
Published as a conference paper at ICLR 2018

APPRENTICE: USING KNOWLEDGE DISTILLATION
TECHNIQUES TO IMPROVE LOW-PRECISION NET-
WORK ACCURACY

Asit Mishra & Debbie Marr
Accelerator Architecture Lab
Intel Labs
{asit.k.mishra,debbie.marr}@intel.com

ABSTRACT

Deep learning networks have achieved state-of-the-art accuracies on computer vi-
sion workloads like image classification and object detection. The performant
systems, however, typically involve big models with numerous parameters. Once
trained, a challenging aspect for such top performing models is deployment on re-
source constrained inference systems — the models (often deep networks or wide
networks or both) are compute and memory intensive. Low-precision numerics
and model compression using knowledge distillation are popular techniques to
lower both the compute requirements and memory footprint of these deployed
models. In this paper, we study combination of these two techniques and show
that the performance of low-precision networks can be significantly improved
by using knowledge distillation techniques. Our approach, Apprentice, achieves
state-of-the-art accuracies using ternary precision and 4-bit precision for variants
of ResNet architecture on ImageNet dataset. We present three schemes using
which one can apply knowledge distillation techniques to various stages of the
train-and-deploy pipeline.

1 INTRODUCTION

Background: Today’s high performing deep neural networks (DNNs) for computer vision applica-
tions comprise of multiple layers and involve numerous parameters. These networks have O(Giga-
FLOPS) compute requirements and generate models which areO(Mega-Bytes) in storage (Canziani
et al., 2016). Further, the memory and compute requirements during training and inference are quite
different (Mishra et al., 2017). Training is performed on big datasets with large batch-sizes where
memory footprint of activations dominates the model memory footprint. On the other hand, batch-
size during inference is typically small and the model’s memory footprint dominates the runtime
memory requirements.

Because of complexity in compute, memory and storage requirements, training phase of the net-
works is performed on CPU and/or GPU clusters in a distributed computing environment. Once
trained, a challenging aspect is deployment of trained models on resource constrained inference
systems such as portable devices or sensor networks, and for applications in which real-time predic-
tions are required. Performing inference on edge-devices comes with severe constraints on memory,
compute and power. Additionally, ensemble based methods, which one can potentially use to get
improved accuracy predictions, become prohibitive in resource constrained systems.

Quantization using low-precision numerics (Vanhoucke et al., 2011; Zhou et al., 2016; Lin et al.,
2015; Miyashita et al., 2016; Gupta et al., 2015; Zhu et al., 2016; Rastegari et al., 2016; Courbariaux
et al., 2015; Umuroglu et al., 2016; Mishra et al., 2017) and model compression (Buciluǎ et al.,
2006; Hinton et al., 2015; Romero et al., 2014) have emerged as popular solutions for resource
constrained deployment scenarios. With quantization, a low-precision version of network model is
generated and deployed on the device. Operating in lower precision mode reduces compute as well
as data movement and storage requirements. However, majority of existing works in low-precision
DNNs sacrifice accuracy over baseline full-precision networks. With model compression, a smaller

1



Published as a conference paper at ICLR 2018

low memory footprint network is trained to mimic the behaviour of the original complex network.
During this training, a process called, knowledge distillation is used to “transfer knowledge” from
the complex network to the smaller network. Work by Hinton et al. (2015) shows that the knowledge
distillation scheme can yield networks at comparable or slightly better accuracy than the original
complex model. However, to the best of our knowledge, all prior works using model compression
techniques target compression at full-precision.

Our proposal: In this paper, we study the combination of network quantization with model com-
pression and show that accuracies of low-precision networks can be significantly improved by using
knowledge distillation techniques. Previous studies on model compression use a large network as
the teacher network and a small network as the student network. The small student network learns
from teacher network using distillation process. The network architecture of the student network
is typically different from that of the teacher network – for e.g. Hinton et al. (2015) investigate a
student network that has fewer number of neurons in the hidden layers compared to the teacher net-
work. In our work, the student network has similar topology as that of teacher network, except that
the student network has low-precision neurons compared to the teacher network which has neurons
operating at full-precision.

We call our approach Apprentice1 and study three schemes which produce low-precision net-
works using knowledge distillation techniques. Each of these three schemes produce state-of-the-art
ternary precision and 4-bit precision models.

In the first scheme, a low-precision network and a full-precision network are jointly trained from
scratch using knowledge distillation scheme. Later in the paper we describe the rationale behind
this approach. Using this scheme, a new state-of-the-art accuracy is obtained for ternary and 4-bit
precision for ResNet-18, ResNet-34 and ResNet-50 on ImageNet dataset. In fact, using this scheme
the accuracy of the full-precision model also slightly improves. This scheme then serves as the new
baseline for the other two schemes we investigate.

In the second scheme, we start with a full-precision trained network and transfer knowledge from
this trained network continuously to train a low-precision network from scratch. We find that the
low-precision network converges faster (albeit to similar accuracies as the first scheme) when a
trained complex network guides its training.

In the third scheme, we start with a trained full-precision large network and an apprentice network
that has been initialised with full-precision weights. The apprentice network’s precision is lowered
and is fine-tuned using knowledge distillation techniques. We find that the low-precision network’s
accuracy marginally improves and surpasses the accuracy obtained via the first scheme. This scheme
then sets the new state-of-the-art accuracies for the ResNet models at ternary and 4-bit precision.

Overall, the contributions of this paper are the techniques to obtain low-precision DNNs using
knowledge distillation technique. Each of our scheme produces a low-precision model that sur-
passes the accuracy of the equivalent low-precision model published to date. One of our schemes
also helps a low-precision model converge faster. We envision these accurate low-precision models
to simplify the inference deployment process on resource constrained systems and even otherwise
on cloud-based deployment systems.

2 MOTIVATION FOR LOW-PRECISION MODEL PARAMETERS

Lowering precision of model parameters: Resource constrained inference systems impose signif-
icant restrictions on memory, compute and power budget. With regard to storage, model (or weight)
parameters and activation maps occupy memory during the inference phase of DNNs. During this
phase memory is allocated for input (IFM) and output feature maps (OFM) required by a single
layer in the DNN, and these dynamic memory allocations are reused for other layers. The total
memory allocation during inference is then the maximum of IFM and maximum of OFM memory
required across all the layers plus the sum of all weight tensors (Mishra et al., 2017). When infer-
ence phase for DNNs is performed with a small batch size, the memory footprint of the weights

1Dictionary defines apprentice as a person who is learning a trade from a skilled employer, having agreed to
work for a fixed period at low wages. In our work, the apprentice is a low-precision network which is learning
the knowledge of a high precision network (skilled employer) during a fixed number of epochs.

2



Published as a conference paper at ICLR 2018

exceeds the footprint of the activation maps. This aspect is shown in Figure 1 for 4 different net-
works (AlexNet (Krizhevsky et al., 2012), Inception-Resnet-v2 (Szegedy et al., 2016), ResNet-50
and ResNet-101 (He et al., 2015)) running 224x224 image patches. Thus lowering the precision of
the weight tensors helps lower the memory requirements during deployment. One other aspect of
lowering memory footprint is that the working set size of the workload starts to fit on chip and by
reducing accesses to DRAM (off-chip) memory, the compute core starts to see better performance
and energy savings (DRAM accesses are expensive in latency and energy).

97.7% 91.3%
79.6%

32.8%

94.1%

66.5%

96.5%
77.6%

2.3% 8.7%
20.4%

67.2%

5.9%

33.5%

3.5%
22.4%

1 8 1 8 1 8 1 8

Alexnet IRv2 ResNet-50 ResNet-101

%
 M

em
or

y 
fo

ot
pr

in
t

% Ws % ACTs

Figure 1: Memory footprint of activations
(ACTs) and weights (W) during inference for
mini-batch sizes 1 and 8.

Benefit of low-precision compute: Low-precision
compute simplifies hardware implementation. For
example, the compute unit to perform the convolu-
tion operation (multiplication of two operands) in-
volves a floating-point multiplier when using full-
precision weights and activations. The floating-
point multiplier can be replaced with a much sim-
pler circuitry (xnor and popcount logic elements)
when using binary precision for weights and activa-
tions (Courbariaux & Bengio, 2016; Rastegari et al.,
2016; Courbariaux et al., 2015). Similarly, when us-
ing ternary precision for weights and full-precision
for activations, the multiplier unit can be replaced
with a sign comparator unit. Simpler hardware also
helps lower the inference latency and energy bud-
get. Thus, operating in lower precision mode re-
duces compute as well as data movement and storage
requirements.

The drawback of low-precision models, however, is degraded accuracy. We discuss later in the paper
the network accuracies obtained using methods proposed in literature. These accuracies serve as the
starting point and baselines we compare to in our work.

3 RELATED WORK

Low-precision networks: Low-precision DNNs are an active area of research. Most low-precision
networks acknowledge the over parameterization aspect of today’s DNN architectures and/or the
aspect that lowering the precision of neurons post-training often does not impact the final perfor-
mance. Reducing precision of weights for efficient inference pipeline has been very well studied.
Works like Binary connect (BC) (Courbariaux et al., 2015), Ternary-weight networks (TWN) (Li &
Liu, 2016), fine-grained ternary quantization (Mellempudi et al., 2017) and INQ (Zhou et al., 2017)
target precision reduction of network weights. Accuracy is almost always affected when quantizing
the weights significantly below 8-bits of precision. For AlexNet on ImageNet, TWN loses 5% Top-1
accuracy. Schemes like INQ, work in Sung et al. (2015) and Mellempudi et al. (2017) do fine-tuning
to quantize the network weights.

Work in XNOR-NET (Rastegari et al., 2016), binary neural networks (Courbariaux & Bengio, 2016),
DoReFa (Zhou et al., 2016) and trained ternary quantization (TTQ) (Zhu et al., 2016) target training
pipeline. While TTQ targets weight quantization, most works targeting activation quantization show
that quantizing activations always hurt accuracy. XNOR-NET approach degrades Top-1 accuracy
by 12% and DoReFa by 8% when quantizing both weights and activations to 1-bit (for AlexNet
on ImageNet). Work by Gupta et al. (2015) advocates for low-precision fixed-point numbers for
training. They show 16-bits to be sufficient for training on CIFAR10 dataset. Work by Seide et al.
(2014) quantizes gradients in a distributed computing system.

Knowledge distillation methods: The general technique in distillation based methods involves us-
ing a teacher-student strategy, where a large deep network trained for a given task teaches shallower
student network(s) on the same task. The core concepts behind knowledge distillation or transfer
technique have been around for a while. Buciluǎ et al. (2006) show that one can compress the
information in an ensemble into a single network. Ba & Caurana (2013) extend this approach to
study shallow, but wide, fully connected topologies by mimicking deep neural networks. To facil-

3



Published as a conference paper at ICLR 2018

itate learning, the authors introduce the concepts of learning on logits rather than the probability
distribution.

Hinton et al. (2015) propose a framework to transfer knowledge by introducing the concept of tem-
perature. The key idea is to divide the logits by a temperature factor before performing a Softmax
function. By using a higher temperature factor the activations of incorrect classes are boosted. This
then facilitates more information flowing to the model parameters during back-propagation opera-
tion. FitNets (Romero et al., 2014) extend this work by using intermediate hidden layer outputs as
target values for training a deeper, but thinner, student model. Net2Net (Chen et al., 2015a) also
uses a teacher-student network system with a function-preserving transformation approach to ini-
tialize the parameters of the student network. The goal in Net2Net approach is to accelerate the
training of a larger student network. Zagoruyko & Komodakis (2016) use attention as a mechanism
for transferring knowledge from one network to another. In a similar theme, Yim et al. (2017) pro-
pose an information metric using which a teacher DNN can transfer the distilled knowledge to other
student DNNs. In N2N learning work, Ashok et al. (2017) propose a reinforcement learning based
approach for compressing a teacher network into an equally capable student network. They achieve
a compression factor of 10x for ResNet-34 on CIFAR datasets.

Sparsity and hashing: Few other popular techniques for model compression are pruning (LeCun
et al., 1990; Han et al., 2015a; Wen et al., 2016; Han et al., 2015b), hashing (Weinberger et al., 2009)
and weight sharing (Chen et al., 2015b; Denil et al., 2013). Pruning leads to removing neurons
entirely from the final trained model making the model a sparse structure. With hashing and weight
sharing schemes a hash function is used to alias several weight parameters into few hash buckets,
effectively lowering the parameter memory footprint. To realize benefits of sparsity and hashing
schemes during runtime, efficient hardware support is required (e.g. support for irregular memory
accesses (Han et al., 2016; Venkatesh et al., 2016; Parashar et al., 2017)).

4 KNOWLEDGE DISTILLATION

We introduce the concept of knowledge distillation in this section. Buciluǎ et al. (2006), Hinton
et al. (2015) and Urban et al. (2016) analyze this topic in great detail.

Figure 2 shows the schematic of the knowledge distillation setup. Given an input image x, a teacher
DNN maps this image to predictions pT . The C class predictions are obtained by applying Softmax
function on the un-normalized log probability values z (the logits), i.e. pT = ez

T
k /

∑C
j e

zT
j . The

same image is fed to the student network and it predicts pA = ez
A
k /

∑C
j e

zA
j . During training, the

cost function, L, is given as:

L(x;WT ,WA) = αH(y, pT ) + βH(y, pA) + γH(zT , pA) (1)

where, WT and WA are the parameters of the teacher and the student (apprentice) network, respec-
tively, y is the ground truth, H(·) denotes a loss function and, α, β and γ are weighting factors to
prioritize the output of a certain loss function over the other.

In equation 1, lowering the first term of the cost function gives a better teacher network and lowering
the second term gives a better student network. The third term is the knowledge distillation term
whereby the student network attempts to mimic the knowledge in the teacher network. In Hinton
et al. (2015), the logits of the teacher network are divided by a temperature factor τ . Using a higher
value for τ produces a softer probability distribution when taking the Softmax of the logits. In our
studies, we use cross-entropy function for H(·), set α = 1, β = 0.5 and γ = 0.5 and, perform the
transfer learning process using the logits (inputs to the Softmax function) of the teacher network. In
our experiments we study the effect of varying the depth of the teacher and the student network, and
the precision of the neurons in the student network.

5 OUR APPROACH - APPRENTICE NETWORK

Low-precision DNNs target the storage and compute efficiency aspects of the network. Model com-
pression targets the same efficiency parameters from the point of view of network architecture. With

4



Published as a conference paper at ICLR 2018

Input image
x

so
ftm

ax
so

ftm
ax

Teacher network

Apprentice network

zT pT

zA pA

Hard 
label
!

Knowledge 
distillation

WT

WA

Fi
lte

r b
an

k

Fi
lte

r b
an

k

Figure 2: Schematic of the knowledge distillation setup. The teacher network is a high precision network and
the apprentice network is a low-precision network.

Apprentice we combine both these techniques to improve the network accuracy as well as the
runtime efficiency of DNNs. Using the teacher-student setup described in the last section, we inves-
tigate three schemes using which one can obtain a low-precision model for the student network. The
first scheme (scheme-A) jointly trains both the networks - full-precision teacher and low-precision
student network. The second scheme (scheme-B) trains only the low-precision student network but
distills knowledge from a trained full-precision teacher network throughout the training process.
The third scheme (scheme-C) starts with a trained full-precision teacher and a full-precision student
network but fine-tunes the student network after lowering its precision. Before we get into the details
of each of these schemes, we discuss the accuracy numbers obtained using low-precision schemes
described in literature. These accuracy figures serve as the baseline for comparative analysis.

5.1 TOP-1 ERROR WITH PRIOR PROPOSALS FOR LOW-PRECISION NETWORKS

We focus on sub 8-bits precision for inference deployments, specifically ternary and 4-bits precision.
We found TTQ (Zhu et al., 2016) scheme achieving the state-of-the-art accuracy with ternary pre-
cision for weights and full-precision (32-bits floating-point) for activations. On Imagenet-1K (Rus-
sakovsky et al., 2015), TTQ achieves 33.4% Top-1 error rate with a ResNet-18 model. We imple-
mented TTQ scheme for ResNet-34 and ResNet-50 models trained on Imagenet-1K and achieved
28.3% and 25.6% Top-1 error rates, respectively. This scheme is our baseline for 2-bits weight and
full-precision activations. For 2-bits weight and 8-bits activation, we find work by Mellempudi et al.
(2017) to achieve the best accuracies reported in literature. For ResNet-50, Mellempudi et al. (2017)
obtain 29.24% Top-1 error. We consider this work to be our baseline for 2-bits weight and 8-bits
activation models.

For 4-bits precision, we find WRPN scheme (Mishra et al., 2017) to report the highest accuracy. We
implemented this scheme for 4-bits weight and 8-bits activations. For ResNet-34 and ResNet-50
models trained on Imagenet-1K, we achieve 29.7% and 28.4% Top-1 error rates, respectively.

5.2 SCHEME-A: JOINT TRAINING OF TEACHER-STUDENT NETWORKS

In the first scheme that we investigate, a full-precision teacher network is jointly trained with a low-
precision student network. Figure 2 shows the overall training framework. We use ResNet topology
for both the teacher and student network. When using a certain depth for the student network, we
pick the teacher network to have either the same or larger depth.

In Buciluǎ et al. (2006) and Hinton et al. (2015), only the student network trains while distilling
knowledge from the teacher network. In our case, we jointly train with the rationale that the teacher
network would continuously guide the student network not only with the final trained logits, but also
on what path the teacher takes towards generating those final higher accuracy logits.

5



Published as a conference paper at ICLR 2018

We implement pre-activation version of ResNet (He et al., 2016) in TensorFlow (Abadi et al., 2015).
The training process closely follows the recipe mentioned in Torch implementation of ResNet - we
use a batch size of 256 and no hyper-parameters are changed from what is mentioned in the recipe.
For the teacher network, we experiment with ResNet-34, ResNet-50 and ResNet-101 as options.
For the student network, we experiment with low-precision variants of ResNet-18, ResNet-34 and
ResNet-50.

For low-precision numerics, when using ternary precision we use the ternary weight network
scheme (Li & Liu, 2016) where the weight tensors are quantized into {−1, 0, 1} with a per-layer
scaling coefficient computed based on the mean of the positive terms in the weight tensor. We use
the WRPN scheme (Mishra et al., 2017) to quantize weights and activations to 4-bits or 8-bits. We
do not lower the precision of the first layer and the final layer in the apprentice network. This is based
on the observation in almost all prior works that lowering the precision of these layers degrades the
accuracy dramatically. While training and during fine-tuning, the gradients are still maintained at
full-precision.

Table 1: Top-1 validation set error rate (%) on ImageNet-1K for ResNet-18 stu-
dent network as precision of activations (A) and weight (W) changes. The last
three columns show error rate when the student ResNet-18 is paired with ResNet-34,
ResNet-50 and ResNet-101.

ResNet-18 ResNet-18 ResNet-18 ResNet-18
Baseline with ResNet-34 with ResNet-50 with ResNet-101

32A, 32W 30.4 30.2 30.1 30.1
32A, 2W 33.4 31.7 31.5 31.8
8A, 4W 33.6 29.6 29.6 29.9
8A, 2W 33.9 32.0 32.2 32.4

0.3% 

-1.0% 

0.8% 

-1.5% 

0.0% 

-3.0% 

-3.2% 

-3.5% 

-6% -4% -2% 0% 2% 

32A,	32W

32A,	2W

8A,	4W

8A,	2W

Difference	(!)	in	Top-1	error	for	Res-18	from	baseline

! from	32A,	32W	without	Apprentice ! from	32A,	32W	with	Apprentice

Figure 3: Difference in Top-1 error rate for low-
precision variants of ResNet-18 with (blue bars) and
without (red bars) distillation scheme. The differ-
ence is calculated from the accuracy of ResNet-18
with full-precision numerics. Higher % difference
denotes a better network configuration.

Results with ResNet-18: Table 1 shows the ef-
fect of lowering precision on the accuracy (Top-
1 error) of ResNet-18 with baseline (no teacher)
and with ResNet-34, ResNet-50 and ResNet-101
as teachers. In the table, A denotes the precision
of the activation maps (in bits) and W denotes the
precision of the weights. The baseline Top-1 error
for full-precision ResNet-18 is 30.4%. By low-
ering the precision without using any help from
a teacher network, the accuracy drops by 3.5%
when using ternary and 4-bits precision (the col-
umn corresponding to “Res-18 Baseline” in the
table). With distillation based technique, the ac-
curacy of low-precision configurations improves
significantly. In fact, the accuracy of the full-
precision ResNet-18 also improves when paired
with a larger full-precision ResNet model (the row
corresponding to “32A, 32W” in Table 1). The
best full-precision accuracy was achieved with a
student ResNet-18 and ResNet-101 as the teacher
(improvement by 0.35% over the baseline). The
gap between full-precision ResNet-18 and the best
achieved ternary weight ResNet-18 is only 1% (improvement of 2% over previous best). With “8A,
4W”, we find the accuracy of the student ResNet-18 model to beat the baseline accuracy. We hy-
pothesize regularization with low-precision (and distillation) to be the reason for this. “8A, 4W”
improving the accuracy beyond baseline figure is only seen for ResNet-18.

Figure 3 shows the difference in Top-1 error rate achieved by our best low-precision student networks
(when trained under the guidance of a teacher network) versus not using any help from a teacher
network. For this figure, the difference in Top-1 error of the best low-precision student network is
calculated from the baseline full-precision network (i.e. ResNet-18 with 30.4% Top-1 error), i.e. we
want to see how close a low-precision student network can come to a full-precision baseline model.

6



Published as a conference paper at ICLR 2018

We find our low-precision network accuracies to significantly close the gap between full-precision
accuracy (and for some configurations even beat the baseline accuracy).

Hinton et al. (2015) mention improving the baseline full-precision accuracy when a student network
is paired with a teacher network. They mention improving the accuracy of a small model on MNIST
dataset. We show the efficacy of distillation based techniques on a much bigger model (ResNet)
with much larger dataset (ImageNet).

Table 2: Top-1 validation set error rate (%) on ImageNet-1K for ResNet-34 stu-
dent network as precision of activations (A) and weight (W) changes. The last
three columns show error rate when the student ResNet-34 is paired with ResNet-34,
ResNet-50 and ResNet-101.

ResNet-34 ResNet-34 ResNet-34 ResNet-34
Baseline with ResNet-34 with ResNet-50 with ResNet-101

32A, 32W 26.4 26.3 26.1 26.1
32A, 2W 28.3 27.6 27.2 27.2
8A, 4W 29.7 27.0 26.9 26.9
8A, 2W 30.8 28.8 28.8 28.5

Table 3: Top-1 validation set error rate (%) on ImageNet-1K for
ResNet-50 student network as precision of activations (A) and
weight (W) changes. The final two columns show error rate when
the student ResNet-50 is paired with ResNet-50 and ResNet-101.

ResNet-50 ResNet-50 ResNet-50
Baseline with ResNet-50 with ResNet-101

32A, 32W 23.8 23.7 23.5
32A, 2W 26.1 25.4 25.3
8A, 4W 28.5 25.5 25.3
8A, 2W 29.2 27.3 27.2

0.3% 

-0.8% 

-0.5% 

-2.1% 

0.0% 

-1.9% 

-3.3% 

-4.4% 

-6% -4% -2% 0% 2% 

32A,	32W

32A,	2W

8A,	4W

8A,	2W

Difference	(!)	in	Top-1	error	for	Res-34	from	baseline

! from	32A,	32W	without	Apprentice ! from	32A,	32W	with	Apprentice

(a) Apprentice versus baseline accuracy for ResNet-34.

0.3% 

-1.5% 

-1.5% 

-3.4% 

0.0% 

-2.3% 

-4.7% 

-5.5% 

-6% -4% -2% 0% 2% 

32A,	32W

32A,	2W

8A,	4W

8A,	2W

Difference	(!)	in	Top-1	error	for	Res-50	from	baseline

! from	32A,	32W	without	Apprentice ! from	32A,	32W	with	Apprentice

(b) Apprentice versus baseline accuracy for ResNet-50.

Figure 4: Difference in Top-1 error rate for low-precision variants of ResNet-34 and ResNet-50 with (blue
bars) and without (red bars) distillation scheme. The difference is calculated from the accuracy of the baseline
network (ResNet-34 for (a) and ResNet-50 for (b)) operating at full-precision. Higher % difference denotes a
better network configuration.

Results with ResNet-34 and ResNet-50: Table 2 and Table 3 show the effect of lowering precision
on the accuracy of ResNet-34 and ResNet-50, respectively, with distillation based technique. With
a student ResNet-34 network, we use ResNet-34, ResNet-50 and ResNet-101 as teachers. With
a student ResNet-50 network, we use ResNet-50 and ResNet-101 as teachers. The Top-1 error
for full-precision ResNet-34 is 26.4%. Our best 4-bits weight and 8-bits activation ResNet-34 is
within 0.5% of this number (26.9% error rate with ResNet-34 student and ResNet-50 teacher). This

7



Published as a conference paper at ICLR 2018

significantly improves upon the previously reported error rate of 29.7%. 4-bits weight and 8-bits
activation for ResNet-50 gives us a model that is within 1.5% of full-precision model accuracy
(25.3% vs. 23.8%). Figure 4a and Figure 4b show the difference in Top-1 error achieved by our best
low-precision ResNet-34 and ResNet-50 student networks, respectively, and compares with results
obtained using methods proposed in literature. Our Apprentice scheme significantly closes the gap
between full-precision baseline networks and low-precision variants of the same networks. In most
cases we see our scheme to better the previously reported accuracy numbers by 1.5%-3%.

Discussion: In scheme-A, we use a teacher network that is always as large or larger in number of
parameters than the student network. We experimented with a ternary ResNet-34 student network
which was paired with a full-precision ResNet-18. The ternary model for ResNet-34 is about 8.5x
smaller in size compared to the full-precision ResNet-18 model. The final trained accuracy of the
ResNet-34 ternary model with this setup is 2.7% worse than that obtained by pairing the ternary
ResNet-34 network with a ResNet-50 teacher network. This suggests that the distillation scheme
works only when the teacher network is higher in accuracy than the student network (and not neces-
sarily bigger in capacity). Further, the benefit from using a larger teacher network saturates at some
point. This can be seen by picking up a precision point, say “32A, 2W” and looking at the error
rates along the row in Table 1, 2 and 3.

One concern, we had in the early stages of our investigation, with joint training of a low-precision
small network and a high precision large network was the influence of the small network’s accuracy
on the accuracy of the large network. When using the joint cost function, the smaller network’s
probability scores are matched with the predictions from the teacher network. The joint cost is added
as a term to the total loss function (equation 1). This led us to posit that the larger network’s learning
capability will be affected by the inherent impairment in the smaller low-precision network. Further,
since the smaller student network learns form the larger teacher network, a vicious cycle might
form where the student network’s accuracy will further drop because the teacher network’s learning
capability is being impeded. However, in practice, we did not see this phenomenon occurring - in
each case where the teacher network was jointly trained with a student network, the accuracy of the
teacher network was always within 0.1% to 0.2% of the accuracy of the teacher network without it
jointly supervising a student network. This could be because of our choice of α, β and γ values.

In Section 4, we mentioned about temperature, τ , for Softmax function and hyper-parameters α = 1,
β = 0.5 and γ = 0.5. Since, we train directly on the logits of the teacher network, we did not have to
experiment with the appropriate value of τ . τ is required when training on the soft targets produced
by the teacher network. Although we did not do extensive studies experimenting with training on
soft targets as opposed to logits, we find that τ = 1 gives us best results when training on soft
targets. Hinton et al. (2015) mention that when the student network is significantly smaller than the
teacher network, small values of τ are more effective than large values. For few of the low-precision
configurations, we experimented with α = β = γ = 1, and, α = 0.9, β = 1 and γ = 0.1 or 0.3.
Each of these configurations, yielded a lower performance model compared to our original choice
for these parameters.

For the third term in equation 1, we experimented with a mean-squared error loss function and also a
loss function with logits from both the student and the teacher network (i.e. H(zT , zA)). We did not
find any improvement in accuracy compared to our original choice of the cost function formulation.
A thorough investigation of the behavior of the networks with other values of hyper-parameters and
different loss functions is an agenda for our future work.

Overall, we find the distillation process to be quite effective in getting us high accuracy low-precision
models. All our low-precision models surpass previously reported low-precision accuracy figures.
For example, TTQ scheme achieves 33.4% Top-1 error rate for ResNet-18 with 2-bits weight. Our
best ResNet-18 model, using scheme-A, with 2-bits weight achieves ∼31.5% error rate, improving
the model accuracy by ∼2% over TTQ. Similarly, the scheme in Mellempudi et al. (2017) achieves
29.2% Top-1 error with 2-bits weight and 8-bits activation. The best performing Apprentice net-
work at this precision achieves 27.2% Top-1 error. For Scheme-B and Scheme-C, which we describe
next, Scheme-A serves as the new baseline.

8



Published as a conference paper at ICLR 2018

5.3 SCHEME-B: DISTILLING KNOWLEDGE FROM A TEACHER

In this scheme, we start with a trained teacher network. Referring back to Figure 2, the input image
is passed to both the teacher and the student network, except that the learning with back-propagation
happens only in the low precision student network which is trained from scratch. This is the scheme
used by Buciluǎ et al. (2006) and Hinton et al. (2015) for training their student networks. In this
scheme, the first term in equation 1 zeroes out and only the last two terms in the equation contribute
toward the loss function.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

To
p-
1	
er
ro
r

Epochs

Scheme-A
Scheme-B

ResNet-34 student	with	
ResNet-50	teacher,	

2W	32A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

To
p-
1	
er
ro
r

Epochs

Scheme-A
Scheme-B

ResNet-34 student	with	
ResNet-50	teacher,	

4W	8A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

To
p-
1	
er
ro
r

Epochs

Scheme-A
Scheme-B

ResNet-50 student	with	
ResNet-101	teacher,	

2W	32A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

To
p-
1	
er
ro
r

Epochs

Scheme-A
Scheme-B

ResNet-50 student	with	
ResNet-101	teacher,	

4W	8A

Figure 5: Top-1 error rate versus epochs of four student networks using scheme-A and scheme-B.

With scheme-B, one can pre-compute and store the logit values for the input images on disk and
access them during training the student network. This saves the forward pass computations in the
teacher network. Scheme-B might also help the scenario where a student network attempts to learn
the “dark knowledge” from a teacher network that has already been trained on some private or
sensitive data (in addition to the data the student network is interested in training on).

With scheme-A, we had the hypothesis that the student network would be influenced by not only the
“dark knowledge” in the teacher network but also the path the teacher adopts to learn the knowledge.
With scheme-B we find, that the student network gets to similar accuracy numbers as the teacher
network albeit at fewer number of epochs.

With this scheme, the training accuracies are similar to that reported in Table 1, 2 and 3. The
low-precision student networks, however, learn in fewer number of epochs. Figure 5 plots the Top-1
error rates for few of the configurations from our experiment suite. In each of these plots, the student
network in scheme-B converges around 80th-85th epoch compared to about 105 epochs in scheme-
A. In general, we find the student networks with scheme-B to learn in about 10%-20% fewer epochs
than the student networks trained using scheme-A.

5.4 SCHEME-C: FINE-TUNING THE STUDENT MODEL

Scheme-C is very similar to scheme-B, except that the student network is primed with full precision
training weights before the start of the training process. At the beginning of the training process,
the weights and activations are lowered and the student network is sort of fine-tuned on the dataset.

9



Published as a conference paper at ICLR 2018

Similar to scheme-B, only the final two terms in equation 1 comprise the loss function and the low-
precision student network is trained with back-propagation algorithm. Since, the network starts from
a good initial point, comparatively low learning rate is used throughout the training process. There is
no clear recipe for learning rates (and change of learning rate with epochs) which works across all the
configurations. In general, we find training with a learning rate of 1e-3 for 10 to 15 epochs, followed
by 1e-4 for another 5 to 10 epochs, followed by 1e-5 for another 5 epochs to give us the best accuracy.
Some configurations run for about 40 to 50 epochs before stabilizing. For these configurations, we
find training using scheme-B with warm startup (train the student network at full-precision for about
25-30 epochs before lowering the precision) to be equally good. Wu (2016) investigate a similar
scheme for binary precision on AlexNet. Our experiments show that distillation is an overkill for
AlexNet and one can get comparable accuracies using techniques proposed in (Tang et al., 2017;
Mishra et al., 2017). Further, Wu (2016) hypothesize that distillation scheme will work on larger
networks, we show in this paper how to make it work. Tann et al. (2017) use a similar scheme for
AlexNet and mention starting from a non-global optimal checkpoint gives better accuracy, though
we did not find this observation to hold in our experiments.

We find the final accuracy of the models obtained using scheme-C to be (marginally) better than
those obtained using scheme-A or scheme-B. Table 4 shows error rates of few configurations of
low-precision student network obtained using scheme-A (or scheme-B) and scheme-C. For ResNet-
50 student network, the accuracy with ternary weights is further improved by 0.6% compared to that
obtained using scheme-A. Note that the performance of ternary networks obtained using scheme-
A are already state-of-the-art. Hence, for ResNet-50 ternary networks, 24.7% Top-1 error rate is
the new state-of-the-art. With this, ternary ResNet-50 is within 0.9% of baseline accuracy (23.8%
vs. 24.7%). Similarly, with 4-bits weight and 8-bits activations, ResNet-50 model obtained using
scheme-C is 0.4% better than that obtained with scheme-A (closing the gap to be within 1.3% of
full-precision ResNet-50 accuracy).

Table 4: Top-1 ImageNet-1K validation set error rate (%) with scheme-A and scheme-C for
ResNet-34 and ResNet-50 student networks with ternary and 4-bits precision.

32A, 2W 32A, 2W
with scheme-A or B with scheme-C

ResNet-34 student with ResNet-50 teacher 27.2 26.9
ResNet-50 student with ResNet101 teacher 25.3 24.7

8A, 4W 8A, 4W
with scheme-A or B with scheme-C

ResNet-34 student with ResNet-50 teacher 26.9 26.8
ResNet-50 student with ResNet101 teacher 25.5 25.1

Scheme-C is useful when one already has a trained network which can be fine-tuned using knowl-
edge distillation schemes to produce a low-precision variant of the trained network.

5.5 DISCUSSION - TERNARY PRECISION VERSUS SPARSITY

As mentioned earlier, low-precision is a form of model compression. There are many works which
target network sparsification and pruning techniques to compress a model. With ternary preci-
sion models, the model size reduces by a factor of 2/32 compared to full-precision models. With
Apprentice, we show how one can get a performant model with ternary precision. Many works tar-
geting network pruning and sparsification target a full-precision model to implement their scheme.
To be comparable in model size to ternary networks, a full-precision model needs to be sparsified
by 93.75%. Further, to be effective, a sparse model needs to store a key for every non-zero value de-
noting the position of the value in the weight tensor. This adds storage overhead and a sparse model
needs to be about 95% sparse to be at-par in memory size as a 2-bit model. Note that ternary preci-
sion also has inherent sparsity (zero is a term in the ternary symbol dictionary) – we find our ternary
models to be about 50% sparse. In work by Wen et al. (2016) and Han et al. (2015b), sparsification
of full-precision networks is proposed but the sparsity achieved is less than 93.75%. Further, the
network accuracy using techniques in both these works lead to larger degradation in accuracy com-
pared to our ternary models. Overall, we believe, our ternary precision models to be state-of-the-art

10



Published as a conference paper at ICLR 2018

not only in accuracy (we better the accuracy compared to prior ternary precision models) but also
when one considers the size of the model at the accuracy level achieved by low-precision or sparse
networks.

6 CONCLUSIONS

While low-precision networks have system-level benefits, the drawback of such models is degraded
accuracy when compared to full-precision models. We present three schemes based on knowledge
distillation concept to improve the accuracy of low-precision networks and close the gap between
the accuracy of these models and full-precision models. Each of the three schemes improve the
accuracy of the low-precision network configuration compared to prior proposals. We motivate the
need for a smaller model size in low batch, real-time and resource constrained inference deployment
systems. We envision the low-precision models produced by our schemes to simplify the inference
deployment process on resource constrained systems and on cloud-based deployment systems where
low latency is a critical requirement.

11



Published as a conference paper at ICLR 2018

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software avail-
able from tensorflow.org.

A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani. N2N Learning: Network to Network Com-
pression via Policy Gradient Reinforcement Learning. ArXiv e-prints, September 2017.

Lei Jimmy Ba and Rich Caurana. Do deep nets really need to be deep? CoRR, abs/1312.6184, 2013.
URL http://arxiv.org/abs/1312.6184.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’06, pp. 535–541, New York, NY, USA, 2006. ACM. ISBN 1-59593-339-5. doi: 10.
1145/1150402.1150464. URL http://doi.acm.org/10.1145/1150402.1150464.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network
models for practical applications. CoRR, abs/1605.07678, 2016. URL http://arxiv.org/
abs/1605.07678.

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. CoRR, abs/1511.05641, 2015a. URL http://arxiv.org/abs/1511.05641.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. CoRR, abs/1504.04788, 2015b. URL http://arxiv.
org/abs/1504.04788.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016. URL http://arxiv.
org/abs/1602.02830.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. CoRR, abs/1511.00363, 2015. URL http:
//arxiv.org/abs/1511.00363.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas. Predicting
parameters in deep learning. CoRR, abs/1306.0543, 2013. URL http://arxiv.org/abs/
1306.0543.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. CoRR, abs/1502.02551, 2015. URL http://arxiv.org/abs/
1502.02551.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015a. URL
http://arxiv.org/abs/1510.00149.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pp. 1135–1143, 2015b.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: efficient inference engine on compressed deep neural network. In 43rd ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, June
18-22, 2016, pp. 243–254, 2016. doi: 10.1109/ISCA.2016.30. URL https://doi.org/10.
1109/ISCA.2016.30.

12

https://www.tensorflow.org/
http://arxiv.org/abs/1312.6184
http://doi.acm.org/10.1145/1150402.1150464
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30


Published as a conference paper at ICLR 2018

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. CoRR, abs/1603.05027, 2016. URL http://arxiv.org/abs/1603.05027.

G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. ArXiv e-prints,
March 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc.,
2012.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, pp. 598–605. Morgan-Kaufmann, 1990.
URL http://papers.nips.cc/paper/250-optimal-brain-damage.pdf.

Fengfu Li and Bin Liu. Ternary weight networks. CoRR, abs/1605.04711, 2016. URL http:
//arxiv.org/abs/1605.04711.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural networks with
few multiplications. CoRR, abs/1510.03009, 2015. URL http://arxiv.org/abs/1510.
03009.

N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and P. Dubey. Ternary Neural Networks
with Fine-Grained Quantization. ArXiv e-prints, May 2017.

A. Mishra, E. Nurvitadhi, J. J Cook, and D. Marr. WRPN: Wide Reduced-Precision Networks.
ArXiv e-prints, September 2017.

Daisuke Miyashita, Edward H. Lee, and Boris Murmann. Convolutional neural networks using
logarithmic data representation. CoRR, abs/1603.01025, 2016. URL http://arxiv.org/
abs/1603.01025.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan,
Brucek Khailany, Joel S. Emer, Stephen W. Keckler, and William J. Dally. SCNN: an acceler-
ator for compressed-sparse convolutional neural networks. CoRR, abs/1708.04485, 2017. URL
http://arxiv.org/abs/1708.04485.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. CoRR, abs/1603.05279, 2016. URL
http://arxiv.org/abs/1603.05279.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. CoRR, abs/1412.6550, 2014. URL http:
//arxiv.org/abs/1412.6550.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
application to data-parallel distributed training of speech dnns. In Interspeech 2014, September
2014.

Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Resiliency of deep neural networks under
quantization. CoRR, abs/1511.06488, 2015. URL http://arxiv.org/abs/1511.06488.

Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261, 2016. URL http:
//arxiv.org/abs/1602.07261.

13

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1511.06488
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261


Published as a conference paper at ICLR 2018

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA., 2017.

Hokchhay Tann, Soheil Hashemi, Iris Bahar, and Sherief Reda. Hardware-software codesign of
accurate, multiplier-free deep neural networks. CoRR, abs/1705.04288, 2017.

Torch implementation of ResNet. https://github.com/facebook/fb.resnet.torch.

Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Heng Wai Leong,
Magnus Jahre, and Kees A. Vissers. FINN: A framework for fast, scalable binarized neural
network inference. CoRR, abs/1612.07119, 2016. URL http://arxiv.org/abs/1612.
07119.

G. Urban, K. J. Geras, S. Ebrahimi Kahou, O. Aslan, S. Wang, R. Caruana, A. Mohamed, M. Phili-
pose, and M. Richardson. Do Deep Convolutional Nets Really Need to be Deep and Convolu-
tional? ArXiv e-prints, March 2016.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural networks on
cpus. In Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. Accelerating deep convolutional networks
using low-precision and sparsity. CoRR, abs/1610.00324, 2016. URL http://arxiv.org/
abs/1610.00324.

Kilian Q. Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alexander J. Smola.
Feature hashing for large scale multitask learning. CoRR, abs/0902.2206, 2009. URL http:
//arxiv.org/abs/0902.2206.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. CoRR, abs/1608.03665, 2016. URL http://arxiv.org/abs/
1608.03665.

Xundong Wu. High performance binarized neural networks trained on the imagenet classification
task. CoRR, abs/1604.03058, 2016.

Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the per-
formance of convolutional neural networks via attention transfer. CoRR, abs/1612.03928, 2016.
URL http://arxiv.org/abs/1612.03928.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quanti-
zation: Towards lossless cnns with low-precision weights. CoRR, abs/1702.03044, 2017. URL
http://arxiv.org/abs/1702.03044.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016. URL http://arxiv.org/abs/1606.06160.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. CoRR,
abs/1612.01064, 2016. URL http://arxiv.org/abs/1612.01064.

14

http://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1610.00324
http://arxiv.org/abs/1610.00324
http://arxiv.org/abs/0902.2206
http://arxiv.org/abs/0902.2206
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1612.03928
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1612.01064


Published as a conference paper at ICLR 2018

7 APPENDIX: ANALYSIS WITH RESNET ON CIFAR-10 DATASET

8.1% 

7.9% 

7.0% 

6.9% 

6.9% 

9.6% 

8.0% 

7.4% 

7.2% 

7.0% 

8.7% 

7.6% 

6.8% 

6.3% 

6.2% 

7.9% 

7.2% 

6.5% 

6.2% 

6.2% 

4% 5% 6% 7% 8% 9% 10% 

ResNet-20

ResNet-32

ResNet-44

ResNet-56

ResNet-110

Top-1	error	(%)

(a) Top-1 error without Apprentice scheme.

7.4% 

6.8% 

6.4% 

5.9% 

5.4% 

8.2% 

7.1% 

6.6% 

6.1% 

5.6% 

8.0% 

6.6% 

6.3% 

5.8% 

5.2% 

7.4% 

6.6% 

6.2% 

5.5% 

5.1% 

4% 5% 6% 7% 8% 9% 10% 

ResNet-20

ResNet-32

ResNet-44

ResNet-56

ResNet-110

Top-1	error	(%)

32-bits	weights,	
32-bits	activations

2-bits	weights,	
32-bits	activations

2-bits	weights,					
8-bits	activations

4-bits	weights,					
8-bits	activations

(b) Top-1 error using Apprentice scheme-A.

Figure 6: Comparison of various configurations of ResNet on CIFAR-10 with and without Apprentice
scheme.

In addition to ImageNet dataset, we also experiment withApprentice scheme on CIFAR-10 dataset.
CIFAR-10 dataset (Krizhevsky, 2009) consists of 50K training images and 10K testing images in 10
classes. We use various depths of ResNet topology for this study. Our implementation of ResNet
for CIFAR-10 closely follows the configuration in He et al. (2015). The network inputs are 32×32
images. The first layer is a 3×3 convolutional layer followed by a stack of 6n layers with 3×3
convolutions on feature map sizes 32, 16 and 8; with 2n layers for each feature map size. The
numbers of filters are 16, 32 and 64 in each set of 2n layers. This is followed by a global average
pooling, a 10-way fully connected layer and a softmax layer. Thus, in total there are 6n+2 weight
layers.

Figure 6a shows the impact of lowering precision as the depth of ResNet varies. As the network
becomes larger in size, the impact of lowering precision is diminished (relative to the accuracy of
the network at that depth when using full-precision). For example, with ResNet-110, full-precision
Top-1 error rate is 6.19%. At the same depth, ternarizing the model gives similar error rate (6.24%).
Comparing this with ResNet-20, the gap between full-precision and ternary model (2-bits weight
and 32-bits activations) is 0.8% (7.9% vs. 8.7% Top-1 error). Overall, we find that ternarizing a
model closely follows accuracy of baseline full-precision model. However, lowering both weights
and activations almost always leads to large accuracy degradation. Accuracy of 2-bits weight and
8-bits activation network is 0.8%-1.6% worse than full-precision model. UsingApprentice scheme
this gap is considerably lowered.

Figure 6b shows the impact of lowering precision when a low-precision (student) network is paired
with a full-precision (teacher) network. For this analysis we use scheme-A where we jointly train
both the teacher and student network. The mix of ResNet depths we used for this study are ResNet-
20, 32, 44, 56, 110 and 182. ResNet-20 student network was paired with deeper ResNets from
this mix, i.e. ResNet-32, 44, 56, 110 and 182 (as five separate experiments). Similarly, ResNet-44

15



Published as a conference paper at ICLR 2018

student network was paired with deeper ResNet-56 and 110 (as two different set of experiments).
ResNet-110 student network used ResNet-182 as its teacher network. For a particular ResNet depth,
the figure plots the minimum error rate across each of the experiments.

We find Apprentice scheme to improve the baseline full-precision accuracy. The scheme also helps
close the gap between the new improved baseline accuracy and the accuracy when lowering the
precision of the weights and activations. The gap between 2-bits weight and 8-bits activation net-
work is now 0.4%-0.8% worse than full-precision model. With ImageNet dataset, the accuracy of
full-precision networks also improves but very marginally (by 0.3%). However, the impact of dis-
tillation technique on CIFAR-10 is quite pronounced - for example, top-1 error lowers by 1.1% for
ResNet-110.

7.4% 

6.6% 

6.2% 

5.5% 

5.1% 

8.4% 

7.4% 

6.7% 

6.3% 

5.8% 

9.2% 

7.9% 

7.2% 

7.0% 

6.7% 

7.7% 

7.7% 

6.8% 

6.6% 

6.5% 

4% 5% 6% 7% 8% 9% 10% 

ResNet-20

ResNet-32

ResNet-44

ResNet-56

ResNet-110

Top-1	error	(%)

32-bits	weights,	
32-bits	activations

2-bits	weights,			
32-bits	activations

2-bits	weights,					
8-bits	activations

4-bits	weights,					
8-bits	activations

Figure 7: Distillation followed by quantization.

We experimented with a variation of scheme-C where a network is first compressed using distillation
scheme (using a deeper ResNet as the teacher network) followed by lowering the precision and fine-
tuning. The fine-tuning is done for 35-40 epochs with a very low learning-rate without the influence
of any teacher network (no distillation). For this experiment, the student network starts from a higher
accuracy compressed model compared to scheme-C (since distillation improves accuracy of student
network at full-precision as well). Figure 7 shows the results with this experimental setting. For
each configuration, we find the error-rate to lie in between the error-rates shown in Figure 6a and
Figure 6b for the corresponding configuration, i.e. this scheme is better than low-precision training
from scratch but not as good as training with methodology described in scheme-A. On an average,
we find scheme-A to give 0.7% better accuracy at low-precision configurations compared to the
scheme mentioned here highlighting the benefits of “joint” low-precision training from scratch with
distillation (Apprentice scheme). Many works proposing low-precision knobs advocate for training
from scratch or training (for a significant number of epochs) with warm-startup – the conclusions
from this experiment are in line with the observations in these papers.

16



Published as a conference paper at ICLR 2018

8 FUTURE RESEARCH

Some works proposing low-precision networks advocate for making the layers wider (or the model
larger) to recover accuracy at low-precision. These works propose making the layers wider by 2x
or 3x. While these works show the benefits of low-precision, making the model larger increases the
number of raw computations. Future work could investigate low-precision and less layer widening
factor (say 1.10x or 1.25x). This would help inference latency while maintaining accuracy at-par
with baseline full-precision networks.

As mentioned in section 5.5, sparsifying a model more than a certain percentage leads to accu-
racy loss. Investigating hyper-sparse network models without accuracy loss using distillation based
schemes is another interesting avenue of further research.

17


	Introduction
	Motivation for low-precision model parameters
	Related work
	Knowledge Distillation
	Our approach - Apprentice network
	Top-1 error with prior proposals for low-precision networks
	Scheme-A: Joint training of teacher-student networks
	Scheme-B: Distilling knowledge from a teacher
	Scheme-C: Fine-tuning the student model
	Discussion - ternary precision versus sparsity

	Conclusions
	Appendix: Analysis with ResNet on CIFAR-10 dataset
	Future research

