
Workshop track - ICLR 2018

SHIFTING MEAN ACTIVATION TOWARDS ZERO WITH
BIPOLAR ACTIVATION FUNCTIONS

Lars H. Eidnes
Trondheim
Norway
larseidnes@gmail.com

Arild Nøkland
Trondheim
Norway
arild.nokland@gmail.com

ABSTRACT

We propose a simple extension to the ReLU-family of activation functions that
allows them to shift the mean activation across a layer towards zero. Combined
with proper weight initialization, this alleviates the need for normalization layers.
We explore the training of deep vanilla recurrent neural networks (RNNs) with
up to 144 layers, and show that bipolar activation functions help learning in this
setting. On the Penn Treebank and Text8 language modeling tasks we obtain
competitive results, improving on the best reported results for non-gated networks.
In experiments with convolutional neural networks without batch normalization,
we find that bipolar activations produce a faster drop in training error, and results
in a lower test error on the CIFAR-10 classification task. 1

1 INTRODUCTION

Recurrent neural networks (RNN) are able to model complex dynamical systems, but are known
to be hard to train (Pascanu et al., 2013b). One reason for this is the vanishing or exploding
gradient problem (Bengio et al., 1994). Gated RNNs like the Long Short-Term Memory (LSTM)
of Hochreiter & Schmidhuber (1997) alleviate this problem, and are widely used for this reason.
However, with proper initialization, non-gated RNNs with Rectified Linear Units (ReLU) can also
achieve competitive results (Le et al., 2015).

The choice of activation function has strong implications for the learning dynamics of neural networks.
It has long been known that having zero-centered inputs to a layer leads to faster convergence times
when training neural networks with gradient descent (Le Cun et al., 1991). When inputs to a layer
have a mean that is shifted from zero, there will be a corresponding bias to the direction of the weight
updates, which slows down learning (LeCun et al., 1998). Clevert et al. (2015) showed that a mean
shift away from zero introduces a bias shift for units in the next layer, and that removing this shift by
zero-centering activations brings the standard gradient closer to the natural gradient (Amari, 1998).

The Rectified Linear Unit (ReLU) (Nair & Hinton, 2010; Glorot et al., 2011) is defined as f(x) =
max(x, 0) and has seen great success in the training of deep networks. Because it has a derivative of
1 for positive values, it can preserve the magnitude of the error signal where sigmoidal activation
functions would diminish it, thus to some extent alleviating the vanishing gradient problem. However,
since it is non-negative it has a mean activation that is greater than zero.

Several extensions to the ReLU have been proposed that replace its zero-valued part with negative
values, thus allowing the mean activation to be closer to zero. The Leaky ReLU (LReLU) (Maas
et al., 2013) replaces negative inputs with values that are scaled by some factor in the interval [0, 1].
In the Parametric Leaky ReLU (PReLU) (He et al., 2015) this scaling factor is learned during training.
Randomized Leaky ReLUs (RReLU) (Xu et al., 2015) randomly sample the scale for the negative
inputs. Exponential Linear Units (ELU) (Clevert et al., 2015) replace the negative part with a smooth
curve which saturates to some negative value.

1Code is available at https://github.com/larspars/word-rnn and https://github.
com/anokland/resnet-brelu

1

https://github.com/larspars/word-rnn
https://github.com/anokland/resnet-brelu
https://github.com/anokland/resnet-brelu


Workshop track - ICLR 2018

Concurrent to our work, Klambauer et al. (2017) proposed the Scaled ELU (SELU) activation function,
which also has self-normalizing properties, although it takes an orthogonal and complimentary
approach to the one proposed here.

Chernodub & Nowicki (2016) proposed the Orthogonal Permutation Linear Unit (OPLU), where
every unit belongs to a pair {xi, xj}, and the activation function simply sorts this pair:(

zi
zj

)
=

(
max(xi, xj)
min(xi, xj)

)
(1)

This function has many desirable properties: It is norm and mean preserving, and has no diminishing
effect on the gradient.

The Concatenated Rectified Linear Unit (CReLU) (Shang et al., 2016) concatenates the ReLU
function applied to the positive and negated input f ′(x) = (f(x), f(−x)). Balduzzi et al. (2017)
combined the CReLU with a mirrored weight initialization W1f(x)−W2f(−x), with W1 = W2

at initialization. The resulting function is initially linear, and thus mean preserving, before training
starts.

Another approach to maintain a mean of zero across a layer is to explicitly normalize the activations.
An early example was Le Cun et al. (1991), who suggested zero-centering activations by subtracting
each units mean activation before passing to the next layer. In Glorot & Bengio (2010) it was shown
that the problem of vanishing gradients in deep models can be mitigated by having unit variance
in layer activations. Batch Normalization (Ioffe & Szegedy, 2015) normalizes both the mean and
variance across a mini-batch. The success of Batch Normalization for deep feed forward networks
created a research interest in how similar normalization of mean and variance can be extended to
RNNs. Despite early negative results (Laurent et al., 2016), by keeping separate statistics per timestep
and properly initializing parameters, Batch Normalization can be applied to the recurrent setting
(Cooijmans et al., 2016). Other approaches to hidden state normalization include Layer Normalization
(Ba et al., 2016), Weight Normalization (Salimans & Kingma, 2016) and Norm Stabilization (Krueger
& Memisevic, 2015).

The Layer-Sequential Unit Variance (LSUV) algorithm (Mishkin & Matas, 2015) iteratively initializes
each layer in a network such that each layer has unit variance output. If such a network can maintain
approximately unit variance throughout training, it is an attractive option because it has no runtime
overhead.

In this paper, we propose bipolar activation functions as a way to keep the layer activations approxi-
mately zero-centered. We explore the training of deep recurrent and feed forward networks, with
LSUV-initialization and bipolar activations, without using explicit normalization layers like batch
norm.

2 BIPOLAR ACTIVATION FUNCTIONS

Figure 1: Bipolar versions of popular activation functions. From left: Bipolar ELU, Bipolar Leaky
ReLU, Bipolar ReLU.

In a neural network, the ReLU only preserves its positive inputs, and thus shifts the mean activation
in a positive direction. However, if we for every other neuron preserve the negative inputs, this effect

2



Workshop track - ICLR 2018

will be canceled for zero-centered i.i.d. input vectors. In general, for any ReLU-family activation
function f , we can define its bipolar version as follows:

fB(xi) =

{
f(xi), if i mod 2 = 0
−f(−xi), if i mod 2 6= 0

(2)

For convolutional layers, we flip the activation function in half of the feature maps.

Theorem 1. For a layer of bipolar ReLU units, this trick will ensure that a zero-centered i.i.d. input
vector x will give a zero-centered output vector. If the input vector has a mean different from zero, the
output mean will be shifted towards zero.

Proof. Let x1 and x2 be the input vectors to the ordinary units and the flipped units respectively.
The output vectors from the two populations are fB(x1) = max(0, x1) and fB(x2) = −f(−x2) =
min(0, x2). Since x is i.i.d. then x, x1 and x2 have the same distribution, and they have the same
expectation value E[x] = E[x1] = E[x2]. Then the expectation value of the output can be simplified

E[fB(x)] = 0.5E[fB(x1) + fB(x2)] = 0.5E[max(0, x1) + min(0, x2)] = 0.5E[max(0, x) +
min(0, x)] = 0.5E[x].

Theorem 2. For a layer of bipolar ELU units, this trick will ensure that a i.i.d. input vector will
give an output mean that is shifted towards a point in the interval [−α, α], where α is the parameter
defining the negative saturation value of the ELU.

Proof. Let x1 and x2 be the input vectors to the ordinary units and the flipped units respectively. Let
x+1 and x+2 be the vectors of positive values in the two populations, and let x−1 and x−2 be the negative
values. The output vectors from the four populations are fB(x+1 ) = x+1 , fB(x−1 ) = α(ex

−
1 − 1),

fB(x
+
2 ) = α(1 − e−x

+
2 ) and fB(x−2 ) = x−2 . Since x is i.i.d. then x, x1 and x2 have the same

distribution, and they have the same expectation value E[x] = E[x1] = E[x2]. We also have that
E[x+1 ] = E[x+2 ] and E[x−1 ] = E[x−2 ].

For some fraction of positive values β ∈ [0, 1] we can write

E[fB(x1)] = βE[fB(x+1 )] + (1− β)E[fB(x−1 )] = E[βx+1 + (1− β)α(ex
−
1 − 1)] and

E[fB(x2)] = βE[fB(x+2 )] + (1− β)E[fB(x−2 )] = E[βα(1− e−x
+
2 ) + (1− β)x−2 ].

Then the expectation value of the output can be simplified

E[fB(x)] = 0.5E[fB(x1) + fB(x2)] =

0.5E[βx+1 + (1− β)α(ex
−
1 − 1) + βα(1− e−x

+
2 ) + (1− β)x−2 ] =

0.5E[x+ (1− β)α(ex
−
1 − 1) + βα(1− e−x

+
2 )] = 0.5E[x+ z].

We can see that z is bounded in the interval [−α, α]. If E[x] is different from E[z], then the output
mean E[fB(x)] will be shifted towards the point E[z] inside the interval [−α, α].

Theorem 1 says that for bipolar ReLU, an input vector x that is not zero-centered, the mean will be
pushed towards zero. Theorem 2 says that for bipolar ELU, an input vector x will be pushed towards
a value in the interval [−α, α]. These properties have a stabilizing effect on the activations.

Figure 2 shows the evolution of the dynamical system xi+1 = f(Wxi) for different activation
functions f . As can be seen, the bipolar activation functions have more stable dynamics, less prone
to exhibiting an exploding mean and variance.

3 DEEPLY STACKED RNNS

Motivated by the success of very deep models in other domains, we investigate the training of deeply
stacked RNN models. As we shall see, certain problems arise that are unique to the recurrent setting.

3



Workshop track - ICLR 2018

Figure 2: Iterations of xi+1 = f(Wxi) for different activation functions f with x1 ∼ N (0, 1)
and W ∼ N (0, σ2), with σ set by the LSUV procedure such that f(Wx1) has approximately unit
variance. The graphs show the mean and variance of xi, averaged over 50 separate runs, where a
different x1 and W was sampled each run.

The network architecture we consider consists of stacks of vanilla RNN units (Elman, 1990), with the
recurrent update equation for layer i:

hi(t) = f(Wihi(t− 1) + Uixi(t) + bi) (3)

For the first layer, we encode the input as a fixed embedding vector x1(t) ∼ N (0, 1). Subsequent
layers are fed the output of the layers below, xi(t) = hi−1(t).

If each layer in a neural network scales its input by a factor k, the scale at layer L will be kL. For
k 6= 1 this leads to exponentially exploding or vanishing activation magnitudes in deep networks.
Notice that this phenomenon holds for any path through the computational graph of an unrolled RNN,
both for the within-timestep activation magnitudes across layers, and for the within-layer activation
magnitudes across timesteps.

In order to avoid exploding or vanishing dynamics, we want to have unit variance on hi(t). To this end,
we adapt the LSUV weight initialization procedure (Mishkin & Matas, 2015) to the recurrent setting
by considering a single timestep of the RNN, and setting the input from the recurrent connections to
be ∼ N (0, 1). The LSUV procedure is then simply to go through each layer sequentially, adjusting
the magnitude of Wi and Ui to produce an output hi(t) with unit variance, while propagating new
activations through the network after each weight adjustment.

Since Wi and Ui have the same magnitude at the start of the initialization procedure and are scaled
in synchrony, they will have the same magnitude as each other when the initialization procedure is
complete. This means that the input-to-hidden connections Ui and the hidden-to-hidden connections
Wi contribute equal parts to the unit variance of hi(t), and thus that the gradient flows in equal
magnitude across the horizontal and vertical connections. 2

2After the LSUV initialization, it is possible to rescale Wi and Ui in order to explicitly trade off the extent to
which the gradient should flow along each direction. By choosing a γ ∈ [0, 1], we can trade off what portion of
the variance each matrix contributes, while maintaining the variance of the output of the layer:

W ′
i =Wi

√
2γ and U ′

i = Ui

√
2 · (1− γ)

We note that this seems like a potent approach for influencing the time horizon at which an RNN should learn,
but do not explore it further in this work. In our experiments Wi and Ui have equal magnitude at initialization
(i.e. γ = 0.5).

4



Workshop track - ICLR 2018

While LSUV initialization allows training to work in deeper stacks of RNN layers, even with LSUV
we get into trouble when the stacks get deep enough (see Appendix B). Visualizing the gradient flow
reveals that while the gradient does flow from first layer to the last, it takes a diagonal path backwards
through time. The effect is that the initial learning in layer N is most strongly influenced by the input
N timesteps in the past.

We have included a brief discussion and visualization of this problem in the appendix, where it can be
seen that this problem is remedied if we for every 4th layer i = 4, 8, 12, 16... add a skip connection:

hi(t) = f(Wihi(t− 1) + Uixi(t) + bi) + αhi−4(t) (4)

The use of skip connections has been shown previously to aid learning in deeply stacked RNNs
(Graves, 2013). Note that because of the LSUV init, we know that input from the skip connection
hi−4(t) has approximately unit variance. Because of this, the initialization procedure could scale Wi

and Ui down to zero, and still have unit variance hi(t). To avoid this effect, we scale down the skip
connection slightly, setting α = 0.99.

4 EXPERIMENTS

4.1 CHARACTER-LEVEL PENN TREEBANK

We train character level RNN language models on Penn Treebank (Marcus et al., 1993), a 6MB
text corpus with a vocabulary of 54 characters. Because of the small size of the dataset, proper
regularization is key to getting good performance.

The RNNs we consider follow the architecture described in the previous section: Stacks of simple
RNN layers, with skip connections between groups of 4 layers, LSUV initialization, and inputs
encoded as an N (0, 1) fixed embedding.

We seek to investigate the effect of depth and the effect of bipolar activations in such deeply stacked
RNNs, and run a set of experiments to illuminate this.

The models were trained using the ADAM optimizer (Kingma & Ba, 2014), with a learning rate of
0.0002, a batch size of 128, on non-overlapping sequences of length 50. Since the training data does
not cleanly divide by 50, for each epoch we choose a random crop of the data which does, as done in
Cooijmans et al. (2016). We calculated the validation loss every 4th epoch, and divided the learning
rate by 2 when the validation loss did not improve. No gradient clipping was used.

For regularization, we used a combination of various forms of dropout. We used standard dropout
between layers, as done in Pham et al. (2013); Zaremba et al. (2014). On the recurrent connections,
we followed rnnDrop (Moon et al., 2015) and used the same dropout mask for every timestep in a
sequence. We adapted stochastic depth (Huang et al., 2016) to the recurrent setting, stochastically
dropping entire blocks of 4 layers, replacing recurrent and non-recurrent connections with identity
connections for a timestep (this was explored for single units, called Zoneout, and also on single
layers in Krueger et al. (2016)). Unlike Huang et al. (2016), we did not do any rescaling of the
droppable blocks at test time, since this would go against the goal of having unit variance on the
output of each block.

We look at model depths in the set {4, 8, 12, 24, 36} and on activation functions ReLU and ELU and
their bipolar versions BReLU and BELU. Since good performance on this dataset is highly dependent
on regularization, in order to get a fair comparison of various depths and activation functions, we
need to find good regularization parameters for each combination. We have dropout on recurrent
connections, non-recurrent connections and on blocks of four layers, and thus have 3 separate dropout
probabilities to consider. In order to limit this large parameter search space, we first do an exploratory
search on dropout probabilities in the set {0, 0.025, 0.05}, for the depths 4 and 36 and functions
ReLU and BELU. For both recurrent connections dropout and block dropout, we get best results with
0.025 dropout probability (for every model). However, we find that the ideal between-layer dropout
probability decreases with model depth. We therefore freeze all other parameters, and consider
between-layer dropout probabilities in the set {0.025, 0.05, 0.1}, for ReLU networks in depths 4 and
36. We use the optimal probabilities for each depth found here for the other activation functions. For

5



Workshop track - ICLR 2018

the remaining depths we choose a probability between the best setting for 4 and 36 layers. For the
best performing function at 36 layers (BELU), we also train deeper models of 48 and 144 layers.

To get results comparable with previously reported results, we constrained the number of parameters
in each model to be about the same as for a network with 1x1000 LSTM units, approximately 4.75M
parameters.

Table 1: Penn Treebank validation errors (BPC)

dropout #parameters ReLU BReLU ELU BELU

4 x 760 0.1 ∼4.75M 1.321 1.324 DNC 1.318
8 x 540 0.075 ∼4.75M 1.331 1.320 DNC 1.317
16 x 385 0.075 ∼4.75M 1.321 1.324 DNC 1.317
24 x 314 0.075 ∼4.75M 1.349 1.334 DNC 1.317
36 x 256 0.05 ∼4.75M 1.353 1.319 DNC 1.311
48 x 222 0.05 ∼4.75M - - - 1.320
144 x 128 0.025 ∼4.75M - - - 1.402

From Table 1 we can see that ReLU-RNN performed worse with increasing depth. With ELU-RNN,
learning did not converge. The bipolar version of ELU avoids this problem, and its performance does
not degrade with increasing depth up to 36 layers. Overall, the best validation BPC is achieved with
the 36 layer BELU-RNN. Figure 6 shows the training error curves of the 36-layer RNN with each of
the activation functions, and shows that the bipolar variants see a faster drop in training error.

We briefly explore substituting the SELU unit into the 36-layer RNN. There, as with the ELU, the
training quickly diverges. This phenomenon occurs even with very low learning rates. However,
if we substitute the SELU with its bipolar variant, training works again. A 36-layer BSELU-RNN
converges to a validation error of 1.314 BPC, similar to BELU.

Some previously reported results on the test set is included in Table 2. The listed models have
approximately the same number of parameters. We can see that the results for the 36 layer BELU-
RNN is better than for the best reported results for non-gating architectures (DOT(S)-RNN), but also
competitive with the best normalized and regularized LSTM architectures. Notably, the BELU-RNN
outperforms the LSTM with recurrent batch normalization (Cooijmans et al., 2016), where both mean
and variance are normalized.

Table 2: Penn Treebank test error
Network BPC

Tanh + Zoneout (Krueger et al., 2016) 1.52
ReLU 1x2048 (Neyshabur et al., 2016) 1.47
GRU + Zoneout (Krueger et al., 2016) 1.41
MI-RNN 1x2000 (Wu et al., 2016) 1.39
DOT(S)-RNN (Pascanu et al., 2013a) 1.386
LSTM 1x1000 (Krueger et al., 2016) 1.356
LSTM 1x1000 + Stoch. depth (Krueger et al., 2016) 1.343
LSTM 1x1000 + Recurrent BN (Cooijmans et al., 2016) 1.32
LSTM 1x1000 + Dropout (Ha et al., 2016) 1.312
LSTM 1x1024 + Rec. dropout (Semeniuta et al., 2016) 1.301
LSTM 1x1000 + Layer norm (Ha et al., 2016) 1.267
LSTM 1x1000 + Zoneout (Krueger et al., 2016) 1.252
Delta-RNN + Dropout (II et al., 2017) 1.251
HM-LSTM 3x512 + Layer norm (Chung et al., 2016) 1.24
HyperNetworks (Ha et al., 2016) 1.233
BELU 36x256 1.270

6



Workshop track - ICLR 2018

4.2 CHARACTER-LEVEL TEXT8

Text8 (Mahoney, 2011) is a simplified version of the Enwik8 corpus with a vocabulary of 27 characters.
It contains the first 100M characters of Wikipedia from Mar. 3, 2006. We also here trained an RNN
to predict the next character in the sequence. The dataset was split taking the first 90% for training,
the next 5% for validation and the final 5% for testing, in line with common practice. The test results
reported is the test error for the epoch with lowest validation error.

The network architecture here was identical to the 36 layer network used in the Penn Treebank
experiments, except that we used a larger layer size of 474. We used an initial learning rate of
0.00005, which was halved when validation error did not improve from one epoch to the next. To
match previously reported results, we constrained the number of parameters to be 16.2M, about
the same as for a 1x2000 LSTM network. We chose 0.01 dropout probability for stochastic depth,
recurrent and non-recurrent dropout, and did not do a hyperparameter search on this dataset.

On this dataset, training diverges with both ReLU and ELU due to exploding activation dynamics.
These problems do not occur with their bipolar variants.

Table 3: Text8 validation error [BPC]

Network ReLU BReLU ELU BELU

36x474 RNN DNC 1.399 DNC 1.334

We compare the result on the test set with reported results obtained with approximately the same
number of parameters. From Table 4 we can see that the result for the 36 layer BELU-RNN improves
upon the best reported result for non-gated architectures (Skipping-RNN).

Table 4: Text8 test error
Network BPC

MI-Tanh 1x2048 (Wu et al., 2016) 1.52
LSTM 1x2048 (Wu et al., 2016) 1.51
Skipping-RNN (Pachitariu & Sahani, 2013) 1.48
MI-LSTM 1x2048 (Wu et al., 2016) 1.44
LSTM 1x2000 (Cooijmans et al., 2016) 1.43
LSTM 1x2000 (Krueger et al., 2016) 1.408
mLSTM 1x1900 (Krause et al., 2016) 1.40
LSTM 1x2000 + Recurrent BN (Cooijmans et al., 2016) 1.36
LSTM 1x2000 + Stochastic depth (Krueger et al., 2016) 1.343
LSTM 1x2000 + Zoneout (Krueger et al., 2016) 1.336
Recurrent Highway Network (Zilly et al., 2016) 1.29
HM-LSTM 3x1024 + Layer norm (Chung et al., 2016) 1.29
BELU 36x474 1.423

4.3 CLASSIFICATION CIFAR-10

To explore the effect of different bipolar activation functions for deep convolutional networks, we
conducted some simple experiments on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) on some
recent well performing architectures. We duplicated the network architectures of Oriented Response
Networks (ORN) (Zhou et al., 2017) and Wide Residual Networks (WRN) (Zagoruyko & Komodakis,
2016; He et al., 2015), except we removed batch normalization, and used LSUV initialization. We
then compared the performance of these networks with and without bipolar activation functions.

We used the network variants with 28 layers, a widening factor of 10, and 30% dropout, which gave
the best results on CIFAR-10 in the expirements of Zagoruyko & Komodakis (2016) and Zhou et al.
(2017). We also duplicated their data preprocessing, using simple mean/std normalization of the
images, and horizontal flipping and random cropping as data augmentation.

7



Workshop track - ICLR 2018

Figure 3: Training and test error on CIFAR-10, with and without bipolar units, in a 28-layer Oriented
Response Network without batch normalization.

Removing batch normalization required us to lower the learning rate. For each network, we looked
for the highest possible learning rate, starting at 0.08, and retrying with half the learning rate if the
learning diverged. The learning rate was eased in over the first 2000 batches. The networks were
trained for 200 epochs, where the learning rate was divided by five in epoch 120 and 160. Table
5 lists the test error of the last epoch for each run. The networks with bipolar activations allowed
training with up to 64 times higher learning rates. As can be seen in Figure 3, the networks with
bipolar activations saw a faster drop in training error, and achieved lower test errors. Note that neither
setup beats the originally reported results for the networks with batch normalization (a test error of
2.98% for ORN and 4.17% for WRN).

Table 5: CIFAR-10 test error with moderate data augmentation [%]

Network ReLU BReLU ELU BELU

OrientedResponseNet-28 (no BN, 30% dropout) 9.20 4.91 9.03 5.35
WideResNet-28 (no BN, 30% dropout) 9.78 6.03 7.69 6.12

5 CONCLUSION

We have introduced bipolar activation functions, as a way to pull the mean activation of a layer
towards zero in deep neural networks. Through a series of experiments, we show that bipolar
ReLU and ELU units can improve trainability in deeply stacked, simple recurrent networks and in
convolutional networks.

Deeply stacked RNNs with unbounded activation functions provide a challenging testbed for learning
dynamics. We present empirical evidence that bipolarity helps trainability in this setting, and
find that in several of the networks we trained, using bipolar versions of the activation functions
was necessary for the networks to converge. These deeply stacked RNNs achieve test errors that
improve upon the best previously reported results for non-gated networks on the Penn Treebank and
Text8 character level language modeling tasks. Key ingredients to the model, in addition to bipolar
activation functions, are residual connections, the depth of the model, LSUV initialization and proper
regularization.

In our experiments on convolutional networks without batch normalization, we found that bipolar
activation functions can allow for training with much higher learning rates, and that the resulting
training process sees a much quicker fall in training error, and ends up with a lower test error than
with their non-bipolar variants.

8



Workshop track - ICLR 2018

REFERENCES

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998. doi:
10.1162/089976698300017746. URL http://dx.doi.org/10.1162/089976698300017746.

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016. URL
http://arxiv.org/abs/1607.06450.

David Balduzzi, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. The
shattered gradients problem: If resnets are the answer, then what is the question? CoRR, abs/1702.08591,
2017. URL http://arxiv.org/abs/1702.08591.

Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181. URL
http://dx.doi.org/10.1109/72.279181.

Artem N. Chernodub and Dimitri Nowicki. Norm-preserving orthogonal permutation linear unit activation
functions (OPLU). CoRR, abs/1604.02313, 2016. URL http://arxiv.org/abs/1604.02313.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks. CoRR,
abs/1609.01704, 2016. URL http://arxiv.org/abs/1609.01704.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). CoRR, abs/1511.07289, 2015. URL http://arxiv.org/abs/1511.
07289.

Tim Cooijmans, Nicolas Ballas, César Laurent, and Aaron C. Courville. Recurrent batch normalization. CoRR,
abs/1603.09025, 2016. URL http://arxiv.org/abs/1603.09025.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS
2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pp. 249–256, 2010. URL http://www.
jmlr.org/proceedings/papers/v9/glorot10a.html.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort
Lauderdale, USA, April 11-13, 2011, volume 15 of JMLR Proceedings, pp. 315–323. JMLR.org, 2011. URL
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016. URL http:
//arxiv.org/abs/1609.09106.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, pp. 646–661, 2016. doi: 10.1007/978-3-319-46493-0_39. URL
http://dx.doi.org/10.1007/978-3-319-46493-0_39.

Alexander G. Ororbia II, Tomas Mikolov, and David Reitter. Learning simpler language models with the delta
recurrent neural network framework. CoRR, abs/1703.08864, 2017. URL http://arxiv.org/abs/
1703.08864.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, volume 37 of JMLR Proceedings, pp. 448–456. JMLR.org, 2015. URL http://jmlr.org/
proceedings/papers/v37/ioffe15.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
URL http://arxiv.org/abs/1412.6980.

9

http://dx.doi.org/10.1162/089976698300017746
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1702.08591
http://dx.doi.org/10.1109/72.279181
http://arxiv.org/abs/1604.02313
http://arxiv.org/abs/1609.01704
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1603.09025
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1007/978-3-319-46493-0_39
http://arxiv.org/abs/1703.08864
http://arxiv.org/abs/1703.08864
http://jmlr.org/proceedings/papers/v37/ioffe15.html
http://jmlr.org/proceedings/papers/v37/ioffe15.html
http://arxiv.org/abs/1412.6980


Workshop track - ICLR 2018

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks.
CoRR, abs/1706.02515, 2017. URL http://arxiv.org/abs/1706.02515.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals. Multiplicative LSTM for sequence modelling. CoRR,
abs/1609.07959, 2016. URL http://arxiv.org/abs/1609.07959.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

David Krueger and Roland Memisevic. Regularizing rnns by stabilizing activations. CoRR, abs/1511.08400,
2015. URL http://arxiv.org/abs/1511.08400.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh
Goyal, Yoshua Bengio, Hugo Larochelle, Aaron C. Courville, and Chris Pal. Zoneout: Regularizing rnns by
randomly preserving hidden activations. CoRR, abs/1606.01305, 2016. URL http://arxiv.org/abs/
1606.01305.

César Laurent, Gabriel Pereyra, Philemon Brakel, Ying Zhang, and Yoshua Bengio. Batch normalized recurrent
neural networks. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
2016, Shanghai, China, March 20-25, 2016, pp. 2657–2661, 2016. doi: 10.1109/ICASSP.2016.7472159.
URL http://dx.doi.org/10.1109/ICASSP.2016.7472159.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent networks of rectified
linear units. CoRR, abs/1504.00941, 2015. URL http://arxiv.org/abs/1504.00941.

Yann Le Cun, Ido Kanter, and Sara A Solla. Eigenvalues of covariance matrices: Application to neural-network
learning. Physical Review Letters, 66(18):2396, 1991.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
networks: Tricks of the trade, pp. 9–50. Springer, 1998.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network acoustic
models. In Proc. ICML, volume 30, 2013.

Matt Mahoney. Large text compression benchmark: About the test data (http://mattmahoney.net/dc/textdata),
2011. URL http://mattmahoney.net/dc/textdata.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Dmytro Mishkin and Jiri Matas. All you need is a good init. CoRR, abs/1511.06422, 2015. URL http:
//arxiv.org/abs/1511.06422.

Taesup Moon, Heeyoul Choi, Hoshik Lee, and Inchul Song. Rnndrop: A novel dropout for rnns in asr. In
Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop on, pp. 65–70. IEEE, 2015.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pp.
807–814, 2010. URL http://www.icml2010.org/papers/432.pdf.

Behnam Neyshabur, Yuhuai Wu, Ruslan R Salakhutdinov, and Nati Srebro. Path-normalized optimization of
recurrent neural networks with relu activations. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 3477–3485. Curran Associates,
Inc., 2016. URL http://arxiv.org/abs/1605.07154.

Marius Pachitariu and Maneesh Sahani. Regularization and nonlinearities for neural language models: when are
they needed? CoRR, abs/1301.5650, 2013. URL http://arxiv.org/abs/1301.5650.

Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. How to construct deep recurrent
neural networks. CoRR, abs/1312.6026, 2013a. URL http://dblp.uni-trier.de/db/journals/
corr/corr1312.html#PascanuGCB13.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks.
In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA,
16-21 June 2013, pp. 1310–1318, 2013b. URL http://jmlr.org/proceedings/papers/v28/
pascanu13.html.

Vu Pham, Christopher Kermorvant, and Jérôme Louradour. Dropout improves recurrent neural networks for
handwriting recognition. CoRR, abs/1312.4569, 2013. URL http://arxiv.org/abs/1312.4569.

10

http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1609.07959
http://arxiv.org/abs/1511.08400
http://arxiv.org/abs/1606.01305
http://arxiv.org/abs/1606.01305
http://dx.doi.org/10.1109/ICASSP.2016.7472159
http://arxiv.org/abs/1504.00941
http://mattmahoney.net/dc/textdata
http://arxiv.org/abs/1511.06422
http://arxiv.org/abs/1511.06422
http://www.icml2010.org/papers/432.pdf
http://arxiv.org/abs/1605.07154
http://arxiv.org/abs/1301.5650
http://dblp.uni-trier.de/db/journals/corr/corr1312.html#PascanuGCB13
http://dblp.uni-trier.de/db/journals/corr/corr1312.html#PascanuGCB13
http://jmlr.org/proceedings/papers/v28/pascanu13.html
http://jmlr.org/proceedings/papers/v28/pascanu13.html
http://arxiv.org/abs/1312.4569


Workshop track - ICLR 2018

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate training
of deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 29, pp. 901–909. Curran Associates, Inc., 2016. URL
http://arxiv.org/abs/1602.07868.

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent dropout without memory loss. CoRR,
abs/1603.05118, 2016. URL http://arxiv.org/abs/1603.05118.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving convolutional
neural networks via concatenated rectified linear units. CoRR, abs/1603.05201, 2016. URL http://arxiv.
org/abs/1603.05201.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan Salakhutdinov. On multiplicative
integration with recurrent neural networks. CoRR, abs/1606.06630, 2016. URL http://arxiv.org/
abs/1606.06630.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional
network. CoRR, abs/1505.00853, 2015. URL http://arxiv.org/abs/1505.00853.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016. URL
http://arxiv.org/abs/1605.07146.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. CoRR,
abs/1409.2329, 2014. URL http://arxiv.org/abs/1409.2329.

Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response networks. CoRR, abs/1701.01833,
2017. URL http://arxiv.org/abs/1701.01833.

Julian G. Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber. Recurrent highway networks.
CoRR, abs/1607.03474, 2016. URL http://arxiv.org/abs/1607.03474.

11

http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1603.05118
http://arxiv.org/abs/1603.05201
http://arxiv.org/abs/1603.05201
http://arxiv.org/abs/1606.06630
http://arxiv.org/abs/1606.06630
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1701.01833
http://arxiv.org/abs/1607.03474


Workshop track - ICLR 2018

A SMEARED GRADIENTS IN DEEPLY STACKED RNNS

Figure 4: The L2 norm of the gradient on the output of each layer as it propagates back through time.
The gradient was calculated for the last timestep per batch and backpropagated through time. This was
computed for the first 10 batches in the learning process, and averaged over those. Maximal redness
indicates the maximum gradient magnitude. Top: Without skip connections. Bottom: With skip
connections. Both networks are 36-layer vanilla RNNs, with 256 bipolar ELU units, LSUV-initialized,
trained on character-level Penn Treebank.

While LSUV initialization allows training to work in deeper stacks of RNN layers, even with LSUV we get into
trouble when the stacks get deep enough (see Figure 5).

Looking at the gradient flow reveals what the problem is. When the horizontal connections Wi and the vertical
connections Ui are of approximately equal magnitude, the gradient is distributed in equal parts vertically and
horizontally. The effect of this can be seen in Figure 4 (top), where the gradient is smeared in a 45 degree angle
away from its origin. This is undesirable: For example, in the 36 layer network, the error signal that reaches the
first layer mostly relates to the inputs around 36 timesteps in the past.

As can be seen in Figure 4 (bottom), the problem is remedied by adding skip connections between groups of
layers.

B TRAINING LOSS CURVES

12



Workshop track - ICLR 2018

Figure 5: Skip connections help learning in deeply stacked LSUV-initialized RNNs. Left: Without
skip connections. Right: With skip connections connecting groups of four layers. Both plots show
training loss for vanilla RNNs with 256 bipolar ELU units per layer, LSUV-initialized, trained on
character-level Penn Treebank.

Figure 6: Training loss with various activation functions, in 36-layer RNNs on Penn Treebank. The
BReLU-RNN has a lower training error than ReLU-RNN at all times where the curves are comparable
(until the learning rate is cut on the ReLU-RNN). The BELU-RNN has the lowest training error of
all. With the ELU-RNN, training diverged quickly.

13


	Introduction
	Bipolar Activation Functions
	Deeply Stacked RNNs
	Experiments
	Character-level Penn Treebank
	Character-level Text8
	Classification CIFAR-10

	Conclusion
	Smeared Gradients in Deeply Stacked RNNs
	Training loss curves

