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Abstract001

Unsupervised rationale extraction aims to ex-002
tract text snippets to support model predic-003
tions without explicit rationale annotation. Re-004
searchers have made many efforts to solve this005
task. However, Previous works encode each as-006
pect independently, ignoring their internal cor-007
relations. Meanwhile, such a uni-aspect encod-008
ing model can only explain and predict one as-009
pect of the text at a time, which limits its down-010
stream applications. In this paper, we propose011
a Multi-Aspect Rationale Extractor (MARE) to012
explain and predict multiple aspects simultane-013
ously. Concretely, we propose a Multi-Aspect014
Multi-Head Attention (MAMHA) mechanism015
based on hard deletion to encode multiple text016
chunks simultaneously. Furthermore, multiple017
special tokens are prepended in front of the018
text with each corresponding to one certain as-019
pect. Finally, multi-task training is deployed to020
reduce the training overhead. Experimental re-021
sults on two unsupervised rationale extraction022
benchmarks show that MARE achieves state-of-023
the-art performance. Ablation studies further024
demonstrate the effectiveness of our method.025

1 Introduction026

Deep learning text classification systems have027

achieved remarkable performance in recent028

years (Kim, 2014; Devlin et al., 2019). However,029

their black-box nature has been widely criticized.030

Finding a sufficient approach to open the black box031

is urgent and significant.032

Unsupervised rationale extraction (Lei et al.,033

2016) is an explanation approach that aims to ex-034

tract text snippets from input text to support model035

predictions without explicit rationale annotation.036

Previous researchers (Liu et al., 2022; Jiang et al.,037

2023) have made many efforts to improve the ratio-038

nalization performance of their models. However,039

as shown in Figure 1a, existing rationale extrac-040

tion models are uni-aspect encoding models, which041

can only predict and interpret one aspect of the042

Example
Appearance: Positive
Aroma: Positive
Palate: Positive
Text: thanks to bman1113vr for sharing this
bottle . pours a murky orangish-brown color
with a white head . the aroma is tart lemons .
the flavor is tart lemons with some oak-aged
character . the beer finishes very dry . medium
mouthfeel and medium carbonation .

Table 1: A multi-aspect example from the BeerAdvocate
dataset (McAuley et al., 2012). Blue, red, and cyan
represent the aspects of Appearance, Aroma, and Palate,
respectively.

text at a time. In real-world scenarios, one text 043

often contains multiple aspects of an object. Ta- 044

ble 1 shows an example from the BeerAdvocate 045

dataset (McAuley et al., 2012), where blue, red, and 046

cyan represent the aspects of Appearance, Aroma, 047

and Palate, respectively. The highlighted segments 048

in the text are the rationales corresponding to each 049

aspect. For instance, "pours a murky orangish- 050

brown color with a white head ." explains why 051

the label for Appearance is Positive. In this case, 052

traditional uni-aspect rationale extraction models 053

would require three independently trained models 054

to predict and interpret all three aspects, which is 055

labor-intensive and time-consuming and limits their 056

downstream applications. Furthermore, uni-aspect 057

models encode each aspect independently ignoring 058

their internal correlation. 059

To address these problems, we propose the Multi- 060

Aspect Rationale Extractor (MARE). As shown in 061

Figure 1b, MARE can encode all aspects simul- 062

taneously by prepending multiple special tokens 063

to the input text, each corresponding to a specific 064

aspect. This approach enables multi-aspect encod- 065

ing in one model. Furthermore, MARE introduces 066
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Figure 1: Comparison of our methods (MARE) with
previous typical uni-aspect encoding models.

a Multi-Aspect Multi-Head Attention (MAMHA)067

mechanism for collaborative encoding across as-068

pects. This mechanism allows the model to capture069

interactions and dependencies between different070

aspects, leading to more accurate predictions and071

rationales. Finally, inspired by multi-task learn-072

ing, MARE iteratively accesses training data for073

different aspects, reducing the overall training cost.074

We validate the effectiveness of MARE on075

two unsupervised rationale extraction benchmarks:076

BeerAdvocate (McAuley et al., 2012) and Hotel077

Review (Wang et al., 2010). Results show that078

MARE outperforms existing state-of-the-art meth-079

ods across multiple evaluation metrics. Ablation080

studies further demonstrate the effectiveness of081

MARE. Our main contributions are as follows:082

• We introduce MARE, a Multi-Aspect Ratio-083

nale Extractor that generates predictions and084

rationales for multiple aspects simultaneously.085

• We deploy the multi-task training to reduce086

the training cost and expand the model appli-087

cability. Compared to multi-aspect collabo-088

rative training, it saves 17.9% and 25.2% of089

memory usage and training time, respectively.090

• Extensive experiments on BeerAdvocate and091

Hotel Review datasets demonstrate MARE’s092

superiority, with a notable 5.4% improvement093

in token-level F1 score. Ablation studies fur-094

ther validate the effectiveness of each compo-095

nent in MARE.096

2 Related Work097

The rationalization framework, known as RNP (Lei098

et al., 2016), assumes that any unselected input has099

no contribution to the prediction and achieves re-100

markable performance on this task. However, RNP101

still has many weaknesses. Various approaches102

have been proposed to improve RNP In different 103

dimensions. 104

Gradient Flows The RNP framework utilizes 105

REINFORCE (Williams, 1992) to overcome the 106

non-differentiable problem, but this leads to train- 107

ing instability and poor performance. Hard- 108

Kuma (Bastings et al., 2019) introduces re- 109

parameterization tricks and replaces the Bernoulli 110

distribution with the rectified Kumaraswamy dis- 111

tribution, which stabilizes the training process. In 112

FR (Liu et al., 2022), the encoder’s parameter is 113

shared between the generator and predictor. This 114

ensures that the encoder’s gradient is more reason- 115

able because it can see both full texts and rationales. 116

3Players (Yu et al., 2019) forces the complemen- 117

tary rationale to be meaningless, resulting in more 118

meaningful generated rationales. Our research is 119

orthogonal with these methods. 120

Interlocking The interlocking problem was ini- 121

tially proposed by A2R (Yu et al., 2021). This 122

problem arises when the generator fails to identify 123

important tokens, leading to sub-optimal rationales 124

and consequently affecting the performance. Many 125

researchers have developed approaches to address 126

this issue (Huang et al., 2021; Yu et al., 2021; Liu 127

et al., 2023a). DMR (Huang et al., 2021) aimed 128

to align the distributions of rationales with the full 129

input text in the output space and feature space. 130

A2R (Yu et al., 2021) enhances the predictor’s un- 131

derstanding of the full text by introducing a soft 132

rationale. MGR (Liu et al., 2023a) involves multi- 133

ple generators with different initializations to allow 134

the predictor to see various rationales, alleviating 135

the interlocking problem. DR (Liu et al., 2023b) 136

limits the Lipschitz constant of the predictor, mak- 137

ing the whole system more robust. YOFO (Jiang 138

et al., 2023) eliminates interlocking by simultane- 139

ously predicting and interpreting. YOFO deploys 140

pre-trained language models as its backbone and 141

uses token deletion strategies between layers to 142

erase unimportant tokens. the remaining tokens in 143

the final layer are seen as rationales. 144

This paper focuses on the efficiency of the multi- 145

aspect scenarios. All the above models are uni- 146

aspect encoding models, where one model can only 147

encode one aspect of data. MARE is a multi-aspect 148

collaborative encoding model designed to encode 149

multiple aspects of data simultaneously. 150
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(b) Hard Deletion

Figure 2: Attention mask visualization. left: attention
mask in Attention Mask Deletion. right: attention mask
in Hard Deletion.

3 Problem Definition151

Existing uni-aspect encoding models extract ratio-152

nales zi from the input x and predict the label153

yi for the i-th aspect. Formally, they can be ex-154

pressed as P (yi,zi ∣ x; θi), where θi represents155

the parameters of the model for the i-th aspect. To156

obtain the rationales and predictions for all k as-157

pects, k independently trained models are required:158

{P (y1,z1 ∣ x; θ1),⋯, P (yk,zk ∣ x; θk)}. How-159

ever, this approach is time-consuming and compu-160

tationally expensive.161

To address this issue, we propose a multi-162

aspect rationale extraction task, where the ratio-163

nales and predictions for all aspects can be gen-164

erated simultaneously. This can be formalized as165

P (y1,z1,⋯,zk ∣ x; θ), where θ represents the pa-166

rameters of the multi-aspect rationale extraction167

model. By utilizing a single model to extract ratio-168

nales and make predictions for all aspects concur-169

rently, we aim to improve the efficiency and reduce170

computational costs compared.171

4 Method172

This paper proposes a Multi-Aspect Rationale Ex-173

tractor (MARE), which can simultaneously pre-174

dict and interpret multiple aspects of text. As175

shown in the left part of Figure 3, MARE is176

based on an encoder-based pre-trained language177

model and achieves multi-aspect collaborative en-178

coding through a Multi-Aspect Multi-Head Atten-179

tion (MAMHA) mechanism. Additionally, MARE180
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Figure 3: Overall model architecture. left: the overall
model architecture of MARE. right: the computational
graph of MAMHA.

employs multi-task training during the training pro- 181

cess, significantly reducing the training cost. 182

4.1 Hard Deletion for Complete Token 183

Removal 184

Selecting rationales without explicit annotations 185

can be challenging. We follow the previous 186

work (Jiang et al., 2023) where unimportant tokens 187

are gradually erased. However, directly multiply- 188

ing hidden states by the token mask harms rational- 189

ization performance (Jiang et al., 2023). Attention 190

Mask Deletion (AMD) (Jiang et al., 2023) avoids 191

this problem by setting attention scores of masked 192

tokens to 0. Concretely, assuming mi ∈ [0,1]L 193

represents the token mask in the i-th layer and 194

Aj
i ∈ RL×L is the attention score matrix of the j- 195

th head in the i-th layer, the final attention score 196

matrix is Ãj
i = A

j
i ⋅mi ∈ RL×L. Through AMD, 197

remaining tokens interact while deleted ones are 198

invisible. 199

However, AMD suffers from an "incomplete 200

deletion" problem, where deleted tokens can still 201

be partially represented by remaining ones due to 202

the broadcast operation. As shown in Figure 2a, 203

although "X1" and "X2" are masked, they can still 204

be indirectly represented by the weighted sum of 205

"[CLS]" and "X3". Although this allows the model 206

to retain more information, it hinders multi-aspect 207

collaborative encoding. 208

To address this issue, we propose Hard Dele- 209

tion, which uses an outer product operation to com- 210

pletely erase deleted tokens (Figure 2b). "X1" and 211

"X2" are represented by all-zero vectors, ensuring 212

complete removal. 213
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Figure 4: A example for Multi-Aspect Controller. left:
The token mask for each aspect. "Good place" and
"bad service" stands for the rationales of location and
service aspect, respectively. right: The attention mask
is obtained by performing an outer product operation on
token masks.

4.2 Multi-Aspect Multi-Head Attention214

Inspired by hard deletion, we propose the multi-215

aspect multi-head attention (MAMHA) mechanism216

to encode multiple text segments simultaneously.217

As shown in the right part of Figure 3, MAMHA218

consists of a Multi-Aspect Controller (MAC) and219

the traditional multi-head attention (MHA) mecha-220

nism.221

4.2.1 Multi-Aspect Controller (MAC)222

MAC assists MHA in separately encoding different223

text segments by generating aspect-specific atten-224

tion masks based on token masks for each aspect.225

This allows tokens within the same aspect to inter-226

act while isolating tokens from different aspects,227

enabling MHA to achieve multi-aspect collabora-228

tive encoding.229

Figure 4 illustrates an example where "good230

place" and "bad service" are rationales for the "loca-231

tion" and "service" aspects, respectively. The final232

attention mask, obtained through an outer product233

operation, creates two separate segments. Words234

within each segment interact, while words from235

different segments remain independent. Special236

classification tokens "[C1]" and "[C2]" collect in-237

formation from their respective aspects, allowing238

MHA to encode two aspects simultaneously.239

This method can be extended to k aspects by240

dividing the text into k segments and appending k241

special tokens. Note that if MAC employs AMD,242

tokens from different aspects cannot be fully iso-243

lated, leading to confusion and hindering multi-244

aspect collaborative encoding (further discussed in245

Section 6.2.2).246

4.2.2 Computation Process of MAC247

The computation process of MAC is shown in the248

right part of Figure 3. Assuming Hi represents249

the hidden states of the i-th layer, its first k vec- 250

tors {h0
i ,⋯,hk−1

i } are representations of special 251

tokens. For the j-th aspect, mapping functions 252

gjquery and gjkey map special and normal tokens to 253

Q and K, respectively. The similarity between 254

special and normal tokens is calculated, and the 255

gumbel-softmax technique determines the token’s 256

aspect assignment (Equations (1)-(4)). 257

Q = {g0query(h0
i ),⋯, gkquery(hk−1

i )} (1) 258

K = {g0key(Hi[k ∶]),⋯, gkkey(Hi[k ∶])} (2) 259

scores = Q ⋅KT

√
d

(3) 260

m = gumbel_softmax(scores, dim = −1) (4) 261

, where d and L mean the vector’s dimension and 262

the text’s length, respectively. [⋅] represents slic- 263

ing operation, m ∈ {0,1}k×L stands for the token 264

mask, and m[i, j] = 1 indicates that the j-th token 265

is selected as the rationale of the i-th aspect. 266

MAC adopts the outer product operation to 267

match the shape of the attention score matrix in 268

MHA (Equation 5). When M ′[i, j] ≠ 0, the token 269

is selected as a rationale in at least one aspect and 270

should not be deleted (Equation (6)). The binariza- 271

tion operation in Equation (6) is non-differentiable, 272

so straight-through is used for gradient estima- 273

tion. Finally, the mask is multiplied by the atten- 274

tion score matrix to perform token deletion (Equa- 275

tions (7)-(9)). 276

M′ =mT ⋅m ∈ [0, k]L×L (5) 277

M̃[i, j] =
⎧⎪⎪⎨⎪⎪⎩

0, If M ′[i, j] = 0
1, Otherwise

(6) 278

M = M̃ +M′ − StopGrad(M′) ∈ [0,1]L×L (7) 279

Ãh
i =Ah

i ⊙M, for h in 1,2, ...,H (8) 280

Hi = PLMi(Hi−1; Ãi), for i in 1,2, ...,N (9) 281

, where StopGrad(X) represents stopping the X’s 282

gradient calculation. Ah
i and Ãh

i represent the 283

initial and final attention score matrices of the h-th 284

attention header in the i-th layer, respectively. Hi 285

represents the hidden layer representation of the 286

i-th layer. 287

4.3 Multi-Task Training 288

Using labels from various aspects simultaneously 289

during training may not be feasible, as datasets like 290

Hotel Review (Wang et al., 2010) only have annota- 291

tions for one aspect per sample. Multi-task training 292
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allows MARE to focus on the aspect corresponding293

to the current batch, avoiding the need to encode as-294

pects with missing labels. If the batch comes from295

the j-th aspect, only the corresponding mapping296

functions gjq and gjk are used (Equations (10)-(11)).297

Q = gjquery(Hi[j − 1 ∶ j]) (10)298

K = gjkey(Hi[k ∶]) (11)299

5 Experiments300

5.1 Experimental Setup301

Datasets We performed experiments on two302

commonly used unsupervised rationale extraction303

datasets: BeerAdvocate (McAuley et al., 2012)304

and the Hotel Review dataset (Wang et al., 2010).305

The statistics of these datasets can be found in Ap-306

pendix A.2.307

The BeerAdvocate dataset (McAuley et al.,308

2012) is a multi-aspect sentiment prediction dataset.309

It consists of texts along with corresponding aspect310

scores ranging from 0 to 1, including aspects such311

as appearance, aroma, and palate. The training312

and validation sets do not have labeled rationales,313

but the test set contains 994 samples with ratio-314

nale annotations for all aspects. Notably, the scores315

across different aspects within the same sample316

exhibit high correlation, resulting in highly spuri-317

ous correlations. For the BeerAdvocate dataset, we318

conducted experiments on the decorrelated version319

proposed by Lei et al.. We binarized the dataset into320

binary classification tasks using a positive thresh-321

old of 0.6 and a negative threshold of 0.4 (Bao322

et al., 2018). We run our model, MARE, on two323

sparsity levels: high-sparse and low-sparse. In the324

high-sparse decorrelated dataset, the sparsity level325

approximates the sparsity for golden rationales in326

the test set. In the low-sparse decorrelated dataset,327

the sparsity level is comparatively lower but allows328

for convenient comparisons with previous works.329

To examine the susceptibility of our model to spu-330

rious correlations, we also utilized the correlated331

BeerAdvocate dataset by Liu et al..332

The Hotel Review dataset (Wang et al., 2010) is333

another widely used dataset for multi-aspect sen-334

timent classification and rationale extraction. It335

includes texts along with three aspect labels: lo-336

cation, service, and cleanliness. In addition to the337

aspect labels, the test set of this dataset also pro-338

vides rationale annotations for all three aspects,339

with 200 samples. Since the original labels are on340

a scale of 0 to 5 stars, we utilize the binarized ver-341

sion proposed by Bao et al.. For the Hotel Review 342

dataset, we only conducted a low-sparse experi- 343

ment as the golden sparsity level is relatively low, 344

at around 10%. 345

Baselines We compared the performance of 346

MARE with several state-of-the-art baselines. 347

These baselines, including RNP (Lei et al., 2016), 348

CAR (Chang et al., 2019), DMR (Huang et al., 349

2021), A2R (Yu et al., 2021), FR (Liu et al., 2022), 350

MGR (Liu et al., 2023a) DR (Liu et al., 2023b), 351

and YOFO (Jiang et al., 2023), were discussed 352

in Section 2. The performance of these baselines 353

are obtained from YOFO (Jiang et al., 2023). In 354

MARE, we use BERT for our backbone and the 355

balanced round-robin is equipped in the training 356

stage. All of our experiments are conducted on 357

NVIDIA Geforce RTX 3090 24GB. For more im- 358

plementation details, please refer to Appendix A.1. 359

Metrics Following previous works (Jiang et al., 360

2023), we will use token-level F1 and accuracy for 361

the rationalization and downstream performance. 362

In our result tables, we define S as the sparsity level 363

of selected rationales, computed using the formula 364

S = #selected tokens
#tokens . P, R, and F1 represent preci- 365

sion, recall, and F1 score for rationale extraction, 366

respectively. ACC and Val ACC denote the accu- 367

racy of the test and validation sets, respectively. 368

The best performance is Bolded in the tables. 369

5.2 Main Results 370

5.2.1 Results on the BeerAdvocate Dataset 371

High-sparse Experimental results on the de- 372

correlated BeerAdvocate dataset in the high-sparse 373

scenario are shown in Table 2. MARE outperforms 374

YOFO by 3.3%, 1.0%, and 2.8% in the appearance, 375

aroma, and palate aspects, respectively. Mean- 376

while, MARE achieves the best average F1 scores 377

among all models, particularly 88.8%. This is be- 378

cause MARE is a multi-aspect collaborative en- 379

coding model that captures internal correlations 380

between all aspects and thus achieves the best per- 381

formance. 382

Low-sparse Experimental results on the de- 383

correlated BeerAdvocate dataset in the low-sparse 384

scenario are shown in Table 3. MARE still achieves 385

the best performance in all aspects, similar to the 386

high-sparsity scenario. In the low-sparsity sce- 387

nario, the performance gain obtained by MARE is 388

greater than in high-sparsity scenarios. Specifically, 389

MARE is 5.4%, 4.8%, and 0.7% higher than YOFO 390
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Methods
Appearance Aroma Palate Avg

S ACC P R F1 S ACC P R F1 S ACC P R F1 F1
RNP(Bastings et al., 2019) 18.7 84.0 72.0 72.7 72.3 15.1 85.2 59.0 57.2 58.1 13.4 90.0 63.1 68.2 65.5 65.6
DMR(Huang et al., 2021) 18.2 - 71.1 70.2 70.7 15.4 - 59.8 58.9 59.3 11.9 - 53.2 50.9 52.0 60.7
A2R(Yu et al., 2021) 18.4 83.9 72.7 72.3 72.5 15.4 86.3 63.6 62.9 63.2 12.4 81.2 57.4 57.3 57.4 64.5
FR(Liu et al., 2022) 18.4 87.2 82.9 82.6 82.8 15.0 88.6 74.7 72.1 73.4 12.1 89.7 67.8 66.2 67.0 74.4
MGR(Liu et al., 2023a) 18.4 86.1 83.9 83.5 83.7 15.6 86.6 76.6 76.5 76.5 12.4 85.1 66.6 66.6 66.6 75.6
DR(Liu et al., 2023b) 18.6 85.3 84.3 84.8 84.5 15.6 87.2 77.2 77.5 77.3 13.3 85.7 65.1 69.8 67.4 76.4
YOFO (Jiang et al., 2023) 18.1 85.6 91.3 87.1 89.2 15.4 86.8 94.3 87.9 91.0 13.2 88.4 79.5 79.0 79.2 86.5
MARE (ours) 17.3 85.6 95.4 89.7 92.5 15.4 86.0 93.9 90.2 92.0 12.7 88.0 82.2 81.9 82.0 88.8

Table 2: Results of different methods on the high-sparse decorrelated BeerAdvocate dataset (McAuley et al., 2012).

Methods
Appearance Aroma Palate Avg

S ACC P R F1 S ACC P R F1 S ACC P R F1 F1
RNP(Lei et al., 2016) 11.9 - 72.0 46.1 56.2 10.7 - 70.5 48.3 57.3 10.0 - 53.1 42.8 47.5 53.7
CAR(Chang et al., 2019) 11.9 - 76.2 49.3 59.9 10.3 - 50.3 33.3 40.1 10.2 - 56.6 46.2 50.9 50.3
DMR(Huang et al., 2021) 11.7 - 83.6 52.8 64.7 11.7 - 63.1 47.6 54.3 10.7 - 55.8 48.1 51.7 56.9
FR(Liu et al., 2022) 12.7 83.9 77.6 53.3 63.2 10.8 87.6 82.9 57.9 68.2 10.0 84.5 69.3 55.8 61.8 64.4
MGR(Liu et al., 2023a) 13.2 82.6 75.2 53.5 62.6 12.3 84.7 80.8 63.7 71.2 10.8 80.1 51.6 44.7 47.9 60.6
DR(Liu et al., 2023b) 11.9 81.4 86.8 55.9 68.0 11.2 80.5 70.8 57.1 63.2 10.5 81.4 71.2 60.2 65.3 65.5
YOFO (Jiang et al., 2023) 13.1 87.0 97.1 66.9 79.2 12.1 86.3 94.1 68.9 79.5 10.9 87.8 88.5 72.7 79.8 79.5
MARE (ours) 13.8 86.3 98.7 74.0 84.6 12.2 85.9 97.5 74.4 84.3 10.9 88.2 87.4 74.6 80.5 83.1

Table 3: Results of different methods on the low-sparse decorrelated BeerAdvocate dataset (McAuley et al., 2012).

in the appearance, aroma, and palate aspects, re-391

spectively. Furthermore, MARE has a 3.6% aver-392

age performance gain in token-level F1 compared393

to YOFO. This further demonstrates the effective-394

ness of MARE.395

5.2.2 Results on the Hotel Review Dataset396

Experimental results on the Hotel Review dataset397

are shown in Table 3. Although MARE is slightly398

inferior to YOFO in the service and cleanliness399

aspects, it is far superior to YOFO in the location400

aspect and its average token-level F1 score is higher401

than YOFO. Specifically, MARE is 1.1% and 2.0%402

lower than YOFO in the service and cleanliness403

aspects, respectively, while it is 5.3% higher than404

YOFO in the location aspect. Meanwhile, MARE405

is 0.7% higher than YOFO in the average token-406

level F1 score.407

6 Analysis408

6.1 Case Study409

This section visualizes several samples on the Ho-410

tel Review dataset as shown in Table 5. Blue, red,411

and cyan represent the location, service, and clean-412

liness aspects, respectively, and underline indicate413

the annotated rationales.414

In the Hotel Review test set, each sample only415

has a uni-aspect annotation. As shown in the first416

case, only the location aspect has been annotated.417

However, in real scenarios, a review often describes418

multiple aspects. MARE extracted snippets not419

only about location but service and cleanliness 420

which are not annotated. "Staff very clean" and 421

"rooms and bathrooms spotless clean" demonstrate 422

that the service and cleanliness of the hotel are 423

excellent. In the second case, only the location as- 424

pect appeared in the text. Correspondingly, MARE 425

did not select any rationale other than the location 426

aspect. This indicates that MARE benefits from 427

multi-aspect collaborative encoding and makes de- 428

cisions when there is clear evidence. 429

6.2 Ablation Studies 430

To verify the effectiveness of our model compo- 431

nents, we have conducted several ablation stud- 432

ies on the BeerAdvocate dataset (McAuley et al., 433

2012). 434

6.2.1 multi-task training v.s. multi-aspect 435

collaborative training 436

To explore the impact of multi-task training on the 437

model as described in Section 4.3, this experiment 438

verifies the effectiveness of multi-task training by 439

comparing the performance, memory usage, and 440

time cost of multi-task training and multi-aspect 441

collaborative training. 442

The experimental result is shown in Table 6. The 443

performance of multi-task training is slightly bet- 444

ter than that of multi-aspect collaborative training. 445

This is because, in the early stages of training, 446

MARE cannot distinguish various aspects well, so 447

multi-aspect collaborative training may lead to in- 448
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Methods
Location Service Cleanliness Avg

S ACC P R F1 S ACC P R F1 S ACC P R F1 F1
RNP(Lei et al., 2016) 8.8 97.5 46.2 48.2 47.1 11.0 97.5 34.2 32.9 33.5 10.5 96.0 29.1 34.6 31.6 37.4
DMR(Huang et al., 2021) 10.7 - 47.5 60.1 53.1 11.6 - 43.0 43.6 43.3 10.3 - 31.4 36.4 33.7 43.4
A2R(Yu et al., 2021) 8.5 87.5 43.1 43.2 43.1 11.4 96.5 37.3 37.2 37.2 8.9 94.5 33.2 33.3 33.3 37.9
FR(Liu et al., 2022) 9.0 93.5 55.5 58.9 57.1 11.5 94.5 44.8 44.7 44.8 11.0 96.0 34.9 43.4 38.7 46.9
MGR(Liu et al., 2023a) 9.7 97.5 52.5 60.5 56.2 11.8 96.5 45.0 46.4 45.7 10.5 96.5 37.6 44.5 40.7 47.5
DR(Liu et al., 2023b) 9.6 96.5 53.6 60.9 57.0 11.5 96.0 47.1 47.4 47.2 10.0 97.0 39.3 44.3 41.8 48.9
YOFO (Jiang et al., 2023) 9.7 98.0 55.7 60.4 58.0 11.9 99.5 58.3 57.4 57.9 10.6 100.0 49.9 54.4 52.1 56.0
MARE (ours) 9.7 98.0 59.0 68.4 63.3 10.8 99.5 58.6 55.2 56.8 10.6 100.0 46.8 54.0 50.1 56.7

Table 4: Results of different methods on the Hotel Review dataset (Wang et al., 2010).

MARE (ours)
Location: Positive ✔
Service: Positive ?
Cleanliness: Positive ?
Text: arrived very apprehensively to the hotel after reading the negative remarks . we were happily suprised . staff very
pleasant , rooms and bathrooms spotlessly clean , although on the small side . our rooms had no natural light , but with
the lights on were ok . air conditioning worked ( was necessary in november ! ) , although noisy from the inside and
outside where the vents are . however , the hotel is in the middle of nyc and the noise did n ’ t bother us overmuch - the
situation is much more important , and the jolly was in a perfect location for shopping and tourism . breakfasted across
the road in the moonstruck deli ( opens at 7 am for the jet lagged ) . i would certainly go back there again !
Location: -
Service: Positive ✔
Cleanliness: -
Text: this is a very nice hotel with top - notch service and staff . you will pay for it , but if you want to avoid the touristy
hotels of branson , this is a beautiful place to stay and eat .

Table 5: Case studies on the Hotel Review dataset (Wang et al., 2010).

formation leakage between different aspects, re-449

sulting in a performance drop. Meanwhile, multi-450

aspect collaborative training requires mask calcu-451

lation for all aspects, resulting in high memory452

usage and long training time, reaching 24209MB453

and 34.5 minutes respectively. By contrast, multi-454

task training only requires encoding a single aspect455

at a time, so it costs much lower in both mem-456

ory and training time. It saves 17.9% and 25.2%457

of memory usage and training time, respectively.458

This indicates that models trained using multi-task459

training can outperform those trained using multi-460

aspect collaborative training with fewer computa-461

tional resources, demonstrating the effectiveness of462

multi-task training.463

6.2.2 Hard Deletion v.s. Attention Mask464

Deletion465

To demonstrate the effectiveness of hard deletion,466

this section contrastively employs AMD operations467

in the MAC. Specifically, we will replace the Equa-468

tion (5)-(8) with Equation (12)-(15):469

m′ =
k−1

∑
i=0

m[i] ∈ [0, k]L (12)470

m̃[i] =
⎧⎪⎪⎨⎪⎪⎩

0, If m′[i] = 0
1, Otherwise

(13) 471

m̂ =m′ − StopGrad(m′) + m̃ ∈ {0,1}L (14) 472

Ãh
i =Ah

i ⊙ m̂, for h in 1,2, ...,H (15) 473

Where, k means the number of aspects, and m′ 474

represents the mask vector with a span of closed in- 475

terval [0, k], m̂ indicates the calculated mask vector 476

to multiply with attention score matrix. Here, we 477

also use the Straight Through technique to bypass 478

the non-differentiable problem. 479

Experimental results are shown in Table 7. 480

While using AMD, the rationalization and down- 481

stream performance are very poor. On the con- 482

trary, MARE-hard performs very well. In three as- 483

pects, the validation accuracy of MARE-hard was 484

very close to BERT, and exceeded MARE-AMD by 485

3.5%, 4.8%, and 6.3%, respectively. Meanwhile, 486

MARE-hard leads MARE-AMD by 23.1%, 23.4%, 487

and 78.1% in rationalization performance, respec- 488

tively. The reason is that AMD fails to effectively 489

separate tokens corresponding to different aspects, 490

leading to information leakage and hindering accu- 491

rate rationale extraction. This indicates that AMD 492
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Methods Memory Usage
(MB)

Training Time
(minutes/epoch)

Appearance Aroma Palate
ValAcc F1 ValAcc F1 ValAcc F1

multi-aspect collaborative training 24209 34.5 89.2 92.2 88.4 90.1 84.0 79.2
multi-task training 19877 25.8 89.2 92.5 89.1 92.0 84.7 82.0

Table 6: Ablation study on different training strategies.

Methods
Appearance Aroma Palate

ValAcc F1 ValAcc F1 ValAcc F1
BERT 90.2 - 89.5 - 86.8 -
MARE-AMD 85.7 69.4 84.3 68.6 78.4 3.9
MARE-hard 89.2 92.5 89.1 92.0 84.7 82.0

Table 7: Ablation study on different delete methods.

is not suitable for multi-aspect collaborative cod-493

ing, and also proves the necessity and effectiveness494

of using hard deletion.495

6.2.3 Special Token Initialization496

To evaluate the impact of different initialization497

methods for special tokens on the model perfor-498

mance, this section explores three distinct initial-499

ization approaches:500

• random initialization: The first special token501

is initialized by [CLS], while all other special502

tokens are randomly initialized.503

• CLS initialization: All the special tokens are504

initialized by [CLS].505

• sharing initialization: All the special tokens506

are shared and initialized by [CLS].507

The performance comparisons are shown in Ta-508

ble 8. MARE-CLS is slightly better than MARE-509

random and the MARE-share performs the worst.510

We found that MARE share cannot distinguish511

the differences in sparsity between different as-512

pects. MARE-CLS achieves the best performance513

because the special token [CLS] is a highly infor-514

mative embedding after pre-training. By default,515

MARE uses the CLS initialization.516

7 Conclusion517

This paper proposed a Multi-Aspect Rationale Ex-518

tractor to solve the limitations of traditional uni-519

aspect encoding models. MARE can collabora-520

tively predict and interpret multiple aspects of521

text simultaneously. Additionally, MARE incorpo-522

rated multi-task training, sequentially training on523

data from each aspect, thereby significantly reduc-524

ing training costs. Extensive experimental results525

Methods
Appearance Aroma Palate
ACC F1 ACC F1 ACC F1

MARE-random 85.7 87.1 85.4 90.7 87.0 80.9
MARE-share 85.7 85.1 84.3 88.1 87.1 79.0
MARE-CLS 85.6 92.5 86.0 92.0 88.0 82.0

Table 8: Ablation study on different initialization strate-
gies.

on two unsupervised rationale extraction datasets 526

have shown that the rationalization performance of 527

MARE is superior to all previous models. Ablation 528

studies further demonstrated the effectiveness of 529

our method. 530

Limitations 531

All of the above experiments have demonstrated 532

the effectiveness of our method, but there are some 533

limitations. MARE needs to prepend some spe- 534

cial tokens in front of the input, which increases 535

the computational overhead. Meanwhile, MARE 536

can only adapted in encoder-based pre-trained lan- 537

guage models. We are working hard to apply it to 538

decoder-only models so that MARE can explain 539

the predictions of LLMs. We will try to eliminate 540

these limitations in our future work. 541
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A Implementation Details 627

A.1 Main Experiments 628

In the experiment, we utilize the Pytorch (Paszke 629

et al., 2019) deep learning framework and the hug- 630

gingface transformers library (Wolf et al., 2019) to 631

implement MARE. BERT (Devlin et al., 2019) will 632

be deployed as the backbone in MARE. MARE 633

uses the AdamW optimizer (Loshchilov and Hut- 634

ter, 2017) to optimize parameters, with a learn- 635

ing rate set to 3 × 10−5 and a weight decay set to 636

0.0. To control the sparsity and continuity of the 637

generated rationales, this paper applies the "Cliff" 638

deletion strategy, where the k is fixed at 9. In 639

addition, we use grid search to select the most suit- 640

able hyperparameters β and γ from the candidate 641

set {0.7,1,3,5,7}. We assume β = γ in our ex- 642

periments and select β = γ = [0.7,3,3] for the 643

BeerAdvocate dataset and Hotel Review dataset, 644

respectively. During the training process, we adopt 645

a balanced round-robin method to iteratively sam- 646

ple data from all aspects. Set the batch size to 64 647

and limit the maximum sequence length to 256. For 648

the BeerAdvocate dataset, MARE was trained for 649

15 epochs. However, considering the large scale of 650

the Hotel Review dataset, the model only iteratively 651

trained 5 epochs. 652

Datasets Train Validation Test
Pos Neg Pos Neg Pos Neg

Beer
Appearance 16891 16891 6628 2103 923 13

Aroma 15169 15169 6579 2218 848 29
Palate 13652 13652 6740 2000 785 20

Hotel
Location 7236 7236 906 906 104 96
Service 50742 50742 6344 6344 101 98

Cleanliness 75049 75049 9382 9382 97 99

Table 9: Statistics of the BeerAdvocate and Hotel Re-
view dataset.
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A.2 Dataset Statistics653

The statistics of the BeerAdvocate654

dataset (McAuley et al., 2012) and the Ho-655

tel Review dataset (Wang et al., 2010) are shown656

in Table 9.657
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