
Published as a conference paper at ICLR 2018

WRPN: WIDE REDUCED-PRECISION NETWORKS

Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook & Debbie Marr
Accelerator Architecture Lab
Intel Labs
{asit.k.mishra,eriko.nurvitadhi,jeffrey.j.cook,debbie.marr}@intel.com

ABSTRACT

For computer vision applications, prior works have shown the efficacy of re-
ducing numeric precision of model parameters (network weights) in deep neu-
ral networks. Activation maps, however, occupy a large memory footprint dur-
ing both the training and inference step when using mini-batches of inputs. One
way to reduce this large memory footprint is to reduce the precision of activa-
tions. However, past works have shown that reducing the precision of activations
hurts model accuracy. We study schemes to train networks from scratch using
reduced-precision activations without hurting accuracy. We reduce the precision
of activation maps (along with model parameters) and increase the number of fil-
ter maps in a layer, and find that this scheme matches or surpasses the accuracy
of the baseline full-precision network. As a result, one can significantly improve
the execution efficiency (e.g. reduce dynamic memory footprint, memory band-
width and computational energy) and speed up the training and inference process
with appropriate hardware support. We call our scheme WRPN - wide reduced-
precision networks. We report results and show that WRPN scheme is better than
previously reported accuracies on ILSVRC-12 dataset while being computation-
ally less expensive compared to previously reported reduced-precision networks.

1 INTRODUCTION

A promising approach to lower the compute and memory requirements of convolutional deep-
learning workloads is through the use of low numeric precision algorithms. Operating in lower
precision mode reduces computation as well as data movement and storage requirements. Due to
such efficiency benefits, there are many existing works which propose low-precision deep neural net-
works (DNNs) (Zhou et al., 2017; Lin et al., 2015; Miyashita et al., 2016; Gupta et al., 2015b; Van-
houcke et al., 2011), even down to 2-bit ternary mode (Zhu et al., 2016; Li & Liu, 2016; Venkatesh
et al., 2016) and 1-bit binary mode (Zhou et al., 2016; Courbariaux & Bengio, 2016; Rastegari
et al., 2016; Courbariaux et al., 2015; Umuroglu et al., 2016). However, majority of existing works
in low-precision DNNs sacrifice accuracy over the baseline full-precision networks. Further, most
prior works target reducing the precision of the model parameters (network weights). This primarily
benefits the inference step only when batch sizes are small.

We observe that activation maps (neuron outputs) occupy more memory compared to the model
parameters for batch sizes typical during training. This observation holds even during inference
when batch size is around eight or more. Based on this observation, we study schemes for training
and inference using low-precision DNNs where we reduce the precision of activation maps as well
as the model parameters without sacrificing network accuracy.

To improve both execution efficiency and accuracy of low-precision networks, we reduce both the
precision of activation maps and model parameters and increase the number of filter maps in a layer.
We call networks using this scheme wide reduced-precision networks (WRPN) and find that this
scheme compensates or surpasses the accuracy of the baseline full-precision network. Although the
number of raw compute operations increases as we increase the number of filter maps in a layer, the
compute bits required per operation is now a fraction of what is required when using full-precision
operations (e.g. going from FP32 AlexNet to 4-bits precision and doubling the number of filters
increases the number of compute operations by 4x, but each operation is 8x more efficient than
FP32).

1

Published as a conference paper at ICLR 2018

WRPN offers better accuracies, while being computationally less expensive compared to previ-
ously reported reduced-precision networks. We report results on AlexNet (Krizhevsky et al., 2012),
batch-normalized Inception (Ioffe & Szegedy, 2015), and ResNet-34 (He et al., 2015) on ILSVRC-
12 (Russakovsky et al., 2015) dataset. We find 4-bits to be sufficient for training deep and wide
models while achieving similar or better accuracy than baseline network. With 4-bit activation and
2-bit weights, we find the accuracy to be at-par with baseline full-precision. Making the networks
wider and operating with 1-bit precision, we close the accuracy gap between previously reported
binary networks and show state-of-the art results for ResNet-34 (69.85% top-1 with 2x wide) and
AlexNet (48.04% top-1 with 1.3x wide). To the best of our knowledge, our reported accuracies with
binary networks and 4-bit precision are highest to date.

Our reduced-precision quantization scheme is hardware friendly allowing for efficient hardware
implementations. To this end, we evaluate efficiency benefits of low-precision operations (4-bits
to 1-bits) on Titan X GPU, Arria-10 FPGA and ASIC. We see that FPGA and ASIC can deliver
significant efficiency gain over FP32 operations (6.5x to 100x), while GPU cannot take advantage
of very low-precision operations.

2 MOTIVATION FOR REDUCED-PRECISION ACTIVATION MAPS

!"#$%

&#'%

&(#&%

(#&%

&'#"%

&#(%

!)#*%

!#!%

)'#!%

'$#+%

$,#,%

',#,%

$+#"%

'$#(%

)!#)%

')#$%

+ $) + $) + $) + $)

-./01/2 345) 4/61/27(" 4/61/27+"+

%
89
/
9
:
4
;
8<
:
:
2
=
4
31
2

!"#$%$%&

%8>? %8-@2?

!"#$%

!#&%

!'#(%

")#'%

'*#"%

&&#+%

'(#$%

(#%

+,#$%

'+#!%

+)#*%

,'#"%

$#'%

((#,%

&#$%

$&#(%

" &+ " &+ " &+ " &+

-./01/2 345+ 4/61/27$) 4/61/27")"

%
89
/
9
:
4
;
8<
:
:
2
=
4
31
2

!"#$%$"&$

%8>? %8-@2?

Figure 1: Memory footprint of activations (ACTs) and weights (W) during training and inference for mini-
batch sizes 1 and 32.

While most prior works proposing reduced-precision networks work with low precision weights (e.g.
work in Courbariaux & Bengio (2016); Zhu et al. (2016); Zhou et al. (2016); Venkatesh et al. (2016);
Li & Liu (2016); Courbariaux et al. (2015); Umuroglu et al. (2016)), we find that activation maps
occupy a larger memory footprint when using mini-batches of inputs. Using mini-batches of inputs
is typical in training of DNNs and cloud-based batched inference (Jouppi et al., 2017). Figure 1
shows memory footprint of activation maps and filter maps as batch size changes for 4 different
networks (AlexNet, Inception-Resnet-v2 (Szegedy et al., 2016), ResNet-50 and ResNet-101) during
the training and inference steps.

Grad

ACT

Grad

ACT

Layer !"#

W

! "

$! $"

OFM

/IFM

Grad

ACT

Layer !

W

! "

$! $"

Grad

ACT

Layer !%#

W

! "

$! $"

OFM

/IFM

OFM

/IFM

OFM

/IFM

Figure 2: Memory requirements of a feed forward convolutional deep neural network. Orange boxes denote
weights (W), blue boxes are activations (ACT) and green boxes are gradient-maps (Grad).

As batch-size increases, because of filter reuse across batches of inputs, activation maps occupy
significantly larger fraction of memory compared to the filter weights. This aspect is illustrated in

2

Published as a conference paper at ICLR 2018

Figure 2 which shows the memory requirements of a canonical feed-forward DNN for a hardware
accelerator based system (e.g. GPU, FPGA, PCIe connected ASIC device, etc.). During training,
the sum of all the activation maps (ACT) and weight tensors (W) are allocated in device memory for
forward pass along with memory for gradient maps during backward propagation. The total memory
requirements for training phase is the sum of memory required for the activation maps, weights and
the maximum of input gradient maps (δZ) and maximum of back-propagated gradients (δX). During
inference, memory is allocated for input (IFM) and output feature maps (OFM) required by a single
layer, and these memory allocations are reused for other layers. The total memory allocation during
inference is then the maximum of IFM and maximum of OFM required across all the layers plus the
sum of all W-tensors. At batch sizes 128 and more, activations start to occupy more than 98% of
total memory footprint during training.

Overall, reducing precision of activations and weights reduces memory footprint, bandwidth and
storage while also simplifying the requirements for hardware to efficiently support these operations.

3 WRPN SCHEME AND STUDIES ON ALEXNET

Based on the observation that activations occupy more memory footprint compared to weights, we
reduce the precision of activations to speed up training and inference steps as well as cut down on
memory requirements. However, a straightforward reduction in precision of activation maps leads
to significant reduction in model accuracy (Zhou et al., 2016; Rastegari et al., 2016).

We conduct a sensitivity study where we reduce precision of activation maps and model weights for
AlexNet running ILSVRC-12 dataset and train the network from scratch. Table 1 reports our find-
ings. Top-1 single-precision (32-bits weights and activations) accuracy is 57.2%. The accuracy with
binary weights and activations is 44.2%. This is similar to what is reported in Rastegari et al. (2016).
32bA and 2bW data-point in this table is using Trained Ternary Quantization (TTQ) technique (Zhu
et al., 2016). All other data points are collected using our quantization scheme (described later in
Section 5), all the runs have same hyper-parameters and training is carried out for the same number
of epochs as baseline network. To be consistent with results reported in prior works, we do not
quantize weights and activations of the first and last layer.

We find that, in general, reducing the precision of activation maps and weights hurts model accuracy.
Further, reducing precision of activations hurts model accuracy much more than reducing precision
of the filter parameters. We find TTQ to be quite effective on AlexNet in that one can lower the
precision of weights to 2b (while activations are still FP32) and not lose accuracy. However, we did
not find this scheme to be effective for other networks like ResNet or Inception.

Table 1: AlexNet top-1 validation set accuracy
% as precision of activations (A) and weight(W)
changes. All results are with end-to-end training
of the network from scratch. − is a data-point
we did not experiment for.

32b A 8b A 4b A 2b A 1b A

32b W 57.2 54.3 54.4 52.7 –
8b W – 54.5 53.2 51.5 –
4b W – 54.2 54.4 52.4 –
2b W 57.5 50.2 50.5 51.3 –
1b W 56.8 – – – 44.2

Table 2: AlexNet 2x-wide top-1 validation set
accuracy % as precision of activations (A) and
weights (W) changes.

32b A 8b A 4b A 2b A 1b A

32b W 60.5 58.9 58.6 57.5 52.0
8b W – 59.0 58.8 57.1 50.8
4b W – 58.8 58.6 57.3 –
2b W – 57.6 57.2 55.8 –
1b W – – – – 48.3

To re-gain the model accuracy while working with reduced-precision operands, we increase the
number of filter maps in a layer. Although the number of raw compute operations increase with
widening the filter maps in a layer, the bits required per compute operation is now a fraction of what
is required when using full-precision operations. As a result, with appropriate hardware support,
one can significantly reduce the dynamic memory requirements, memory bandwidth, computational
energy and speed up the training and inference process.

Our widening of filter maps is inspired from Wide ResNet (Zagoruyko & Komodakis, 2016) work
where the depth of the network is reduced and width of each layer is increased (the operand precision
is still FP32). Wide ResNet requires a re-design of the network architecture. In our work, we
maintain the depth parameter same as baseline network but widen the filter maps. We call our

3

Published as a conference paper at ICLR 2018

approach WRPN - wide reduced-precision networks. In practice, we find this scheme to be very
simple and effective - starting with a baseline network architecture, one can change the width of
each filter map without changing any other network design parameter or hyper-parameters. Carefully
reducing precision and simultaneously widening filters keeps the total compute cost of the network
under or at-par with baseline cost.1

Table 2 reports the accuracy of AlexNet when we double the number of filter maps in a layer. With
doubling of filter maps, AlexNet with 4-bits weights and 2-bits activations exhibits accuracy at-par
with full-precision networks. Operating with 4-bits weights and 4-bits activations surpasses the
baseline accuracy by 1.44%. With binary weights and activations we better the accuracy of XNOR-
NET (Rastegari et al., 2016) by 4%.

When doubling the number of filter maps, AlexNet’s raw compute operations grow by 3.9x com-
pared to the baseline full-precision network, however by using reduced-precision operands the over-
all compute complexity is a fraction of the baseline. For example, with 4b operands for weights and
activations and 2x the number of filters, reduced-precision AlexNet is just 49% of the total compute
cost of the full-precision baseline (compute cost comparison is shown in Table 3).

Table 3: Compute cost of AlexNet 2x-wide vs. 1x-wide as preci-
sion of activations (A) and weights (W) changes.

32b A 8b A 4b A 2b A 1b A

32b W 3.9x 2.4x 2.2x 2.1x 2.0x
8b W 2.4x 1.0x 0.7x 0.6x 0.6x
4b W 2.2x 0.7x 0.5x 0.4x 0.3x
2b W 2.1x 0.6x 0.4x 0.2x 0.2x
1b W 2.0x 0.6x 0.3x 0.2x 0.1x

We also experiment with other widening factors. With 1.3x widening of filters and with 4-bits of
activation precision one can go as low as 8-bits of weight precision while still being at-par with
baseline accuracy. With 1.1x wide filters, at least 8-bits weight and 16-bits activation precision
is required for accuracy to match baseline full-precision 1x wide accuracy. Further, as Table 3
shows, when widening filters by 2x, one needs to lower precision to at least 8-bits so that the total
compute cost is not more than baseline compute cost. Thus, there is a trade-off between widening
and reducing the precision of network parameters.

In our work, we trade-off higher number of raw compute operations with aggressively reducing the
precision of the operands involved in these operations (activation maps and filter weights) while
not sacrificing the model accuracy. Apart from other benefits of reduced precision activations as
mentioned earlier, widening filter maps also improves the efficiency of underlying GEMM calls for
convolution operations since compute accelerators are typically more efficient on a single kernel
consisting of parallel computation on large data-structures as opposed to many small sized ker-
nels (Zagoruyko & Komodakis, 2016).

4 STUDIES ON DEEPER NETWORKS

We study how our scheme applies to deeper networks. For this, we study ResNet-34 (He et al.,
2015) and batch-normalized Inception (Ioffe & Szegedy, 2015) and find similar trends, particularly
that 2-bits weight and 4-bits activations continue to provide at-par accuracy as baseline. We use
TensorFlow (Abadi et al., 2015) and tensorpack for all our evaluations and use ILSVRC-12 train
and val dataset for analysis.

4.1 RESNET

ResNet-34 has 3x3 filters in each of its modular layers with shortcut connections being 1x1. The
filter bank width changes from 64 to 512 as depth increases. We use the pre-activation variant of
ResNet and the baseline top-1 accuracy of our ResNet-34 implementation using single-precision

1Compute cost is the product of the number of FMA operations and the sum of width of the activation and
weight operands.

4

Published as a conference paper at ICLR 2018

32-bits data format is 73.59%. Binarizing weights and activations for all layers except the first and
the last layer in this network gives top-1 accuracy of 60.5%. For binarizing ResNet we did not
re-order any layer (as is done in XNOR-NET). We used the same hyper-parameters and learning
rate schedule as the baseline network. As a reference, for ResNet-18, the gap between XNOR-NET
(1b weights and activations) and full-precision network is 18% (Rastegari et al., 2016). It is also
interesting to note that top-1 accuracy of single-precision AlexNet (57.20%) is lower than the top-1
accuracy of binarized ResNet-34 (60.5%).

Table 4: ResNet-34 top-1 validation accuracy % and compute cost as
precision of activations (A) and weights (W) varies.

Width Precision Top-1 Acc. % Compute cost

1x wide 32b A, 32b W 73.59 1x
1b A, 1b W 60.54 0.03x

2x wide 4b A, 8b W 74.48 0.74x
4b A, 4b W 74.52 0.50x
4b A, 2b W 73.58 0.39x
2b A, 4b W 73.50 0.39x
2b A, 2b W 73.32 0.27x
1b A, 1b W 69.85 0.15x

3x wide 1b A, 1b W 72.38 0.30x

We experimented with doubling number of filters in each layer and reduce the precision of activa-
tions and weights. Table 4 shows the results of our analysis. Doubling the number of filters and
4-bits precision for both weights and activations beats the baseline accuracy by 0.9%. 4-bits acti-
vations and 2-bits (ternary) weights has top-1 accuracy at-par with baseline. Reducing precision to
2-bits for both weights and activations degrades accuracy by only 0.2% compared to baseline.

Binarizing the weights and activations with 2x wide filters has a top-1 accuracy of 69.85%. This
is just 3.7% worse than baseline full-precision network while being only 15% of the cost of the
baseline network. Widening the filters by 3x and binarizing the weights and activations reduces this
gap to 1.2% while the 3x wide network is 30% the cost of the full-precision baseline network.

Although 4-bits precision seems to be enough for wide networks, we advocate for 4-bits activa-
tion precision and 2-bits weight precision. This is because with ternary weights one can get rid
of the multipliers and use adders instead. Additionally, with this configuration there is no loss of
accuracy. Further, if some accuracy degradation is tolerable, one can even go to binary circuits for
efficient hardware implementation while saving 32x in bandwidth for each of weights and activa-
tions compared to full-precision networks. All these gains can be realized with simpler hardware
implementation and lower compute cost compared to baseline networks.

To the best of our knowledge, our ResNet binary and ternary (with 2-bits or 4-bits activation) top-1
accuracies are state-of-the-art results in the literature including unpublished technical reports (with
similar data augmentation (Mellempudi et al., 2017)).

4.2 BATCH-NORMALIZED INCEPTION

We applied WRPN scheme to batch-normalized Inception network (Ioffe & Szegedy, 2015). This
network includes batch normalization of all layers and is a variant of GoogleNet (Szegedy et al.,
2014) where the 5x5 convolutional filters are replaced by two 3x3 convolutions with up to 128
wide filters. Table 5 shows the results of our analysis. Using 4-bits activations and 2-bits weight
and doubling the number of filter banks in the network produces a model that is almost at-par in
accuracy with the baseline single-precision network (0.02% loss in accuracy). Wide network with
binary weights and activations is within 6.6% of the full-precision baseline network.

5 HARDWARE FRIENDLY QUANTIZATION SCHEME

We adopt the straight-through estimator (STE) approach in our work (Bengio et al., 2013). When
quantizing a real number to k-bits, the ordinality of the set of quantized numbers is 2k. Mathemat-

5

Published as a conference paper at ICLR 2018

Table 5: Batch-normalized Inception top-1 validation accuracy % and
compute cost as precision of activations (A) and weights (W) varies.

Width Precision Top-1 Acc. % Compute cost

1x wide 32b A, 32b W 71.64 1x

2x wide 4b A, 4b W 71.63 0.50x
4b A, 2b W 71.61 0.38x
2b A, 2b W 70.75 0.25x
1b A, 1b W 65.02 0.13x

ically, this small and finite set would have zero gradients with respect to its inputs. STE method
circumvents this problem by defining an operator that has arbitrary forward and backward opera-
tions.

Prior works using the STE approach define operators that quantize the weights based on the expec-
tation of the weight tensors. For instance, Ternary Weight Networks (TWN) (Li & Liu, 2016) uses
a threshold and a scaling factor for each layer to quantize weights to ternary domain. In TTQ (Zhu
et al., 2016), the scaling factors are learned parameters. XNOR-NET binarizes the weight tensor
by computing the sign of the tensor values and then scaling by the mean of the absolute value of
each output channel of weights. DoReFa uses a single scaling factor across the entire layer. For
quantizing weights to k-bits, where k > 1, DoReFa uses:

wk = 2 ∗ quantizek(
tanh(wi)

2 ∗max(| tanh(wi) |)
+

1

2
)− 1) (1)

Here wk is the k-bit quantized version of inputs wi and quantizek is a quantization function that
quantizes a floating-point number wi in the range [0, 1] to a k-bit number in the same range. The
transcendental tanh operation constrains the weight value to lie in between −1 and +1. The affine
transformation post quantization brings the range to [−1, 1].
We build on these approaches and propose a much simpler scheme. For quantizing weight tensors
we first hard constrain the values to lie within the range [−1, 1] using min-max operation (e.g.
tf.clip by val when using Tensorflow (Abadi et al., 2015)). For quantizing activation tensor values,
we constrain the values to lie within the range [0, 1]. This step is followed by a quantization step
where a real number is quantized into a k-bit number. This is given as, for k > 1:

wk =
1

2k−1 − 1
round((2k−1 − 1) ∗ wi) and ak =

1

2k − 1
round((2k − 1) ∗ ai) (2)

Here wi and ai are input real-valued weights and activation tensor and wk and ak are their quan-
tized versions. One bit is reserved for sign-bit in case of weight values, hence the use of 2k−1 for
these quantized values. Thus, weights can be stored and interpreted using signed data-types and
activations using un-signed data-types. With appropriate affine transformations, the convolution op-
erations (the bulk of the compute operations in the network during forward pass) can be done using
quantized values (integer operations in hardware) followed by scaling with floating-point constants
(this scaling operation can be done in parallel with the convolution operation in hardware). When
k = 1, for binary weights we use the Binary Weighted Networks (BWN) approach (Courbariaux
et al., 2015) where the binarized weight value is computed based on the sign of input value followed
by scaling with the mean of absolute values. For binarized activations we use the formulation in
Eq. 2. We do not quantize the gradients and maintain the weights in reduced precision format.

For convolution operation when using WRPN, the forward pass during training (and the inference
step) involves matrix multiplication of k-bits signed and k-bits unsigned operands. Since gradi-
ent values are in 32-bits floating-point format, the backward pass involves a matrix multiplication
operation using 32-bits and k-bits operand for gradient and weight update.

When k > 1, the hard clipping of tensors to a range maps efficiently to min-max comparator units
in hardware as opposed to using transcendental operations which are long latency operations. TTQ

6

Published as a conference paper at ICLR 2018

and DoRefa (Zhou et al., 2016) schemes involve division operation and computing a maximum value
in the input tensor. Floating-point division operation is expensive in hardware and computing the
maximum in a tensor is an O(n) operation. Additionally, our quantization parameters are static and
do not require any learning or involve back-propagation like TTQ approach. We avoid each of these
costly operations and propose a simpler quantization scheme (clipping followed by rounding).

5.1 EFFICIENCY IMPROVEMENTS OF REDUCED-PRECISION OPERATIONS ON GPU, FPGA
AND ASIC

In practice, the effective performance and energy efficiency one could achieve on a low-precision
compute operation highly depends on the hardware that runs these operations. We study the effi-
ciency of low-precision operations on various hardware targets GPU, FPGA, and ASIC.

For GPU, we evaluate WRPN on Nvidia Titan X Pascal and for FPGA we use Intel Arria-10. We
collect performance numbers from both previously reported analysis (Nurvitadhi et al., 2017) as
well as our own experiments. For FPGA, we implement a DNN accelerator architecture shown in
Figure 3(a). This is a prototypical accelerator design used in various works (e.g., on FPGA (Nurvi-
tadhi et al., 2017) and ASIC such as TPU (Jouppi et al., 2017)). The core of the accelerator consists
of a systolic array of processing elements (PEs) to perform matrix and vector operations, along with
on-chip buffers, as well as off-chip memory management unit. The PEs can be configured to support
different precision – (FP32, FP32), (INT4, INT4), (INT4, TER2), and (BIN1, BIN1). The (INT4,
TER2) PE operates on ternary (+1,0,-1) values and is optimized to include only an adder since there
is no need for a multiplier in this case. The binary (BIN1, BIN1) PE is implemented using XNOR
and bitcount. Our RTL design targets Arria-10 1150 FPGA. For our ASIC study, we synthesize the
PE design using Intel 14 nm process technology to obtain area and energy estimates.

!"#$%&'()*++,-.

/
0--12(3+(45.

/

/

/

/45

45

45

45

6,7(89-:

!"#$%&'()*+',-'$

(.--,/.$-()&01)-($

"1(-,$+2$"&)*3&,)4

!5#678(.--,/.($

9+'$:+3*.'-5&(&+2$

+.-'1)&+2(

!,#$%76;$(.--,/.($

9+'$:+3*.'-5&(&+2$

+.-'1)&+2(

<=>$9'+0$

%7<=$)+$
?@AB

@2$.'15)&5-C$+2:D$/.$)+$EF>$

(.--,/.($&2$678C$(&25-$2+$
(/..+')$9+'$(/"$G*"&)$.'-5&(&+2(

%76;$(.--,/.($1'-$)'15H&2I$B() +',-'$

-()&01)-(C$(&25-$&)($91"'&5$&(1I++,$9&)$
9+'$5/()+0$:+3*.'-5&(&+2$+.-'1)&+2(

!
"
#
#
$
%
"
&
'(
)
#
*'
+
,
-
.

!
"
#
#
$
%
"
&
'(
)
#
*'
+
,
-
.

!
"
#
#
$
%
"
&
'(
)
#
*'
+
,
-
.

!1#JAA41',31'-$

/2,-'$()/,D

!-#$678$12,$%76;$.-'9+'0125-$12,$-2-'ID$-99&5&-25D$9+'$K1'&+/($

.'-5&(&+2(L$%76;$,+-($3-::$+2$K-'D$:+3$.'-5&(&+2(L

,
#
*/
(
*0
1
2
3
#
45
2
#
*6
7
'

89
:
,
4&
4;
<

!9#$;M@N$5+0./)-$

/2&)$.-'9+'0125-

!I#$;M@N$5+0./)-$

/2&)$-2-'ID

=0
"
*(
)
#
0
#
2
>&
'(
)
#
*'
+
,
-
.

=0
"
*(
)
#
0
#
2
>&
'(
)
#
*'
+
,
-
.

,
#
*/
(
*0
1
2
3
#
'8
?
:
,
4&
< BF<F

Figure 3: Efficiency improvements from low-precision operations on GPU, FPGA and ASIC.

Figure 3(b) - (g) summarize our analysis. Figure 3(b) shows the efficiency improvements using
first-order estimates where the efficiency is computed based on number of bits used in the operation.

7

Published as a conference paper at ICLR 2018

With this method we would expect (INT4, INT4) and (BIN1, BIN1) to be 8x and 32x more efficient,
respectively, than (FP32, FP32). However, in practice the efficiency gains from reducing precision
depend on whether the underlying hardware can take advantage of such low-precisions.

Figure 3(c) shows performance improvement on Titan X GPU for various low-precision operations
relative to FP32. In this case, GPU can only achieve up to ∼4x improvements in performance over
FP32 baseline. This is because GPU only provides first-class support for INT8 operations, and is not
able to take advantage of the lower INT4, TER2, and BIN1 precisions. On the contrary, FPGA can
take advantage of such low precisions, since they are amenable for implementations on the FPGAs
reconfigurable fabric.

Figure 3(d) shows that the performance improvements from (INT4, INT4), (INT4, TER2), and
(BIN1, BIN1) track well with the first-order estimates from Figure 3(b). In fact, for (BIN1, BIN1),
FPGA improvements exceed the first-order estimate. Reducing the precision simplifies the design
of compute units and lower buffering requirements on FPGA board. Compute-precision reduction
leads to significant improvement in throughput due to smaller hardware designs (allowing more par-
allelism) and shorter circuit delay (allowing higher frequency). Figure 3(e) shows the performance
and performance/Watt of the reduced-precision operations on GPU and FPGA. FPGA performs
quite well on very low precision operations. In terms of performance/watt, FPGA does better than
GPU on (INT4, INT4) and lower precisions.

ASIC allows for a truly customized hardware implementation. Our ASIC study provides insights to
the upper bound of the efficiency benefits possible from low-precision operations. Figure 3(f) and
3(g) show improvement in performance and energy efficiency of the various low-precision ASIC
PEs relative to baseline FP32 PE. As the figures show, going to lower precision offers 2 to 3 orders
of magnitude efficiency improvements.

In summary, FPGA and ASIC are well suited for our WRPN approach. At 2x wide, our WRPN
approach requires 4x more total operations than the original network. However, for INT4 or lower
precision, each operation is 6.5x or better in efficiency than FP32 for FPGA and ASIC. Hence,
WRPN delivers an overall efficiency win.

6 RELATED WORK

Reduced-precision DNNs is an active research area. Reducing precision of weights for efficient
inference pipeline has been very well studied. Works like Binary connect (BC) (Courbariaux
et al., 2015), Ternary-weight networks (TWN) (Li & Liu, 2016), fine-grained ternary quantiza-
tion (Mellempudi et al., 2017) and INQ (Zhou et al., 2017) target precision reduction of network
weights while still using full-precision activations. Accuracy is almost always degraded when
quantizing the weights. For AlexNet on Imagenet, TWN loses 5% top-1 accuracy. Schemes like
INQ, Sung et al. (2015) and Mellempudi et al. (2017) do fine-tuning to quantize the network weights
and do not sacrifice accuracy as much but are not applicable for training networks from scratch. INQ
shows promising results with 5-bits of precision.

XNOR-NET (Rastegari et al., 2016), BNN (Courbariaux & Bengio, 2016), DoReFa (Zhou et al.,
2016) and TTQ (Zhu et al., 2016) target training as well. While TTQ targets weight quantization
only, most works targeting activation quantization hurt accuracy. XNOR-NET approach reduces
top-1 accuracy by 12% and DoReFa by 8% when quantizing both weights and activations to 1-bit
(for AlexNet on ImageNet). Further, XNOR-NET requires re-ordering of layers for its scheme to
work. Recent work in Graham (2017) targets low-precision activations and reports accuracy within
1% of baseline with 5-bits precision and logarithmic (with base

√
2) quantization. With fine-tuning

this gap can be narrowed to be within 0.6% but not all layers are quantized.

Non-multiples of two for operand values introduces hardware inefficiency in that memory accesses
are no longer DRAM or cache-boundary aligned and end-to-end run-time performance aspect is un-
clear when using complicated quantization schemes. We target end-to-end training and inference,
using very simple quantization method and aim for reducing precision without any loss in accuracy.
To the best of our knowledge, our work is the first to study reduced-precision deep and wide net-
works, and show accuracy at-par with baseline for as low a precision as 4-bits activations and 2-bits
weights. We report state of the art accuracy for wide binarized AlexNet and ResNet while still being
lower in compute cost.

8

Published as a conference paper at ICLR 2018

Work by Gupta et al. (2015a) advocates for low precision fixed-point numbers for training. They
show 16-bits to be sufficient for training on CIFAR10 dataset and find stochastic rounding to be
necessary for training convergence. In our work here we focus on sub-8b training and like DoReFa
scheme do not see stochastic rounding necessary when using full-precision gradients. Work by Seide
et al. (2014) quantizes gradients before communication in a distributed computing setting. They use
full precision gradients during the backward pass and quantize the gradients before sending them to
other computation nodes (decreasing the amount of communication traffic over an interconnection
network). For distributed training, we can potentially use this approach for communicating gradients
across nodes.

7 CONCLUSIONS

We present the Wide Reduced-Precision Networks (WRPN) scheme for DNNs. In this scheme, the
numeric precision of both weights and activations are significantly reduced without loss of network
accuracy. This result is in contrast to many previous works that find reduced-precision activations to
detrimentally impact accuracy; specifically, we find that 2-bit weights and 4-bit activations are suf-
ficient to match baseline accuracy across many networks including AlexNet, ResNet-34 and batch-
normalized Inception. We achieve this result with a new quantization scheme and by increasing the
number of filter maps in each reduced-precision layer to compensate for the loss of information ca-
pacity induced by reducing the precision. We believe ours to be the first work to study the interplay
between layer width and precision – with widening, the number of neurons in a layer increase; yet
with reduced precision, we control overfitting and regularization.

We motivate this work with our observation that full-precision activations contribute significantly
more to the memory footprint than full-precision weight parameters when using mini-batch sizes
common during training and cloud-based inference; furthermore, by reducing the precision of both
activations and weights the compute complexity is greatly reduced (40% of baseline for 2-bit weights
and 4-bit activations).

The WRPN quantization scheme and computation on low precision activations and weights is hard-
ware friendly making it viable for deeply-embedded system deployments as well as in cloud-based
training and inference servers with compute fabrics for low-precision. We compare Titan X GPU,
Arria-10 FPGA and ASIC implementations using WRPN and show our scheme increases perfor-
mance and energy-efficiency for iso-accuracy across each. Overall, reducing the precision allows
custom-designed compute units and lower buffering requirements to provide significant improve-
ment in throughput.

REFERENCES

tensorpack: https://github.com/ppwwyyxx/tensorpack.

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016. URL http://arxiv.
org/abs/1602.02830.

9

http://tensorflow.org/
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830

Published as a conference paper at ICLR 2018

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. CoRR, abs/1511.00363, 2015. URL http:
//arxiv.org/abs/1511.00363.

Benjamin Graham. Low-precision batch-normalized activations. CoRR, abs/1702.08231, 2017.
URL http://arxiv.org/abs/1702.08231.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. CoRR, abs/1502.02551, 2015a. URL http://arxiv.org/abs/
1502.02551.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. CoRR, abs/1502.02551, 2015b. URL http://arxiv.org/
abs/1502.02551.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean,
B. Gelb, T. Vazir Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Ku-
mar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Sev-
ern, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-Datacenter
Performance Analysis of a Tensor Processing Unit. ArXiv e-prints, April 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp. 1097–
1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Fengfu Li and Bin Liu. Ternary weight networks. CoRR, abs/1605.04711, 2016. URL http:
//arxiv.org/abs/1605.04711.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural networks with
few multiplications. CoRR, abs/1510.03009, 2015. URL http://arxiv.org/abs/1510.
03009.

N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and P. Dubey. Ternary Neural Networks
with Fine-Grained Quantization. ArXiv e-prints, May 2017.

Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional neural networks using
logarithmic data representation. CoRR, abs/1603.01025, 2016. URL http://arxiv.org/
abs/1603.01025.

Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang, Jason Ong
Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit Subhaschandra, and Guy
Boudoukh. Can fpgas beat gpus in accelerating next-generation deep neural networks? In Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’17, pp. 5–14, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4354-1. doi: 10.1145/
3020078.3021740. URL http://doi.acm.org/10.1145/3020078.3021740.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. CoRR, abs/1603.05279, 2016. URL
http://arxiv.org/abs/1603.05279.

10

http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1702.08231
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1603.01025
http://doi.acm.org/10.1145/3020078.3021740
http://arxiv.org/abs/1603.05279

Published as a conference paper at ICLR 2018

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
application to data-parallel distributed training of speech dnns. In Interspeech 2014, September
2014.

Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Resiliency of deep neural networks under
quantization. CoRR, abs/1511.06488, 2015. URL http://arxiv.org/abs/1511.06488.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.4842.

Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261, 2016. URL http:
//arxiv.org/abs/1602.07261.

Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Heng Wai Leong,
Magnus Jahre, and Kees A. Vissers. FINN: A framework for fast, scalable binarized neural
network inference. CoRR, abs/1612.07119, 2016. URL http://arxiv.org/abs/1612.
07119.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural networks on
cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. Accelerating deep convolutional networks
using low-precision and sparsity. CoRR, abs/1610.00324, 2016. URL http://arxiv.org/
abs/1610.00324.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quanti-
zation: Towards lossless cnns with low-precision weights. CoRR, abs/1702.03044, 2017. URL
http://arxiv.org/abs/1702.03044.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016. URL http://arxiv.org/abs/1606.06160.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. CoRR,
abs/1612.01064, 2016. URL http://arxiv.org/abs/1612.01064.

11

http://arxiv.org/abs/1511.06488
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1610.00324
http://arxiv.org/abs/1610.00324
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1612.01064

	Introduction
	Motivation for reduced-precision activation maps
	WRPN scheme and studies on AlexNet
	Studies on deeper networks
	ResNet
	Batch-normalized Inception

	Hardware friendly quantization scheme
	Efficiency improvements of reduced-precision operations on GPU, FPGA and ASIC

	Related work
	Conclusions

