
Workshop track - ICLR 2018

SYSTEMATIC WEIGHT PRUNING OF DNNS USING
ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Tianyun Zhang, Shaokai Ye, Yipeng Zhang, Yanzhi Wang & Makan Fardad
Department of Electrical Engineering and Computer Science
Syracuse University,
Syracuse, NY 13244, USA
{tzhan120,sye106,yzhan139,ywang393,makan}@syr.edu

ABSTRACT

We present a systematic weight pruning framework of deep neural networks
(DNNs) using the alternating direction method of multipliers (ADMM). We first
formulate the weight pruning problem of DNNs as a constrained nonconvex op-
timization problem, and then adopt the ADMM framework for systematic weight
pruning. We show that ADMM is highly suitable for weight pruning due to the
computational efficiency it offers. We achieve a much higher compression ratio
compared with prior work while maintaining the same test accuracy, together with
a faster convergence rate.

1 INTRODUCTION

Despite the significant achievements enabled by DNNs, their large model size and computational
requirements will add a significant burden to state-of-the-art computing systems (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014; Han et al., 2016), especially for embedded and IoT systems. As
a result, a number of prior works are dedicated to weight pruning methods in order to simultaneously
reduce the computation and model storage requirements of DNNs, with minor effect on the overall
accuracy.

A simple but effective method has been proposed in Han et al. (2015), which prunes the relatively
less important weights and performs retraining for maintaining accuracy in an iterative manner. This
method has been extended and generalized in multiple directions, including energy efficiency-aware
pruning (Yang et al., 2016), structure-preserved pruning using regularization methods (Wen et al.,
2016), and employing heuristics motivated by VLSI CAD (Dai et al., 2017). While existing pruning
methods achieve good model compression ratios, they are heuristic, lack theoretical guarantees on
compression performance, and require time-consuming iterative retraining processes.

To mitigate these shortcomings, we present a systematic framework of model compression, by (i)
formulating the weight pruning problem as a constrained nonconvex optimization problem, and (ii)
adopting the alternating direction method of multipliers (ADMM) (Boyd et al., 2011) for systematic
weight pruning. Upon convergence of ADMM, we remove the weights which are (close to) zero and
retrain the network. Our extensive numerical experiments indicate that ADMM works very well in
practice and is highly suitable for weight pruning. Overall, we achieve a model that has much fewer
weights and less computation than previous weight pruning work while maintaining the same test
accuracy as the model before pruning. The proposed method has a faster convergence rate compared
with prior works.

2 PROBLEM FORMULATION AND PROPOSED FRAMEWORK

Consider an N -layer DNN, where the collection of weights in the i-th layer is denoted by Wi. In
a convolutional layer the weights are organized in a four-dimension tensor and in a fully-connected
layer they are organized in a two-dimension matrix (Leng et al., 2017). The loss function asso-
ciated with the DNN is represented by f(W1, . . . ,WN ). In this paper, our objective is to prune
the weights of the DNN and therefore we minimize the loss function subject to constraints on the

1



Workshop track - ICLR 2018

cardinality of weights in each layer. Thus, our training process solves

minimize
{Wi}

f(W1, . . . ,WN ), subject to Wi ∈ Si = {W | card(W) ≤ li} , i = 1, . . . , N,

(1)
where card(·) returns the number of nonzero elements of its matrix argument and li is the desired
number of weights in the i-th layer of the DNN after pruning. It is clear that S1, . . . ,SN are non-
convex sets, and it is in general difficult to solve optimization problems with nonconvex constraints.
A recent paper of Boyd et al. (2011), however, demonstrates that ADMM can be utilized to solve
nonconvex optimization problems in some special formats. The above problem can be equivalently
rewritten in ADMM form as

minimize
{Wi}

f(W1, . . . ,WN ) +

N∑
i=1

gi(Zi), subject to Wi = Zi,

where gi(·) is the indicator function of Si

gi(Zi) =

{
0 if card(Zi) ≤ li,
+∞ otherwise.

The augmented Lagrangian (Boyd et al., 2011) of the optimization problem is given by

Lρ
(
{Wi},{Zi},{Λi}

)
= f(W1, . . . ,WN )+

N∑
i=1

gi(Zi)+

N∑
i=1

tr [Λi(Wi − Zi)]+

N∑
i=1

ρi
2
‖Wi − Zi‖2F ,

where the matrices {Λ1, . . . ,ΛN} are Lagrange multipliers, the positive scalars {ρ1, . . . , ρN} are
penalty parameters, tr(·) denotes the trace, and ‖·‖2F denotes the Frobenius norm. With the scaled
dual variable Ui = (1/ρi)Λi the augmented Lagrangian can be equivalently expressed as

Lρ
(
{Wi},{Zi},{Ui}

)
= f(W1, . . . ,WN ) +

N∑
i=1

gi(Zi) +

N∑
i=1

ρi
2
‖Wi − Zi + Ui‖2F −

N∑
i=1

ρi
2
‖Ui‖2F .

The ADMM algorithm proceeds by repeating, for k = 0,1, . . . , the following steps (Boyd et al., 2011;
Liu et al., 2013): {

Wk+1
i

}
:= argmin

{Wi}
Lρ({Wi} ,

{
Zki
}
,
{
Uk
i

}
) (2){

Zk+1
i

}
:= argmin

{Zi}
Lρ(
{
Wk+1

i

}
, {Zi} ,

{
Uk
i

}
) (3)

Uk+1
i := Uk

i + Wk+1
i − Zk+1

i , (4)

until both of the following conditions are satisfied∥∥Wk+1
i − Zk+1

i

∥∥2
F
≤ εi,

∥∥Zk+1
i − Zki

∥∥2
F
≤ εi.

Problems (2) simplifies to

minimize
{Wi}

f(W1, . . . ,WN ) +

N∑
i=1

ρi
2

∥∥Wi − Zki + Uk
i

∥∥2
F
,

where the first term is the loss function of the DNN, and the second term can be considered as a
special L2 regularization. Since the regularizer is a quadratic norm the complexity of minimizing
the above loss function (for example, via gradient descent) is the same as the complexity of solving
minimize

{Wi}
f(W1, . . . ,WN ). On the other hand, problem (3) simplifies to

minimize
{Zi}

N∑
i=1

gi(Zi) +

N∑
i=1

ρi
2

∥∥Wk+1
i − Zi + Uk

i

∥∥2
F
.

Since gi(·) is the indicator function of Si the solution of this problem is explicitly found to be (Boyd
et al., 2011)

Zk+1
i =

∏
Si

(Wk+1
i + Uk

i ), (5)

2



Workshop track - ICLR 2018

Table 1: Weights pruning result on Lenet-300-100 network(without incurring accuracy loss)
Layer Weights Weights after prune Percentage of weights after prune

fc1 784×300=235.2k 11.76k 5%
fc2 300×100=30k 2.1k 7%
fc3 100×10=1k 0.12k 12%

Total 266.2k 13.98k 5.25%

Table 2: Weights pruning result on Lenet-5 network(without incurring accuracy loss)
Layer Weights Weights after prune Percentage of weights after prune
conv1 5×5×1×20=0.5k 0.1k 20%
conv2 5×5×20×50=25k 2.5k 10%

fc1 800×500=400k 20k 5%
fc2 500×10=5k 0.35k 7%

Total 430.5k 22.95k 5.33%

where
∏

Si
(·) denotes Euclidean projection onto the set Si. Note that Si is a nonconvex set, and

computing the projection onto a nonconvex set is a difficult problem in general. However, the special
structure of Si = {W | card(W) ≤ li} allows us to express this Euclidean projection analytically.
Namely, the solution of (5) is to keep the li elements of Wk+1

i + Uk
i with the largest magnitudes

and set the rest to zero (Boyd et al., 2011). Finally, we update the dual variable Ui according to (4).
This constitutes one iteration of the ADMM algorithm.

We observe that the proposed framework exhibits multiple major advantages in comparison with
the heuristic weight pruning method of Han et al. (2015). Our proposed method achieves (i) higher
convergence speed compared to iterative retraining, and (ii) higher compression ratio, as we demon-
strate next.

3 EXPERIMENTS

We implement the network pruning method in Tensorflow (Abadi et al., 2016). We have tested
weight pruning on the MNIST benchmark using the LeNet-300-100 and LeNet-5 model (LeCun
et al., 1998). In our experiments on these networks, our proposed ADMM method converges in
approximately 10 iterations. As mentioned before, problem (2) can be solved by gradient descent.
In experiments, we found that the number of steps we need for solving problem (2) by gradient
descent is approximately 1/5 of the number of steps for training the original network. On the other
hand, problem (3) and (4) are straightforward to carry out, thus their computational time can be
ignored. Therefore, the total computation time of the ADMM algorithm is approximately equal to
training the original network twice. While the solution of problem (1) should render Wi with only li
nonzero elements, the solution we obtain through ADMM contains additional small nonzero entries.
To deal with this issue, we keep the li largest magnitude elements of Wi, set the rest to zero and no
longer involve these elements in training (i.e., we prune these weights). We then retrain the network
with 1/10 of its original learning rate (Han et al., 2015).

Table 1 shows that our pruning reduces the number of weights by 19× on Lenet-300-100. Table 2
shows that our pruning reduces the number of weights by 18× on Lenet-5. Our pruning will not
incur accuracy loss and can achieve a much higher compression ratio on these networks compared
with the work of Han et al. (2015), which reduces parameters 12× on both networks. Furthermore,
on Lenet-5 we can reduce the number of weights by 10× in convolutional layers, which is also
higher than the 8× in the work of Han et al. (2015). Although on Lenet-5 the number of weights in
convolutional layers is less than fully connected layers, the computation on Lenet-5 is dominated by
its convolutional layers. This means that our pruning can reduce more computation compared with
prior work.

3



Workshop track - ICLR 2018

ACKNOWLEDGMENTS

Financial support from the National Science Foundation under award ECCS-1609916 is gratefully
acknowledged.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122, 2011.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. arXiv preprint arXiv:1711.02017, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems (NIPS), pp.
1135–1143, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations (ICLR), 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Cong Leng, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural network: Squeeze the
last bit out with admm. arXiv preprint arXiv:1707.09870, 2017.

Sijia Liu, Makan Fardad, Engin Masazade, and Pramod K. Varshney. On optimal periodic sensor
scheduling for field estimation in wireless sensor networks. In Global Conference on Signal and
Information Processing (GlobalSIP), pp. 137–140. IEEE, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. arXiv preprint arXiv:1611.05128, 2016.

4


	Introduction
	Problem Formulation and Proposed Framework
	Experiments

