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ABSTRACT

The application of machine learning to clinical data from Electronic Health
Records is limited by the scarcity of meaningful labels. Here we present initial
results on the application of transfer learning to this problem. We explore the
transfer of knowledge from source tasks in which training labels are plentiful but
of limited clinical value to more meaningful target tasks that have few labels.

1 INTRODUCTION

Computer vision has seen a remarkable recent breakthrough in the widespread success of transfer
learning, in which knowledge from one task is used to aid learning of another task, often one with
far less labeled data. In particular, large scale convolutional neural nets (ConvNets) trained to on the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Krizhevsky et al., 2012) have been
repeatedly repurposed to help solve other sometimes very different problems, often with parame-
ters adapted by additional training on new data or used as a fixed feature extractors for an entirely
separate classifier (Simonyan & Zisserman, 2014; Long et al., 2014; Karpathy & Fei-Fei, 2015).

In this workshop paper, we present an initial investigation into whether and how similar ideas can be
applied to clinical problems and electronic health records (EHR) data. We focus on the problem of
electronic phenotyping, where our goal is to train statistical classifiers to answer questions like “Does
this patient have diabetes?” from digital health records data (Oellrich et al., 2015). Phenotyping
has a variety of applications in cohort construction for genomic studies (Crawford et al., 2014),
quality improvement (Weiner & Embi, 2009), risk adjustment (Elixhauser et al., 1998), and detection
undiagnosed diseases (Lindbeg et al., 1968).

Ground truth phenotype labels are not recorded during delivery of care and so are typically unavail-
able in large numbers during training.1 Obtaining high quality labels after the fact is time-consuming
and expensive, even in combination with active learning, because the domain experts are highly
trained physicians (Chen et al., 2013).2 Further, this problem is common to many of the questions
that biomedical informatics researchers seek to address; manual labeling simply does not scale.

We aim to overcome this challenge through the application of transfer learning: we first train a
neural network to predict a source task with ubiquitous labels that, while not directly related to
our phenotype targets, contain enough information to provide a training signal for learning a useful

∗Mr. Kale performed this research as an affiliated researcher with the Stanford Center for Biomedical
Informatics Research.

1Billing and diagnostic codes are known to be unreliable indicators of actual disease.(O’Malley et al., 2005).
2Medical students, while trainees, are also highly trained and expensive!
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representation of raw EHR data. Specifically, we apply a variation of the split brain autoencoder
architecture described in Zhang et al. (2016) to predict, e.g., prescriptions from diagnostic codes.
We then use this dense, lower dimensional representation as features in a classifier trained to predict
the target task using a much smaller number of reliable labels.

2 DATA AND TASK SETUP

We extracted patient data spanning 2009 through 2014 from the Stanford Translational Research
Integrated Database Environment (STRIDE) (Lowe et al., 2009), a repository of de-identified patient
data from the Electronic Medical Record system used at Stanford Hospital. The patients were split
into training, validation and test sets (122860, 10000, and 50000 patients, respectively). In the
reported experiments, all models are trained on the training set, while hyperparameters are tuned
using 5-fold cross-validation. We report held-out performance on the validation set, leaving the test
set untouched for future work.

For each patient, the data consisted of timestamped occurrences of diagnosis (ICD-9), procedure
(CPT) and drug (RXCUI) codes. This data was split into input and target eras such that for each
patient the last year of data was reserved to form prediction targets, while the previous years of data
were used to form inputs for that patient. Input data were aggregated into counts across the entire
input era. There were 8927 raw input features, and the input space is very sparse, with less than
0.5% non-zero.

Our target task is to predict phenotypes. Because of the aforementioned unavailability of ground
truth phenotype labels, in this proof of concept work we approximate ground truth phenotype labels
using diagnostic code categories based on the HCUP Clinical Classification Software (Cost et al.,
2014). We use ten phenotype targets with prevalence ranging from 11% to 28%. To reduce target
leakage (our phenotype labels are derived from diagnosis codes, which are included in our input),
we perform a temporal variant of phenotyping: we predict the occurrence of phenotype labels in the
future (target era) based on data from the input era.

3 METHODS AND EXPERIMENTS

The source task for our initial experiments is cross channel prediction similar to that described
in Zhang et al. (2016) in which auto-encoders are trained to predict drug codes from diagnosis and
procedure codes, and vice versa. The source task thus uses data only from the input era of the training
patients. Auto-encoders were trained independently of each other (med2rx and rx2med). For both
models, we found using 2 layers with tanh activations, dropout after each hidden layer (dropout
probility 0.06) and l2 regularization on the weights worked well, with mean AUROCs of 0.88 and
0.83 for the med2rx and rx2med tasks respectively. The med2rx and rx2med models used 936
and 746 hidden units respectively, resulting in a final concatenated representation of dimensionality
1682.

Transfer learning was carried out by using med2rx and rx2med models as fixed feature extractors.
The concatenated last hidden layer activations from the cross channel auto-encoders were used as
inputs into L1 regularized logistic regression models, with the regularization hyper-parameter set by
five fold cross validation to optimize AUROC, and fit separately for each target code group. Because
label sparsity is a ubiquitous problem in the medical setting, we focused our experiments on the
effectiveness of this transfer learning scheme using small sample sizes. 20 subsamples of N=500
patients from the training set were used for each of the targets, and models fit using 5-fold cross
validation on each subsample to select the regularization hyper-parameter. The resulting models
were then evaluated on the validation set patients (the test set is reserved for future work).

Our baseline for comparison is L1 regularized logistic regression applied to the raw inputs, tuned via
5-fold cross validation on the same training subsamples and evaluated on the validation patients.

4 RESULTS

We compared the performance of transfer learning versus a baseline of regularized logistic regres-
sion on the sparse, high dimensional raw inputs on ten diagnosis code groups selected for high
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prevalence. Table 1 shows the mean over the subsamples of the area under the ROC for each target,
along with target prevalence. Overall, the majority of the targets show a modest benefit from transfer
learning.

Table 1: Results
Mean AUC (SE)

Code Group Name Baseline Auto-encoder Delta
Cancer of breast 0.842 (0.013) 0.845 (0.009) 0.0033
Thyroid disorders 0.753 (0.015) 0.777 (0.016) 0.024
Diabetes w/o complication 0.768 (0.008) 0.793 (0.006) 0.024
Disorders of lipid metabolism 0.794 (0.005) 0.814 (0.005) 0.021
Deficiency and other anemia 0.645 (0.016) 0.677 (0.015) 0.032
Retinal detachments 0.746 (0.014) 0.745 (0.025) -0.0017
Essential hypertension 0.798 (0.008) 0.847 (0.004) 0.049
Coronary atherosclerosis and other heart disease 0.734 (0.018) 0.812 (0.010) 0.078
Cardian disrhythmias 0.662 (0.010) 0.722 (0.013) 0.059
Chronic kidney disease 0.745 (0.016) 0.782 (0.028) 0.037
Osteoarthritis 0.661 (0.010) 0.730 (0.014) 0.069
Spondylosis and intervertebral disc. disorders 0.639 (0.009) 0.688 (0.011) 0.049
Anxiety disorders 0.625 (0.016) 0.665 (0.020) 0.04
Mood disorders 0.687 (0.013) 0.753 (0.009) 0.066

Mean 0.039

5 RELATED WORK

One classic solution to learning without labels is active learning, which has been applied successfully
to phenotyping (Chen et al., 2013). However, in many practical settings, it suffers from the cold start
dilemma: when starting with zero labeled examples, it can perform no better than random sampling
until it acquires enough labeled examples to train a reasonably good classifier Kale & Liu (2013).
This is compounded when positive examples are relatively rare, as is the case for many clinical
phenotypes Cost et al. (2014).

Our research follows up on work by Agarwal et al. (2016); Halpern et al. (2016), who showed that ro-
bust phenotype classifiers could be trained via distant supervision: “noisy” labels were assigned us-
ing a semi-automated deterministic labeling function guided by domain knowledge. Models trained
on such labeled data were found to be relatively robust to the label noise and even outperformed the
noisy labeling function on held out ground truth labeled data.

Miotto et al. (2016) tackle temporal phenotyping with a similar task setup and general approach:
they train use an autoencoder to patient history into dense features, which are then fed into a separate
classifier that predicts future phenotypes. However, their use of a complex nonlienar classifier makes
it difficult to assess the relative contributions of learned representation vs. classifier to prediction
performance. Choi et al. (2015) use a long short-term memory network to model sequences of
diagnostic codes, a proxy problem for disease progression, and show that this setup and architecture
can be used to perform transfer learning to new data sets for the same task.
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