relevant plus the same number of
documents judged as non-relevant and form pairwise combinations among them.

Data with weak labels We create a query setQ using the unique queries appearing in the AOL query logs (Pass
et al., 2006). This query set contains web queries initiated by real users in the AOL search engine that were sampled
from a three-month period from March 2006 to May 2006. We applied standard pre-processing Dehghani et al.
(2017d;a) on the queries: We filtered out a large volume of navigational queries containing URL substrings (“http”,
“www.”, “.com”, “.net”, “.org”, “.edu”). We also removed all non-alphanumeric characters from the queries. For
each dataset, we took queries that have at least ten hits in the target corpus using our weak annotator method.
Applying all these steps, We collect 6.15 million queries to train on in Robust04 and 6.87 million queries for
ClueWeb. To prepare the weakly labeled training setDw, we take the top 1,000 retrieved documents using BM25
for each query from training query setQ, which in total leads to∼|Q|×106 training samples.

Setup For the evaluation of the whole model, we conducted a 3-fold cross-validation. However, for each dataset,
we first tuned all the hyper-parameters of the student in the first step on the set with true labels using batched GP
bandits with an expected improvement acquisition function (Desautels et al., 2014) and kept the optimal parameters
of the student fixed for all the other experiments. The size and number of hidden layers for the student is selected
from {64,128,256,512}. The initial learning rate and the dropout parameter were selected from {10−3,10−5}
and {0.0,0.2,0.5}, respectively. We considered embedding sizes of {300,500}. The batch size in our experiments
was set to 128. We use ReLU (Nair & Hinton, 2010) as a non-linear activation function α in student. We use
the Adam optimizer (Kingma & Ba, 2015) for training, and dropout (Srivastava et al., 2014) as a regularization
technique.

At inference time, for each query, we take the top 2,000 retrieved documents using BM25 as candidate documents
and re-rank them using the trained models. We use the Indri6 implementation of BM25 with default parameters
(i.e., k1 =1.2, b=0.75, and k3 =1,000).

E.3 SENTIMENT CLASSIFICATION TASK

Collections We test our model on the twitter message-level sentiment classification of SemEval-15 Task 10B
(Rosenthal et al., 2015). Datasets of SemEval-15 subsume the test sets from previous editions of SemEval, i.e.
SemEval-13 and SemEval-14. Each tweet was preprocessed so that URLs and usernames are masked.

Data with true labels We use train (9,728 tweets) and development (1,654 tweets) data from SemEval-13 for
training and SemEval-13-test (3,813 tweets) for validation. To make your results comparable to the official runs on
SemEval we us SemEval-14 (1,853 tweets) and SemEval-15 (2,390 tweets) as test sets (Rosenthal et al., 2015;
Nakov et al., 2016).

Data with weak labels We use a large corpus containing 50M tweets collected during two months for both,
training the word embeddings and creating the weakly annotated setDw using the lexicon-based method explained
in Section 3.3.

Setup Similar to the document ranking task, we tuned hyper-parameters for the student in the first step with
respect to the true labels of the validation set using batched GP bandits with an expected improvement acquisition
function (Desautels et al., 2014) and kept the optimal parameters fixed for all the other experiments. The size
and number of hidden layers for the classifier and is selected from {32,64,128}. We tested the model with both,
1 and 2 convolutional layers. The number of convolutional feature maps and the filter width is selected from
{200,300} and {3,4,5}, respectively. The initial learning rate and the dropout parameter were selected from
{1E−3,1E−5} and {0.0,0.2,0.5}, respectively. We considered embedding sizes of {100,200} and the batch
size in these experiments was set to 64. ReLU (Nair & Hinton, 2010) is used as a non-linear activation function
in student. Adam optimizer (Kingma & Ba, 2015) is used for training, and dropout (Srivastava et al., 2014) as a
regularizer.

F CONNECTION WITH VAPNIK’S LEARNING USING PRIVILEGED INFORMATION

In this section, we highlight the connections of our work with Vapnik’s learning using privileged information
(LUPI) (Vapnik & Vashist, 2009; Vapnik & Izmailov, 2015). FWL makes use of information from a small set
of correctly labeled data to improve the performance of a semi-supervised learning algorithm. The main idea
behind LUPI comes from the fact that humans learn much faster than machines. This can be due to the role that an

5http://plg.uwaterloo.ca/˜gvcormac/clueweb09spam/
6https://www.lemurproject.org/indri.php

19

http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
https://www.lemurproject.org/indri.php

Published as a conference paper at ICLR 2018

Intelligent Teacher plays in human learning. In this framework, the training data is a collection of triplets

{(x1,y1,x∗1),...,(xn,yn,x
∗
n)}∼Pn(x,y,x∗) (9)

where each (xi,yi) is a pair of feature-label and x∗i is the additional information provided by an intelligent teacher
to ease the learning process for the student. Additional information for each (xi,yi) is available only during
training time and the learning machine must only rely on xi at test time. The theory of LUPI studies how to
leverage such a teaching signal x∗i to outperform learning algorithms utilizing only the normal features xi. For
example, MRI brain images can be augmented with high-level medical or even psychological descriptions of
Alzheimer’s disease to build a classifier that predicts the probability of Alzheimer’s disease from an MRI image
at test time. It is known from statistical learning theory (Vapnik, 1998) that the following bound for test error is
satisfied with probability 1−δ:

R(f)≤Rn(f)+O

((
|F|V C−logσ

n

)α)
, (10)

whereRn(f) denotes the training error over n samples, |F|V C is the VC dimension of the space of functions
from which f is chosen, and α∈ [0.5,1]. When the classes are not separable, α= 0.5 i.e. the machine learns
at a slow rate ofO(n−1/2). For easier problems where classes are separable, α=1 resulting in a learning rate
ofO(n−1). The difference between these two cases is severe. The same error bound achieved for a separable
problem with 10 thousand data points is only obtainable for a non-separable problem when 100 million data points
are provided. This is prohibitive even when obtaining large datasets is not so costly. The theory of LUPI shows that
an intelligent teacher can reduce α resulting in a faster learning process for the student. In this paper, we proposed
a teacher-student framework for semi-supervised learning. Similar to LUPI, in FWL a student is supposed to solve
the main prediction task while an intelligent teacher provides additional information to improve its learning. In
addition, we first train the student network so that it obtains initial knowledge of weakly labeled data and learns a
good data representation. Then the teacher is trained on truly labeled data enjoying the representation learned by
the student. This extends LUPI in a way that the teacher provides privileged information that is most useful for the
current state of student’s knowledge. FWL also extends LUPI by introducing several teachers each of which is
specialized to correct student’s knowledge related to a specific region of the data space.

Figure 6(a) provides evidence for the assumption that privileged information in our task can accelerate the learning
process of the student. It shows how the privileged information from an intelligent teacher affects the exponent α
of the error bound in Equation 10. Figure 6(b) shows the test error for various number of samples |Ds|with true
label. As expected, In both extremes where |Ds| is too small or too large, the performance of our model becomes
close to the models without a teacher. The reason is that student has enough strong samples to learn a good model
of true function. In more realistic cases where |Ds|�|Dw| but |Ds| is still large enough to be informative about
|Dw|, our model gives a lower test error than models without the intelligent teacher.

The theory of LUPI was first developed and proved for support vector machines by Vapnik as a method for
knowledge transfer. Hinton introduced Dark knowledge as a spiritually close idea in the context of neural
networks (Hinton et al., 2006). He proposed to use a large network or an ensemble of networks for training and a
smaller network at test time. It turned out that compressing knowledge of a large system into a smaller system
can improve the generalization ability. It was shown in (Lopez-Paz et al., 2016) that dark knowledge and LUPI
can be unified under a single umbrella, called generalized distillation. The core idea of these models is machines-
teaching-machines. As the name suggests, a machine is learning the knowledge embedded in another machine. In
our case, student is correcting his knowledge by receiving privileged information about label uncertainty from
teacher.

Our framework extends the core idea of LUPI in the following directions:

• Trainable teacher: It is often assumed that the teacher in LUPI framework has some additional true information.
We show that when this extra information is not available, one can still use the LUPI setup and define an
implicit teacher whose knowledge is learned from the true data. In this approach, the performance of the final
student-teacher system depends on a clever answer to the following question: which information should be
considered as the privileged knowledge of teacher.

• Bayesian teacher: The proposed teacher is Bayesian. It provides posterior uncertainty of the label of each
sample.

• Mutual representation: We introduced moduleψ(.) which learns a mutual embedding (representation) for both
student and teacher. This is in particular interesting because it defines a two-way channel between teacher and
student.

• Multiple teachers: We proposed a scalable method to introduce several teachers such that each teacher is
specialized in a particular region of the data space.

20

	Introduction
	Fidelity-Weighted Learning (FWL)
	Experiments
	Toy Problem
	Document Ranking
	Sentiment Classification

	Analysis
	Handling the Bias-Variance Trade-off
	A Good Teacher is Better Than Many Observations
	Sensitivity of the FWL to the Quality of the Weak Annotator
	From Modifying the Learning Rate to Weighted Sampling

	Related Work
	Conclusion
	Detailed description of clustered GP
	Detailed Architecture of the Students
	Ranking Task
	Sentiment Classification Task

	Detailed Architecture of the Teachers
	Weak Annotators
	Document Ranking
	Sentiment Classification

	Data Collection, Parameters and Setup
	Toy Problem
	Ranking Task
	Sentiment Classification Task

	Connection with Vapnik's learning using privileged information

