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Abstract

Humans are able to perceive, understand and001
reason about causal events. Developing mod-002
els with similar physical and causal under-003
standing capabilities is a long-standing goal of004
artificial intelligence. As a step towards this005
direction, we introduce CRAFT, a new video006
question answering dataset that requires causal007
reasoning about physical forces and object in-008
teractions. It contains 58K video and ques-009
tion pairs that are generated from 10K videos010
from 20 different virtual environments, con-011
taining various objects in motion that interact012
with each other and the scene. Two question013
categories in CRAFT include previously stud-014
ied descriptive and counterfactual questions.015
Additionally, inspired by the Force Dynamics016
Theory in cognitive linguistics, we introduce017
a new causal question category that involves018
understanding the causal interactions between019
objects through notions like cause, enable, and020
prevent. Our results show that even though021
the questions in CRAFT are easy for humans,022
the tested baseline models, including existing023
state-of-the-art methods, do not yet deal with024
the challenges posed in our benchmark.025

1 Introduction026

Causal reasoning is a key cognitive capability that027

involves making predictions about physical objects028

and their interactions. Cognitive scientists have029

mainly studied causal reasoning as simple causes030

or chains of events (Michotte, 1963; Baillargeon,031

1994; Saxe et al., 2005), rather than processing of032

complex causal scenes, see (Göksun et al., 2013;033

George et al., 2019). Referring to the interactions034

of multiple forces, the Force Dynamics Theory em-035

phasizes the processing and reasoning of complex036

scenes, and how causal language defines the pat-037

terns of forces in causal events (Wolff, 2007).038

In the past decade, though artificial learning sys-039

tems have shown astonishing progress in natural040

language and image understanding, there are some041

tasks in which these systems are still significantly 042

below human performance. One such challenging 043

research area includes reasoning about physical ac- 044

tions of objects in complex causal scenes. In this 045

paper, we explore how language and vision inter- 046

act with each other in making plausible projections 047

about causal reasoning, and analyze how well the 048

existing neural models understand and reason about 049

physical and causal relationships between dynamic 050

objects in a scene through images and text. 051

We propose a new video question answering 052

dataset, named CRAFT (Causal Reasoning About 053

Forces and inTeractions), which is designed to be 054

complex for artificial models and simple for hu- 055

mans. Our dataset contains synthetically generated 056

videos of 2D scenes with accompanying questions. 057

Its most prominent features are that it contains 058

video clips with complex physical interactions be- 059

tween objects, and questions that test strong reason- 060

ing capabilities. Answering our causal questions 061

needs comprehending what is being asked, iden- 062

tifying objects in the scene, tracking their states 063

in relation to other objects, which in turn can be 064

attributed to different semantic categories of causes 065

(cause, enable or prevent) that highlight unique 066

patterns of causal forces in events – in line with 067

the Force Dynamics Theory. In CRAFT, there are 068

also some descriptive and counterfactual questions, 069

the latter requiring understanding what would have 070

happened after an intervention, i.e. a slight change 071

in the scene (Wolff, 2013). Figure 1 shows sample 072

questions from different question types, which are 073

explained in detail in the subsequent sections. 074

2 Related Work 075

Visual Question Answering. Existing visual ques- 076

tion answering (VQA) datasets can be categorized 077

along two dimensions. The first dimension is the 078

type of visual data, which includes either real world 079

images (Malinowski and Fritz, 2014; Ren et al., 080

2015; Antol et al., 2015; Zhu et al., 2016; Goyal 081
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Descriptive Questions

Counterfactual Questions

Cause

Enable

Prevent

Q:  “How many objects fall to the ground?” A: “2”
Q:  “After entering the basket, does the small yellow square collide with other objects?” A: “True”

Q:  “Will the small gray box enter the basket if any of the other objects are removed?” A: “True”
Q:  “How many objects fall to the ground if the small yellow box is removed?” A: “1”

Q:  “Does the small brown sphere cause the tiny yellow box to enter the basket?” A: “True”

Q:  “Does the small brown sphere enable the small yellow box to enter the basket?” A: “False”

Q:  “Does the small brown ball cause the big gray triangle to fall to the ground?” A: “False”

Q:  “How many objects does the small gray block enable to enter the basket?” A: “0”

Q:  “Does the small yellow square prevent the tiny brown circle from entering the basket?” A: “True”
Q:  “How many objects does the large cyan triangle prevent from entering the basket?” A: “1”

Ground Causal Questions

Figure 1: Example CRAFT questions generated for a sample scene. There are 48 different tasks divided into
three distinct categories for 20 different scenes. Besides having tasks questioning descriptive properties, possi-
bly needing temporal reasoning, CRAFT introduces challenges including more complex tasks requiring single or
multiple counterfactual analysis or understanding object intentions for deep causal reasoning.

et al., 2017) or videos (Tapaswi et al., 2016; Lei082

et al., 2018), or synthetically created content (John-083

son et al., 2017; Zhang et al., 2016; Yi et al., 2020).084

The second is at how the questions and answers085

are collected, which are usually done via crowd-086

sourcing (Malinowski and Fritz, 2014; Antol et al.,087

2015) or by automatic means (Ren et al., 2015; Lin088

et al., 2014; Johnson et al., 2017). A key challenge089

for creating a good VQA dataset lies in minimizing090

the dataset bias. A model may exploit such biases091

and cheat the task by learning some shortcuts. In092

our work, we generate questions about simulated093

scenes using a pre-defined set of templates by con-094

sidering some heuristics to eliminate strong biases.095

Compared to the existing VQA datasets, CRAFT is096

specifically designed to test models’ understanding097

of dynamic state changes of the objects in a scene.098

Although some prior work focuses on temporal rea-099

soning (Lei et al., 2018; Yu et al., 2019; Lei et al.,100

2020; Girdhar and Ramanan, 2020), they do not101

require the models to have a deep understanding of102

physics and/or imagine the consequence of certain103

actions to answer the questions, the only exceptions104

being TIWIQ (Wagner et al., 2018), CLEVRER (Yi105

et al., 2020), CLEVR_HYP (Sampat et al., 2021)106

and TVR (Hong et al., 2021) datasets. In these107

datasets, there exist hypothetical questions that re-108

quire mental simulations about the consequences109

of performing certain actions or the lack of specific110

actions or objects. These datasets have received111

interest in developing neuro-symbolic reasoning112

models with physical understanding capabilities113

(Ding et al., 2020; Chen et al., 2021; Ding et al.,114

2021). CRAFT shares a similar design goal with 115

the aforementioned datasets – but the scenes in our 116

benchmark are temporally more complex. 117

Causal Reasoning in Cognitive Science. Differ- 118

ent theories have been proposed by cognitive sci- 119

entists to model how humans learn, experience, 120

and reason about causal events, Mental Model The- 121

ory (Khemlani et al., 2014), Causal Model Theory 122

(Sloman et al., 2009), and Force Dynamics Theory 123

(Wolff and Barbey, 2015) to name a few. Among 124

these, building upon the work of Talmy (1988), 125

the Force Dynamics Theory represents a variety of 126

causal relationships such as cause, enable, and pre- 127

vent between two main entities, an affector and a 128

patient (i.e. the object the affector acts on). The the- 129

ory emphasizes that causative verbs map onto these 130

different spatial arrays of forces within complex 131

causal scenes. Studies with speakers of different 132

languages such as English, Russian, and German 133

suggest that adults distinctly represent these se- 134

mantic event categories (Wolff and Song, 2003; 135

Wolff et al., 2005). Similarly, 5- to 6-year-old chil- 136

dren perceive the interactions of forces underlying 137

the semantic categories of cause, enable, and pre- 138

vent (Göksun et al., 2013) and make inferences 139

about these events (George et al., 2019). To our 140

knowledge, our work is the first attempt at integrat- 141

ing these complex relationships in a VQA setup to 142

test causal reasoning capabilities of machines. 143

Understanding Physics in Artificial Intelligence. 144

Lately, there has been a growing interest within the 145

community in developing datasets and models to 146

evaluate the ability of understanding and reasoning 147
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about the physical world. A notable amount of148

these efforts focuses on physical scene understand-149

ing. For instance, some researchers have explored150

the problem of predicting whether a set of objects151

are in stable configuration or not (Mottaghi et al.,152

2016) or if not where they fall (Lerer et al., 2016).153

Others have tried to estimate a motion trajectory154

of a query object under different forces (Mottaghi155

et al., 2016) or developed methods to build a stack156

configuration of the objects from scratch through157

a planning algorithm (Janner et al., 2019). Li et al.158

(2019) suggested to represent rigid bodies, fluids,159

and deformable objects as a collection of parti-160

cles and used this representation to learn how to161

manipulate them. Recently, Bakhtin et al. (2019)162

and Allen et al. (2020) created the PHYRE and163

the Tools benchmarks, respectively, which both in-164

clude different types of 2D environments. An agent165

must reason about the scene and predict the out-166

comes of possible actions in order to solve the task167

associated with the environment. CoPhy (Baradel168

et al., 2020) is another recent work, which deals169

with physical reasoning prediction about counter-170

factual interventions. Although these works in-171

volve complicated physical reasoning tasks, the172

language component is largely missing. As men-173

tioned, Wagner et al. (2018), Yi et al. (2020) and174

Sampat et al. (2021) created VQA datasets for intu-175

itive physics, but they lack visual variations unlike176

PHYRE and Tools. Though less studied, there are177

also some efforts in the NLP community to evalu-178

ate physical reasoning abilities of language models.179

Bisk et al. (2020) proposed the PIQA dataset that180

involves a binary choice task about daily activi-181

ties regarding physical commonsense. Similarly,182

Aroca-Ouellette et al. (2020) presented the PROST183

benchmark which includes questions that are de-184

signed to probe language models in a zero-shot185

setting and focuses on concepts like gravitational186

forces, physical attributes and object affordances.187

Our CRAFT dataset aims to combine the best of188

both worlds. In addition to the two types of ques-189

tions investigated in CLEVRER (Yi et al., 2020),190

namely descriptive and counterfactual, CRAFT191

also includes questions that need reasoning about192

causal interactions through the concepts like cause,193

enable, and prevent. To succeed in these tasks,194

models need to learn the semantics of each verb195

category that specifies different kinds of object in-196

teractions and their outcomes, i.e. to gain an under-197

standing of a kind of commonsense knowledge.198

3 The CRAFT Dataset 199

CRAFT is built to evaluate temporal and causal rea- 200

soning capabilities of existing algorithms on video 201

clips of 2D simulations and related questions. The 202

dataset has approximately 57K question and video 203

pairs, which are created from 10K videos. It is split 204

into train, validation, and test sets with a 60:20:20 205

ratio per video basis, meaning that video clips in 206

the training set are not seen in the validation or test 207

set. Moreover, we have two different settings, an 208

easy setting and a hard setting. They differ from 209

each other in the way how the test split is chosen. 210

In the hard setting, we deliberately use scene lay- 211

outs that are not seen during training in picking the 212

video and question pairs. The easy setting does 213

not have this constraint. In the easy setting, there 214

are 35K, 12K, and 11K question and video pairs 215

in the train, validation and test splits, whereas in 216

the hard setting these numbers are 35K, 11K and 217

12K, respectively. We provide an example set of 218

questions from CRAFT in Figure 1. 219

Video Generation. We use Box2D physics simula- 220

tor (Catto, 2010) to create our virtual scenes. There 221

are 20 distinct scene layouts from which 10 seconds 222

of video clips are collected with a spatial resolution 223

of 256 × 256 pixels. Besides generating original 224

simulation video, CRAFT scripts also generate vari- 225

ation videos by removing each object of the same 226

video from the scene. These variation videos help 227

question generation script to provide answer for 228

certain types of questions, as explained later. 229

Objects. Each scene is composed of both static 230

scene elements and dynamic objects, containing 231

variable number of and different type of these el- 232

ements and objects. There are 7 static scene el- 233

ements (ramp, platform, button, basket, left wall, 234

right wall, ground). These elements are all drawn 235

in black color in order to differentiate them from 236

the dynamic objects. Their attributes such as posi- 237

tion or orientation are decided at the beginning of a 238

simulation and then they are kept fixed throughout 239

the video sequence. The values of these attributes 240

are assigned randomly from sets of different inter- 241

vals which are predefined for each type of scene 242

as in Figure 2. The set of the dynamic objects 243

contains 3 shapes (cube, triangle, circle), 2 sizes 244

(small, large), and 8 colors (gray, red, blue, green, 245

brown, purple, cyan, yellow). Attributes of dy- 246

namic objects, in contrast, are in continuous change 247

throughout the sequence due to the gravity or the 248

interactions that they are subject to, until they rest. 249
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Figure 2: Random configurations of static scene element properties for each scene. The opaque regions show
the mean value for that element, whereas the overlayed regions show the extreme values. Although these changes
may seem subtle, they provide a wide variety in terms of scene dynamics.

Events. To formally represent the dynamical in-250

teractions in the simulations, we extract different251

types of events: Start, End, Collision, Touch Start,252

Touch End, and Enter Basket. Start and End events253

represent the start and the end of the simulations, re-254

spectively. Although we mainly question Collision255

events in our tasks, we want models to understand256

the difference between a collision and rolling on a257

ramp or a platform or two objects moving together.258

Therefore, we also extract Touch Start, Touch End259

events. Finally, Enter Basket event is triggered if260

the object enters the basket in the scene. All events261

happening a simulation are represented as a causal262

graph, which is also key for the question generator263

to extract causal relationships in an easy manner.264

Causal graph is a directed graph where events are265

represented as nodes. Each edge represents a cause266

relation where the source event is considered as the267

cause of target event because of the shared objects268

between them. We demonstrate the causal graph of269

a sample simulation in Figure 3.270

Simulation Representation. A simulation in-271

stance is represented by three different data struc-272

tures, the initial state of the scene, the final state of273

the scene, and the causal graph of extracted events.274

The initial and final state of a scene refers to the275

information regarding the objects’ static and dy-276

namic attributes such as color, position, shape, and277

velocity at the start or at the end of the simulation,278

respectively. The final state is important as it bears279

causal relationships between the events of a sim-280

ulation. Together these information sources have281

sufficient information to find the correct answers282

to CRAFT questions. Our simulation system also283

B: Red square collides with cyan circle
C: Cyan circle starts touching blue circle
D: Red square enters basket

F: Red square collides with basket
G: Red square starts touching basket
H: End

Causal Graph

A: Start E: Cyan circle ends touching blue circle

A B C D

E F G H

A B C D E F G H

A

B

C

D

E

F G

H

Figure 3: A simple causal graph. The causal graph is
a graphical summary of the events that occur in a simu-
lation. For the sake of simplicity, here we only include
the interactions between the dynamic objects and the
basket, and moreover, the scene is uncomplicated that
there is no intermediate branching in the causal graph.

allows us to generate scene graphs like the ones 284

used in CLEVR (Johnson et al., 2017), though we 285

have not investigated it yet. 286

Question Generation. Each CRAFT question is 287

expressed with a functional program as in CLEVR. 288

We use a different set of functional modules for 289

our programs extending the CLEVR approach. For 290

example, our module set includes, but not limited 291

to, functions which can filter events such as Enter 292
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Basket and Collision, and functions which can fil-293

ter objects based on whether they are stationary at294

the start or the end of the video. List of our func-295

tional modules and some example programs are296

provided in Appendices A.1 and A.2 in the supple-297

mentary material, respectively. Moreover, we use298

different sets of word synonyms and allow question299

text to be paraphrased for language variety simi-300

lar to CLEVR. Our preliminary analysis revealed301

that human performances in some questions were302

poor. When investigated, we figured out that these303

questions seem to be counter-intuitive to humans.304

Humans do not accurately reason about the objects305

for some counterfactual cases as subtle changes in306

the scenes result in very different outcomes. Hence,307

in finalizing our dataset, we applied minor random308

perturbations to each dynamic object in a video to309

verify whether the same answer can be obtained for310

all such cases, and excluded those questions that311

did not pass this verification step.312

Question Types. CRAFT has 48 different question313

types under 3 different categories, namely Causal,314

Descriptive, Counterfactual. Among these, De-315

scriptive questions mainly require extracting the316

attributes of objects, but some of them, especially317

those involving counting, need temporal analysis318

as well. Our dataset extends CLEVRER by Yi et al.319

(2020) with different types of events and multiple320

environments. Counterfactual questions require321

understanding what would happen if one of the ob-322

jects was removed from the scene. Exclusive to323

CRAFT, some Counterfactual questions (“Will the324

small gray circle enter the basket if any of the other325

objects are removed?”) require multiple counter-326

factual simulations to be explored. As an extension327

to Counterfactual questions, Causal questions re-328

quire grasping what is happening inside both the329

original video and the counterfactual video. In330

other words, models must infer whether an object331

is causing or enabling an event or preventing it332

by comparing the input video and the counterfac-333

tual video that should be simulated somehow. In334

the question text, the affector and the patient ob-335

jects are explicitly specified. Some questions even336

include multiple patients. In particular, distinct337

causative verbs are mapped onto these three classes338

of causal events (Table 1).339

In order to have a better understanding of the340

differences between Enable, Cause, and Prevent341

questions, one should understand the intention of342

the objects. We identify the intention in a simula-343

Table 1: The list of causative verbs and their categories
which are considered in CRAFT.

Category Verbs

Prevent prevent, keep, hold, block, hinder
Enable enable, help, allow
Cause cause, stimulate, trigger

tion by examining the initial velocity of the corre- 344

sponding object. Inspired by the recent findings in 345

cognitive linguistics (Beller et al., 2020), we take 346

having a velocity as an indication of an intention. 347

In that regard, an affector can only enable a pa- 348

tient to complete the task if the patient is originally 349

intended to do it but fails without the affector. Sim- 350

ilarly, an affector can only cause a patient to do 351

the task if the patient is not intended to execute it. 352

Moreover, an affector can only prevent a patient 353

from completing the task if the patient is intended 354

to do it and succeeds without the affector. 355

Variations in Natural Language. In datasets that 356

involve a natural language component, it is crucial 357

to have language variety. To improve this property, 358

CRAFT data generation scripts for questions, first 359

allow multiple paraphrased versions of the same 360

text to be generated to represent the same task. For 361

a question sample, a paraphrased version of the 362

corresponding task is chosen randomly by filling 363

the object templates. Second, CRAFT enables syn- 364

onyms of certain words to be integrated. We choose 365

a base word and create its synonyms inside the 366

CRAFT context. Similar to question paraphrases, 367

the base word is replaced by a synonym randomly 368

at run-time. All synonyms including the base word 369

have equal chance to be included in the question 370

text. This is handled by word suffixes and verb 371

conjugations by preserving English grammar. 372

Bias Reduction. CRAFT contains simulations 373

from different scenes to increase the variety in the 374

visual domain. This makes reducing the dataset bi- 375

ases difficult because of the multiplicity in the num- 376

ber of the domains (textual and visual). Our data 377

generation process enforces different simulation 378

and task pairs to have uniform answer distributions 379

while trying to keep overall answer distribution as 380

uniform as possible. Our aim is to make it harder 381

for the models to find simple shortcuts by predict- 382

ing the task identifier, the simulation identifier, or 383

both, instead of understanding the scene dynam- 384

ics and the question. Figure 4 shows the answer 385

distributions for the question categories in CRAFT. 386
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Figure 4: Distribution of question types and answers
in CRAFT. Innermost layer represents the distribution
of the questions for different task categories. Middle
layer illustrates the distribution of the answer types for
each task category. Outermost layer represents the dis-
tribution of answers for each answer type.

4 Experimental Analysis387

In this section, we evaluate the performances of a388

wide range of baseline models on CRAFT. We also389

analyze how these performances relate with that390

of humans in understanding physical interactions391

between the objects and the environment.392

4.1 Baselines393

In our experiments, we consider several weak and394

strong baselines including some state-of-the-art vi-395

sual reasoning approaches.396

Heuristic models either perform random guesses397

or follow simple rules. Random model uniformly398

samples a random answer from the full answer399

space, whereas Answer Type Based Random400

model (AT-Random) makes random guesses based401

on the answer type (e.g. color, shape, boolean).402

Most Frequent Answer baseline (MFA) employs403

a simple heuristics and answers all the questions404

by using the most frequent answer in the training405

split. Answer Type based Most Frequent An-406

swer model (AT-MFA) performs the same heuris-407

tics by taking the answer types into account similar408

to AT-Random baseline.409

Text-only models ignore simulations, and do not410

use any visual information related to input sim-411

ulations. LSTM model is another image-blind412

baseline that processes the question with an LSTM413

(Hochreiter and Schmidhuber, 1997), and then pre-414

dicts an answer to a given question ignoring the415

visual input. In addition to the LSTM baseline, 416

we experimented with BERT (Devlin et al., 2019) 417

by using the CLS token embedding as question 418

representation to predict answers. 419

LSTM-CNN baseline integrates both visual and 420

textual cues by extending the LSTM model to 421

additionally consider the features extracted from 422

the a pretrained ResNet-18 model. We evaluate 423

both (non-temporal) single frame and video ver- 424

sions. In the former, each video is encoded by 425

taking into account either the first frame or the last 426

frame, which are referred to as LSTM-CNN-F and 427

LSTM-CNN-L, respectively. The video version, 428

which we call LSTM-CNN-V, processes down- 429

sampled videos by using R3D (Tran et al., 2018) 430

as visual feature extractor. All these three base- 431

lines concatenate the extracted visual and textual 432

features to obtain a combined representation of the 433

video and the question pair, feeding it to a mul- 434

tilayer perceptron network (MLP), followed by a 435

linear layer generating scores for the answers. 436

Memory, Attention, and Composition (MAC) 437

model (Hudson and Manning, 2018) is a compo- 438

sitional visual reasoning model. It decomposes 439

the reasoning task into a series of attention-guided 440

processing steps by isolating memory and control 441

functions from each other. The attention mecha- 442

nism considers visual and textual features jointly, 443

which leads to robust encodings of the question and 444

the image. Similar to the LSTM-CNN baselines, 445

MAC-F looks at only the first frame, and MAC- 446

L only pays attention to the last frame. MAC-V 447

baseline extends the MAC model by considering 448

the video frames sampled from the given video 449

as the visual input. Like LSTM-CNN-V model, 450

MAC-V also processes videos using R3D. Unlike 451

its non-temporal variations, MAC-F and MAC-L, 452

where the read unit originally has spatial attention 453

over the image, this temporal variation has a read 454

unit that applies spatio-temporal attention over the 455

features extracted from the entire video. 456

TVQA is a multi-stream state-of-the-art video QA 457

neural model (Lei et al., 2018). To adapt this model 458

to our dataset, we only use its video stream branch 459

and omit the answer input by generating scores 460

for the entire answer vocabulary. In parallel with 461

other baselines, TVQA model also extracts visual 462

features by using ResNet-18. Different from the 463

original implementation, our TVQA implementa- 464

tion uses LSTM networks with 256 units, uses a 465

MLP network with 2 layers. Unlike the original 466
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model, we do not use GloVe word embeddings467

(Pennington et al., 2014) to make a fair comparison468

with the remaining baseline models.469

TVQA+ is another multi-stream video question an-470

swering model, which is built upon TVQA model.471

In contrast to TVQA, TVQA+ uses convolutional472

networks as sequence encoder instead of LSTM473

networks, replaces GloVe word embeddings with474

BERT embeddings (Devlin et al., 2019), and imple-475

ments a span proposal / prediction mechanism. We476

do not implement span proposal mechanism, and477

omit using BERT embeddings to compare TVQA+478

with others more fairly as we disable GloVe embed-479

dings in TVQA. Our TVQA+ implementation uses480

256 hidden units in all submodules throughout the481

network, and it generates answer scores by feeding482

weighted average of fused multi-modal simulation-483

question representation into a linear layer.484

G-SWM is a recenty proposed object-centric485

model (Lin et al., 2020), which is originally de-486

signed for simulating possible futures in a scene487

consisting of multiple dynamic objects. It mod-488

els each frame in a video by two different latent489

variables encoding object and context features. We490

modify G-SWM to solve the reasoning tasks in491

CRAFT. In particular, our version of G-SWM takes492

in video frames resized to 64 × 64 pixels and ex-493

tracts an object-centric representation of the input494

video thorough object and context features. These495

latent codes are then combined and concatenated496

with the LSTM-based question representation, sim-497

ilar to LSTM-CNN model, just before the final498

classifier layer.499

LSTM-D and BERT-D are oracle text-only base-500

lines, which take the natural language description501

of the causal graph of the simulation (see Figure 3)502

as input in addition to the question. We generate503

these descriptions from simplified versions of the504

causal graphs by only considering the Start, End,505

Collision and Enter Basket events, and excluding506

those involving certain static objects (walls, plat-507

forms, ramps, and static balls) which are not men-508

tioned in the questions. We first sort the events by509

their timestamps and concatenate a template-based510

description of each event to generate the summary.511

LSTM-D uses two separate LSTM networks pro-512

cess the question and the description, and then a513

linear layer predicts the answer for the input ques-514

tion/description pair. BERT-D extends the BERT515

baseline by using the descriptions as prefixes for516

the input questions.517

4.2 Results 518

In Table 2, we present the performances of the 519

tested models for each question type, considering 520

both the easy and the hard settings explained in 521

Section 3. As expected, the text only models per- 522

form the worst as they completely ignore the visual 523

information present in the videos. Moreover, the 524

performances of the single frame methods are typi- 525

cally lower than those of the video models, showing 526

the importance of the temporal aspect of the ques- 527

tions that a single snapshot of the simulation does 528

not carry enough information. 529

As can be seen from Table 2, there exists a sub- 530

stantial gap between the model performances in the 531

easy and hard settings of CRAFT. Not surprisingly, 532

this is not the case for the text-based baselines, in 533

which it is not important whether a scene layout 534

has been seen before during training or not. Over- 535

all, these results suggest that our tested multimodal 536

methods are not able to generalize well to previ- 537

ously unseen scenes. They cannot fully detect the 538

physical interactions and localize the events taking 539

place in a video. 540

It is worth mentioning that the performances of 541

the models vary between different question types in 542

CRAFT. Out of the three question types, the mod- 543

els consistently perform poorly on the Descriptive 544

questions in that the accuracies are around 23.5%- 545

48.12% in the easy setting and 23.2%-42.9% in 546

the hard setting. The reason behind this could be 547

attributed to the variety of the answers in this task 548

as it includes questions covering both count, shape, 549

and color of the object(s) (see Figure 4). On the 550

other hand, the accuracies of the models on the 551

remaining questions types are between 32.7% and 552

61.4% in the easy setting, and 30.1% and 56.2% in 553

the hard setting. 554

LSTM-CNN-V baseline does reasonably well 555

on the easy setting, but its generalization capabil- 556

ity on the hard setting is not that good. TVQA 557

performs worse than the LSTM-CNN-V baseline, 558

which shows that it is more tailor-fit to video ques- 559

tion answering about TV clips, and its performance 560

degrades when it does not have access to subtitles 561

or the related concept detectors. Notably, MAC 562

variants perform the best in the hard setting. MAC 563

model, together with G-SWM, is a more expressive 564

model specifically designed for compositional vi- 565

sual reasoning. G-SWM, however, performs poorly 566

in our experiments, which might be because the 567

scenes in CRAFT usually consist of many objects, 568
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Table 2: Performances of the tested models on the test set of the CRAFT dataset on easy and hard splits. C, CF,
and D columns stand for Causal, Counterfactual, and Descriptive tasks, respectively.

Model
Easy Setting Hard Setting

C CF D All C CF D All

Heuristic

Random 5.95 5.25 5.09 5.24 5.37 4.62 5.08 4.98
AT-Random 36.67 44.34 33.95 37.47 33.67 46.06 34.16 37.52
MFA 32.68 43.28 23.53 30.72 30.09 43.94 23.20 29.98
AT-MFA 49.62 47.21 37.57 42.03 49.28 47.17 36.55 41.12

Text-only
LSTM 53.04 53.14 38.29 44.69 52.51 56.24 37.25 44.52
BERT 48.43 50.59 37.55 42.90 49.28 52.12 36.52 42.52

LSTM-CNN-F 53.11 55.23 44.86 49.07 48.07 48.12 35.54 40.64
Single LSTM-CNN-L 54.86 55.63 43.12 48.42 49.86 54.44 38.88 44.66
Frame MAC-F 53.18 52.88 44.40 48.10 51.86 53.5 42.12 46.55

MAC-L 49.97 53.08 44.54 47.83 50.21 53.8 41.46 46.05

LSTM-CNN-V 54.65 61.42 48.12 53.01 51.86 54.89 41.36 46.50
MAC-V 53.95 57.72 44.51 49.74 51.22 54.71 42.94 47.31

Video TVQA 53.67 55.57 36.89 44.71 51.00 55.12 36.31 43.46
TVQA+ 54.86 60.02 40.22 48.11 51.00 55.12 39.09 45.12
G-SWM 53.54 55.29 37.05 44.69 51.00 48.68 37.77 42.47

Oracle
LSTM-D 51.71 55.89 63.22 59.53 51.93 56.00 59.57 57.64
BERT-D 68.44 80.05 93.41 86.20 66.33 79.34 91.30 84.90

C CF D All
Human 71.27 83.07 87.45 76.60

thus making it harder to learn decomposing a video569

into objects and background. This may be resolved570

by switching to a two-stage framework, in which571

G-SWM is pretrained first to improve its decompo-572

sition ability. For now, we left this as future work.573

To support our thesis that CRAFT is designed574

to be easy for humans, but difficult for machines,575

we also conducted a small human study. We asked576

481 randomly selected CRAFT questions to 101577

adults. We divided the questions into 5 parts with578

counterbalancing and every participant took one of579

the parts randomly. Among these 94 participants,580

we only considered the ones who responded at least581

75% of the questions, which corresponds to 56582

people. As can be seen from Table 2, there is a583

large gap (> 29%) between human subjects and584

neural baselines in the hard setting.585

Our oracle models, LSTM-D and BERT-D, per-586

form better than all the tested neural models. Inter-587

estingly, the performance of BERT-D is very close588

to human performance, even slightly outperform-589

ing humans for the descriptive questions. Clearly,590

to excel in this task, a model must capture the in-591

teractions between the dynamic objects with each592

other and with the environment.593

5 Conclusion 594

We have presented CRAFT, a new VQA dataset 595

to test causal reasoning capabilities of the current 596

models. Motivated by the Force Dynamics Theory, 597

which highlights distinct causative verbs, CRAFT 598

requires models to perform temporal and causal rea- 599

soning and even to imagine alternative versions of 600

the events occurring in videos. Our results demon- 601

strate that, while human adults can reason about the 602

physical interactions between objects, these ques- 603

tions cannot be solved reliably by current models. 604

At present, there is substantial room for improve- 605

ment compared to humans. In our experiments, we 606

did not report the results of recent neuro-symbolic 607

models, e.g. NS-DR (Yi et al., 2020). Such ap- 608

proaches are very compelling and worth pursuing, 609

but they currently require extra object-level annota- 610

tions. Another exciting direction is to test object- 611

centric methods other than G-SWM. However, it 612

seems that they might require extra pretraining or 613

self-supervised objectives, as explored by Ding 614

et al. (2020). We believe that developing more ef- 615

fective models for CRAFT is an exciting research 616

direction for video QA systems to mimic humans 617

in causal reasoning about forces and interactions. 618
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A Appendix 821

A.1 Functional Modules 822

CRAFT questions are represented with functional programs. Input and output types for our functional 823

modules are listed in Table A.1. Lists of all functional modules are also provided in Tables A.2-A.6. 824

Table A.1: Input and output types of functional modules in CRAFT.

Type Description

Object A dictionary holding static and dynamic attributes of an object
ObjectSet A list of unique objects
ObjectSetList A list of ObjectSet
Event A dictionary holding information of a specific event
EventSet A list of unique events
EventSetList A list of EventSet
Size A tag indicating the size of an object
Color A tag indicating the color of an object
Shape A tag indicating the shape of an object
Integer Standard integer type
Bool Standard boolean type
BoolList A list of Bool

Table A.2: Input functional modules in CRAFT.

Module Description Input Types Output Type

SceneAtStart Returns the attributes of all objects
at the start of the simulation

None ObjectSet

SceneAtEnd Returns the atttributes of all objects
at the end of the simulation

None ObjectSet

StartSceneStep Returns 0 None Integer

EndSceneStep Returns -1 None Integer

Events Returns all of the events happening
between the start and the end of the
simulation

None EventSet
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Table A.3: Output functional modules in CRAFT.

Module Description Input Types Output Type

QueryColor Returns the color of the input object Object Color

QueryShape Returns the shape of the input object Object Shape

Count Returns the size of the input list ObjectSet Integer

Exist Returns true if the input list is not
empty

ObjectSet / EventSet Bool

AnyFalse Returns true if there is at least one
false in a boolean list

BoolList Bool

AnyTrue Returns true if there is at least one
true in a boolean list

BoolList Bool

IsBefore Returns whether the first event hap-
pened before the second event

(Event, Event) Bool

IsAfter Returns whether the first event hap-
pened after the second event

(Event, Event) Bool

Table A.4: Object filter functional modules in CRAFT.

Module Description Input Types Output Type

FilterColor Returns the list of objects which
have a color same with the input
color

(ObjectSet, Color) ObjectSet

FilterShape Returns the list ofobjects which have
a shape same with the input shape

(ObjectSet, Shape) ObjectSet

FilterSize Returns the list of objects which
have a size same with the input size

(ObjectSet, Size) ObjectSet

FilterDynamic Returns the list of dynamic objects
from an object set

ObjectSet ObjectSet

FilterMoving Returns the list of objects that are in
motion at the step specified

(ObjectSet, Integer) ObjectSet

FilterStationary Returns the list of objects that are
stationary at the step specified

(ObjectSet, Integer) ObjectSet
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Table A.5: Event filter functional modules in CRAFT.

Module Description Input Types Output Type

FilterEvents Returns the list of events about a spe-
cific object from an event set

(EventSet, Object) EventSet

FilterCollision Returns the list of collision events
from an event set

EventSet EventSet

FilterCollisionWithDynamics Returns the list of collision events
involving dynamic objects

EventSet EventSet

FilterCollideGround Returns the list of collision events
involving the ground

EventSet EventSet

FilterCollideGroundList Returns the list of collision event
sets involving the ground

EventSetList EventSetList

FilterCollideBasket Returns the list of collision events
involving the basket

EventSet EventSet

FilterCollideBasketList Returns the list of collision event
sets involving the basket

EventSetList EventSetList

FilterEnterBasket Returns the In Basket events EventSet EventSet

FilterEnterBasketList Returns the list of In Basket event
sets

EventSetList EventSetList

FilterBefore Returns the events from the input list
that happens before input event

(EventSet, Event) EventSet

FilterAfter Returns the events from the input list
that happened after input event

(EventSet, Event) EventSet

FilterFirst Returns the first event EventSet Event

FilterLast Returns the last event EventSet Event

EventPartner Returns the object interacting with
the input object through the specified
event

(Event, Object) Object

FilterObjectsFromEvents Returns the objects from the speci-
fied events

EventSet ObjectSet

FilterObjectsFromEventsList Returns the list of object sets from a
list of event sets

EventSetList ObjectSetList

GetCounterfactEvents Returns the event list if a specific
object is removed from the scene

Object EventSet

GetCounterfactEventsList Returns the counterfactual event list
for all objects in an object set

ObjectSet EventSetList
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Table A.6: Auxiliary functional modules in CRAFT.

Module Description Input Types Output Type

Unique Returns the single object from the
input list, if the list has multiple ele-
ments returns INVALID

ObjectSet Object

Intersect Applies the set intersection opera-
tion

(ObjectSet, ObjectSet) ObjectSet

IntersectList Intersects an object set with multiple
object sets

(ObjectSetList, ObjectSet) ObjectSetList

Difference Applies the set difference operation (ObjectSet, ObjectSet) ObjectSet

ExistList Applies the Exist operation to each
item in the input list returning a
boolean list

ObjectSetList / EventSetList BoolList

AsList Returns an object set containing a
single element specified by the input
object

Object ObjectSet

A.2 Example Programs825

Here we provide example functional programs for some of the sample questions provided in Figure 1,826

which are used to extract the correct answers using our simulation environment. Figures A.1 to A.5827

provide functional program samples that are designed for CRAFT descriptive, counterfactual, cause,828

enable, and prevent questions, respectively.829

Question: "How many objects fall to the ground?"

Count (
FilterDynamic (

FilterObjectsFromEvents (
FilterCollideGround (

Events ()
)

)
)

)

Question: "After entering the basket, does the small yellow square collide with other objects?"

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Var SmallYellowCubeEvents = FilterEvents ( Events(), QueryObject )
Exist (

FilterAfter (
FilterCollisionWithDynamics ( SmallYellowCubeEvents ),

FilterFirst (
FilterEnterBasket ( SmallYellowCubeEvents )

)
)

)
)

Figure A.1: Example programs for descriptive questions.
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Question: "How many objects fall to the ground if the small yellow box is removed?"

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Count (

FilterObjectsFromEvents (
FilterCollideGround (

GetCounterfactEvents ( QueryObject )
)

)
)

Question: "Will the small gray box enter the basket if any of the other objects are removed?"

Var QueryObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Gray"), "Cube" )
Var OtherDynamicObjects = Difference ( FilterDynamic ( SceneAtStart() ), AsList ( QueryObject ) )
AnyTrue (

ExistList (
IntersectList (

FilterObjectsFromEventsList (
FilterEnterBasketList (

GetCounterfactEventsList ( OtherDynamicObjects )
)

),
AsList (

QueryObject
)

)
)

)

Figure A.2: Example programs for counterfactual questions.

Question: "Does the small brown sphere cause the tiny yellow box to enter the basket?"

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Brown"), “Circle” )
Var PatientObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Exist (

FilterStationary (
Intersect (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
)

),
AsList ( PatientObject )

),
StartSceneStep()

)
)

Figure A.3: Example program for cause questions.
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Question: "How many objects does the small gray block enable to enter the basket?"

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Gray"), "Cube" )
Count (

FilterMoving (
Difference (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
)

),
AsList ( AffectorObject )

),
StartSceneStep()

)
)

Figure A.4: Example program for enable questions.

Question: "Does the small yellow square prevent the tiny brown circle from entering the basket?"

Var AffectorObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Yellow"), "Cube" )
Var PatientObject = FilterShape ( FilterColor ( FilterSize ( SceneAtStart(), "Small" ) , "Brown"), "Circle" )
Exist (

FilterMoving (
Intersect (

Difference (
FilterObjectsFromEvents (

FilterEnterBasket (
GetCounterfactEvents (

AffectorObject
)

)
),
FilterObjectsFromEvents (

FilterEnterBasket (
Events()

)
)

),
AsList ( PatientObject )

),
StartSceneStep()

)
)

Figure A.5: Example program for prevent questions.
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A.3 Implementation Details 830

Unless otherwise specified, all learnable baselines are trained with Adam optimizer (Kingma and Ba, 831

2014) with default hyperparameters. LSTM and single-frame models are trained for 75 epochs with a 832

batch size of 64. All temporal baselines are trained for 30 epochs with a batch size of 32. G-SWM is 833

trained for 100 epochs using a batch size of 64 with Adam optimizer and a learning rate of 0.0001. Input 834

videos are downsampled at 5 frames per second (fps), and their frames are resized to 112× 112 pixels. 835

We used mixed precision strategy to train baselines more efficiently on Tesla V100 and Tesla P4 GPUs, 836

except TVQA+, which is trained using full precision. Training single-frame models takes 2 minutes and 837

training video models approximately 20-30 minutes per epoch. All word embeddings have a length of 256 838

and are randomly initialized. Pretrained convolutional video and image encoders are jointly trained with 839

the rest of the networks. We use negative log-likelihood loss function for all models where the models 840

predict a distribution over the set of possible answers. All models are tuned based on their performances 841

on the validation split. 842

A.4 Detailed Quantitative Results 843

In this subsection, we share the quantitative results in more detail for different scenes and question types. 844

Table A.7 describes the subcategories of the question types exist in CRAFT, together with a sample 845

question. Table A.8 and Table A.9 present the results per scene on the easy and hard splits, respectively, 846

and Table A.10 and A.11 respectively demonstrate the results per question type on the easy split and hard 847

splits. 848

Table A.7: The question subcategories in the CRAFT dataset.

Subcategory Description Sample Question

C/A Yes/no questions that require causal reasoning Does the Z C S cause the Z2 C2 S2 to enter the
basket?

C/N Causal reasoning questions with counting What is the number of objects that the Z C S
enables to enter the basket?

CF/N Counterfactual reasoning with counting How many objects enter the basket if the Z C
S is removed?

CF/O Counterfactual yes/no questions Will the Z2 C2 S2 enter the basket if the Z C S
is removed?

D/2Q Descriptive counting questions about the last
state

How many objects are moving when the video
ends?

D/C Descriptive questions about the object color What color is the object the Z C S last collides
with?

D/C-T Temporal yes/no questions with respect to a
certain event

Before falling to the ground, does the Z C S
collide with other objects?

D/N-T Counting with respect to some reference event Before falling to the ground, does the Z C S
collide with other objects?

D/N-V Descriptive counting questions about events How many objects fall to the ground?

D/S Descriptive questions about the object shape What is the shape of the object the Z C S first
collides with?

D/TO Temporal yes/no questions about events with
respect to an object

Does the Z C S enter the basket before the Z2
C2 S2 does?
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Table A.8: Performances of the tested models per scene on the test set of the easy split of CRAFT.

PPPPPPPPPModel
Scene

Text-only
LSTM 43.52 41.17 45.39 40.36 46.12 42.03 39.29 34.90 44.47 44.91 47.95 50.14 44.20 52.50 39.92 46.15 43.06 45.28 48.47 42.84

BERT 46.58 39.78 45.76 38.32 46.12 42.78 38.35 35.91 45.29 41.51 41.79 45.07 39.11 48.50 40.12 43.08 40.51 43.44 45.86 42.84

LSTM-CNN-F 51.34 48.69 51.22 40.14 52.71 47.59 47.37 37.25 46.72 46.29 57.69 48.22 44.20 53.62 43.99 52.75 50.00 50.21 53.22 52.69

Single LSTM-CNN-L 48.41 51.46 45.20 41.27 59.30 49.87 50.00 32.21 52.46 47.17 54.10 47.95 45.89 53.95 44.20 45.71 40.97 47.53 49.39 54.63

Frame MAC-F 47.43 48.39 50.28 41.72 50.78 50.89 47.93 44.63 48.57 45.28 51.28 47.67 40.94 53.95 45.62 50.77 45.83 47.95 50.92 50.90

MAC-L 44.99 45.31 50.85 42.63 56.59 51.39 51.13 43.96 46.72 41.38 52.05 45.21 42.11 53.73 47.45 47.69 48.61 48.52 51.69 51.34

LSTM-CNN-V 49.51 54.38 55.74 45.12 63.57 49.62 52.82 40.60 50.82 51.82 55.90 57.12 48.89 60.29 52.75 54.51 55.79 47.81 52.15 58.06

MAC-V 48.41 45.93 54.43 42.18 56.59 44.56 48.12 36.58 50.82 48.43 52.56 51.10 48.50 52.17 49.29 52.53 57.87 49.65 48.16 54.48

Video TVQA 44.38 47.16 42.00 38.10 46.12 41.77 43.98 30.20 45.08 44.03 44.10 48.36 42.89 56.84 41.34 44.62 40.05 43.86 46.17 45.22

TVQA+ 48.41 51.77 48.78 37.87 45.74 44.81 52.26 34.23 48.36 45.53 47.44 49.86 46.02 53.17 46.84 50.33 45.14 44.85 50.61 55.52

G-SWM 47.56 40.55 46.70 37.64 44.96 44.05 41.73 33.22 46.11 41.76 45.64 50.68 45.24 48.61 42.16 43.74 43.52 45.28 46.32 46.57

Oracle
LSTM-D 58.92 51.15 61.96 59.86 67.83 65.82 54.89 61.41 63.52 58.99 66.15 61.64 54.11 60.73 62.32 60.88 61.81 56.28 54.91 61.94

BERT-D 83.62 79.72 89.27 88.89 96.12 86.58 84.77 92.62 81.15 85.28 88.72 94.52 82.40 82.65 91.04 85.27 88.89 85.05 86.04 85.67

Human 76.71 30.77 95.00 80.43 96.30 85.71 86.36 77.59 75.34 62.50 61.54 61.11 88.14 67.05 85.71 72.46 56.25 77.88 76.92 91.11

Table A.9: Performances of the tested models per scene on the test set of the hard split of CRAFT.

PPPPPPPPPModel
Scene

Text-only
LSTM 45.09 43.34 45.47 44.96

BERT 43.82 41.84 42.28 42.76

LSTM-CNN-F 43.23 32.77 46.76 44.48

Single LSTM-CNN-L 45.48 43.15 45.38 45.53

Frame MAC-F 50.66 44.24 45.99 47.34

MAC-L 47.83 44.00 47.56 46.39

LSTM-CNN-V 44.11 47.41 49.25 44.67

MAC-V 45.92 45.40 52.6 46.55

Video TVQA 44.70 42.91 43.05 43.72

TVQA+ 39.37 43.01 50.42 47.44

G-SWM 40.99 43.1 41.8 43.14

Oracle
LSTM-D 67.32 54.82 56.91 55.62

BERT-D 87.59 83.40 85.73 84.47

Human 61.54 88.14 56.25 77.88
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Table A.10: Performances of the tested models per question type on the test set of the easy split of CRAFT.

Model C/A C/N CF/N CF/O D/2Qs D/C D/C-T D/N-T D/N-V D/S D/TO All

Text-only
LSTM 54.92 49.81 30.51 56.68 37.02 14.16 51.48 33.66 31.30 34.52 53.48 44.69

BERT 46.96 50.95 32.84 53.36 27.34 13.62 48.89 34.15 32.22 37.50 55.08 42.90

LSTM-CNN-F 54.14 51.34 36.02 58.24 30.80 31.98 54.53 35.12 31.30 46.68 52.58 49.07

Single LSTM-CNN-L 55.80 53.24 37.29 58.50 31.14 28.79 52.64 38.05 29.63 44.64 52.58 48.42

Frame MAC-F 54.03 51.72 36.23 55.49 35.99 32.76 52.84 35.12 31.11 44.98 53.83 48.10

MAC-L 50.61 48.85 37.08 55.59 32.53 35.10 53.05 38.54 30.74 43.28 53.65 47.83

LSTM-CNN-V 53.81 56.11 43.43 64.24 34.95 17.20 68.95 55.12 42.96 42.01 50.80 53.01

MAC-V 54.81 52.48 43.22 59.99 33.22 16.19 63.22 53.17 37.22 36.56 54.72 49.74

Video TVQA 54.81 51.72 33.26 59.07 29.07 11.75 50.54 37.56 30.19 33.76 52.23 44.71

TVQA+ 57.02 51.15 42.58 62.74 27.68 11.83 55.85 44.39 38.33 35.46 54.37 48.11

G-SWM 54.25 52.29 29.66 59.30 32.53 8.56 53.13 36.59 29.44 34.44 47.95 44.69

Oracle
LSTM-D 52.82 49.81 41.74 58.10 31.83 68.09 68.37 41.46 41.11 73.72 53.12 59.53

BERT-D 70.28 65.27 69.07 81.77 46.37 96.42 97.90 72.20 85.56 98.21 96.61 86.20

Human 78.22 57.78 78.57 77.65 60.00 87.04 83.93 91.67 93.75 96.30 100.00 76.60

Table A.11: Performances of the tested models per question type on the test set of the hard split of CRAFT.

Model C/A C/N CF/N CF/O D/2Qs D/C D/C-T D/N-T D/N-V D/S D/TO All

Text-only
LSTM 53.81 50.54 25.73 60.45 41.61 11.68 51.27 29.74 26.88 32.18 53.80 44.52

BERT 48.93 49.82 28.16 55.43 34.67 11.75 49.36 24.57 26.68 36.28 49.86 42.52

LSTM-CNN-F 48.93 46.76 27.67 50.94 39.78 15.74 45.87 30.60 29.25 30.68 50.14 40.64

First LSTM-CNN-L 50.60 48.74 25.24 58.47 31.39 19.44 50.87 30.17 23.52 37.07 53.12 44.66

Frame MAC-F 53.81 48.92 28.16 57.00 40.88 34.15 48.73 29.74 27.47 38.86 54.76 46.55

MAC-L 51.19 48.74 27.67 57.40 36.50 30.38 51.15 30.17 26.09 37.50 52.17 46.05

LSTM-CNN-V 52.86 50.36 32.77 57.94 42.70 14.56 61.29 28.88 29.45 33.55 48.91 46.50

MAC-V 51.43 50.90 35.19 57.40 47.81 16.33 62.24 37.07 31.62 33.26 52.04 47.31

Video TVQA 53.57 47.12 27.18 58.98 32.12 12.79 50.28 24.14 25.69 32.54 51.63 43.46

TVQA+ 53.10 47.84 29.61 58.64 25.91 13.90 58.23 27.16 24.90 31.82 52.17 45.12

G-SWM 50.60 51.62 31.07 51.11 37.59 12.86 50.72 25.86 26.48 36.78 52.72 42.47

Oracle
LSTM-D 51.31 52.88 37.62 58.54 44.16 63.49 64.27 31.90 34.58 67.82 52.31 57.64

BERT-D 68.93 62.41 52.18 83.09 49.27 98.37 96.10 53.88 67.00 97.77 93.75 84.90

Human 78.22 57.78 78.57 77.65 60.00 87.04 83.93 91.67 93.75 96.30 100.00 76.60
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A.5 Additional Examples849

Figure A.6 provide some additional sample CRAFT questions together with the oracle descriptions and850

the baseline model predictions.851

Description: Start. Large green circle collides 
with small green circle. Large blue circle 
collides with small green circle. Large green 
circle enters basket. Large green circle collides 
with basket. End.

Question: Are there any collisions between 
objects before the big green circle goes into the 
basket?
Answer: Yes

Predictions:
LSTM: Yes / BERT: No
Single Frame Models: No
Video Models: Yes / TVQA+: No
LSTM-D: No / BERT-D: Yes

Description: Start. Large gray circle collides 
with large gray triangle. Large cyan circle 
collides with large gray circle. Large gray circle 
enters basket. Large gray circle collides with 
basket. End.

Question: What color is the object the large 
gray triangle last collides with?
Answer: Gray

Predictions:
LSTM: Green / BERT: Yellow
Single Frame Models: Gray
LSTM-CNN-V: Green / MAC-V: Yellow
TVQA: Yellow / TVQA+: Blue / G-SWM: Brown
Oracle Models: Gray

Description: Start. Small blue circle collides 
with small cyan circle. End.

Question: How many objects are in motion at 
the end of the video?
Answer: 1

Predictions:
LSTM: 2 / BERT: 1
LSTM-CNN-F: 2 / LSTM-CNN-L: 3
MAC-F: 1 / MAC-L: 0 / MAC-V: 1
LSTM-CNN-V: 0 / TVQA: 0 / TVQA+: 2 
G-SWM: 1 / LSTM-D: 0 / BERT-D: 2

Description: Start. Small red circle collides 
with large cyan triangle. Small red cube 
collides with large brown circle. Small red 
circle collides with ground. Large brown circle 
collides with basket. Large brown circle enters 
basket. Large brown circle collides with 
basket. End.

Question: How many objects hit the floor if 
the large brown circle is removed?
Answer: 1

Predictions:
LSTM: 0 / BERT: 1
Single Frame Models: 0
LSTM-CNN-V: 1 / MAC-V: 1 / TVQAs: 2
G-SWM: 1 / LSTM-D: 0 / BERT-D: 1

Description: Start. Small red circle collides 
with large yellow triangle. Small brown circle 
enters basket. Small brown circle collides 
with basket. End.

Question: There is a small brown circle, 
does it block the tiny red circle from getting 
into the bucket?
Answer: No

Predictions:
Text-only Models: Yes
LSTM-CNN-F: Yes / LSTM-CNN-L: Yes
MAC-F: No / MAC-L: No
Video Models: No / TVQA+: Yes
Oracle Models: No

Description: Start. Small yellow circle 
collides with large yellow circle. Small purple 
triangle collides with ground. End.

Question: There is a big yellow circle, does 
it hinder the tiny yellow circle from entering 
the container?
Answer: No

Predictions:
Text-only Models: Yes
LSTM-CNN-F: No / LSTM-CNN-L: Yes 
MAC-F: No / MAC-L: Yes / MAC-V: No
LSTM-CNN-V: No / TVQAs: Yes
G-SWM: No / LSTM-D: No / BERT-D: Yes

Description: Start. Large cyan triangle collides 
with small blue cube. Small blue cube collides 
with ground. Small yellow cube enters basket. 
Small red cube collides with ground. Small 
yellow cube collides with basket. Small red cube 
collides with ground. Small yellow cube collides 
with basket. End.

Question: Are there any collisions between 
objects after the small blue block hits the floor?
Answer: No

Predictions:
Text-only Models: No
Single Frame Models: Yes
LSTM-CNN-V: No / MAC-V: No / TVQAs: Yes
G-SWM: Yes / Oracle Models: No

Description: Start. Large purple circle collides 
with small brown circle. Small cyan circle collides 
with large purple circle. Small cyan circle collides 
with ground. End.

Question: Will the large purple circle fall to the 
floor if any of the other objects are removed?
Answer: Yes

Predictions:
LSTM: No / BERT: Yes
LSTM-CNN-F: No / LSTM-CNN-L: Yes
MAC-F: No / MAC-L: No / MAC-V: Yes
LSTM-CNN-V: Yes /  TVQAs: Yes
G-SWM: No / Oracle Models: No

Figure A.6: Example model predictions. The examples on the left belong to the descriptive category and the right
column contains examples from the other categories.

A.6 Human Evaluation852

The data from human participants were collected online via Qualtrics. The approximate time to complete853

the study was between 20 and 30 minutes. Participants did not take any bonus or wage. They attended the854

study voluntarily. The personal identifying information was not obtained. There were not an expected855

negative outcomes of the study on participants, but they could leave the study whenever they want.856

For the human evaluation, the participants saw the videos and multiple choice questions. The instruction857

page that was given to participants is shown in Figure A.7.858
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Powered by Qualtrics A

       Thank you for participating in this study about causal reasoning. Your contribution to
this study will help us investigate how people understand causal relations.

        In this study, you will be asked to answer questions related to the videos that include
interactions between some moving or stationary objects. For example, two objects might
collide with each other, one may enter the basket or hit to the ground. The questions will
be about:

- Counting the number of objects took place in a certain event (consider only dynamic
objects unless stated otherwise). Example: "How many objects enter the container?"
- Whether an object help/hinder a specific event.  Example: "There is a big green block,
does it allow the small blue circle to enter the basket?"
- Imagining what would happen if a certain event occurs. Example: "If any of the other
objects are removed, will the small yellow triangle go into the bucket?"
- Questioning the shape/color of an object. Example: "What color is the object the tiny
brown triangle last collides with?"

 

 
       We ask you to watch each video first and then answer the question related to the video
later. You can re-watch each video until you move to the question related to the video. For
the yes/no questions, you are only allowed to select "yes" or "no". Descriptive questions
relating to the number of objects should be answered with sliding the bar. 

       When you are ready, you can click "Next" to start answering the next question.

Survey Completion
0% 100%

→

Figure A.7: The information form of the human evaluation study.
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B Datasheet for CRAFT859

This document is prepared in accordance with the860

guideline suggested in Datasheets for Datasets861

(Gebru et al., 2020), the most updated version can862

be found here.863

864

Motivation
For what purpose was the dataset created?865

CRAFT was created in order to facilitate research866

on understanding and closing the gap between the867

capabilities of human intelligence and artificial868

systems in grasping and reasoning about physical869

relationships between different objects in an870

environment through vision and language.871

872

Composition

What do the instances that comprise the dataset873

represent (e.g., documents, photos, people,874

countries)?875

The instances of CRAFT include a video, a876

question about the video, its answer, the functional877

program which is the ground-truth process that is878

used to answer the question, the states of dynamic879

objects and static scene elements at the start of the880

simulation and at the end of the simulations, causal881

graph of the events occurred in the video, variation882

videos which are created removing each dynamic883

object one by one, and lastly the states of objects884

and causal graphs for variation videos.885

886

How many instances are there in total (of each887

type, if appropriate)?888

CRAFT contains 58K video and question pairs that889

are generated from 10K videos from 20 different890

virtual environments.891

892

Does the dataset contain all possible instances893

or is it a sample (not necessarily random) of in-894

stances from a larger set?895

Please refer to Section 3 of the main paper for a896

detailed description of the sampling procedure897

used to generate questions.898

899

What data does each instance consist of?900

The video and question-answer pairs are used901

as the basic components for this visual question902

answering study. The question about the video is903

asked to an artificial model or a human subject.904

The test containing multimodal inputs question the905

capabilities of the subject in understanding and906

reasoning about physical relationships occurring 907

in an environment. We use other instances in the 908

dataset to find answers to questions automatically 909

and share them for further analysis if required. 910

Functional programs can run on object states 911

and causal graphs to find the answer. Moreover, 912

they can be integrated in training process for 913

different models as well. Similarly, if ground-truth 914

information regarding object states and causal 915

graphs can also be extracted. Furthermore, some 916

questions require counterfactual analysis that we 917

define using variation videos formally. In order 918

to evaluate effect of an object on the scene, we 919

remove it an re-simulate the environment. We 920

share instances regarding variations for further 921

analysis. 922

923

Is there a label or target associated with each 924

instance? If so, please provide a description. 925

Each instance consists of a ground-truth answer 926

associated with the question about a dynamic 927

scene. 928

929

Is any information missing from individual 930

instances? We do not provide object-level 931

segmentation maps. 932

933

Are relationships between individual instances 934

made explicit (e.g., users’ movie ratings, social 935

network links)? 936

Instances are generated from 20 different scene 937

layouts with some randomization. 938

939

Are there recommended data splits (e.g., train- 940

ing, development/validation, testing)? 941

We share CRAFT with two different split alter- 942

natives that we call easy and hard settings. Both 943

of the alternatives contain non-overlapping train, 944

validation, and test set. There are 20 distinct 945

layouts from which we created our virtual scenes 946

for CRAFT. In easy setting, each split might 947

contain images from all of the scene layouts. On 948

the other hand, in hard setting, train, validation, 949

and test splits contain images from 12, 4, and 4 950

of the 20 layouts, respectively. That is, in the 951

hard setting, the corresponding test samples are 952

generated from unseen scene layouts. 953

954

Are there any errors, sources of noise, or redun- 955

dancies in the dataset? 956

The process that we followed to make sure that 957
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the answers are not affected much with the slight958

perturbations to the initial states is described in959

Section 3 of the main paper.960

961

Is the dataset self-contained, or does it link to or962

otherwise rely on external resources (e.g., web-963

sites, tweets, other datasets)?964

The dataset is self-contained.965

966

Does the dataset contain data that might be con-967

sidered confidential (e.g., data that is protected968

by legal privilege or by doctor patient confiden-969

tiality, data that includes the content of individ-970

uals non-public communications)?971

No.972

973

Does the dataset contain data that, if viewed974

directly, might be offensive, insulting, threaten-975

ing, or might otherwise cause anxiety?976

No.977

978

Does the dataset relate to people?979

No.980

981

Does the dataset identify any subpopulations982

(e.g., by age, gender)?983

No.984

985

Is it possible to identify individuals (i.e., one986

or more natural persons), either directly or in-987

directly (i.e., in combination with other data)988

from the dataset?989

No.990

991

Does the dataset contain data that might be992

considered sensitive in any way (e.g., data that993

reveals racial or ethnic origins, sexual orien-994

tations, religious beliefs, political opinions or995

union memberships, or locations; financial or996

health data; biometric or genetic data; forms997

of government identification, such as social se-998

curity numbers; criminal history)?999

No.1000

1001

Collection Process

How was the data associated with each instance1002

acquired?1003

All instances of CRAFT are generated automati-1004

cally using a physics engine.1005

1006

What mechanisms or procedures were used to 1007

collect the data (e.g., hardware apparatus or 1008

sensor, manual human curation, software pro- 1009

gram, software API)? 1010

We use Box2D physics simulator (Catto, 2010) to 1011

create our visual scenes, extract object states and 1012

causal graphs. Furthermore, we extend the work 1013

CLEVR (Johnson et al., 2017) to create CRAFT 1014

questions and answers. 1015

1016

If the dataset is a sample from a larger set, what 1017

was the sampling strategy (e.g., deterministic, 1018

probabilistic with specific sampling probabili- 1019

ties)? 1020

The dataset is generated from scratch and it does 1021

not depend on an already existing dataset. 1022

1023

Who was involved in the data collection process 1024

(e.g., students, crowdworkers, contractors) and 1025

how were they compensated (e.g., how much 1026

were crowdworkers paid)? 1027

Authors prepared the scripts which create visual 1028

and textual data automatically. 1029

1030

Over what time-frame was the data collected? 1031

Data generation scripts ran about 51 hours to 1032

create 9917 videos and 57524 questions. 1033

1034

Does the dataset contain all possible instances? 1035

Although we provide all instances for this version 1036

of CRAFT, it is possible for anyone to create new 1037

samples by running the scripts provided in our 1038

code repository. 1039

1040

If the dataset is a sample, then what is the pop- 1041

ulation? 1042

Please refer to Section 3 of the main paper for a 1043

detailed description of the sampling procedure 1044

used to generate questions. 1045

1046

It is possible the enlarge CRAFT by running 1047

existing scripts to obtain huge amount of data 1048

because of the randomness existing in video 1049

generation process as described in the paper. New 1050

dynamic objects, static scene elements, events can 1051

also be created to enrich CRAFT. Moreover, it is 1052

also possible to add new types of scene layouts 1053

and question categories or types. For example, 1054

CRAFT focuses on mostly physical reasoning. 1055

It is possible to add tasks questioning different 1056

capabilities of Humans such as spatial reasoning, 1057
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planning, and so on. There is actually no limit for1058

creating datasets similar to CRAFT.1059

1060

Did you collect the data from the individuals in1061

question directly, or obtain it via third parties1062

or other sources (e.g., websites)?1063

The data from human participants for the user1064

study were collected online via Qualtrics.1065

1066

Were the individuals in question notified about1067

the data collection? Yes.1068

1069

Did the individuals in question consent to the1070

collection and use of their data? The participants1071

of the user study are asked to sign a consent form.1072

1073

Has an analysis of the potential impact of the1074

dataset and its use on data subjects (e.g., a data1075

protection impact analysis)been conducted?1076

Not applicable.1077

1078

Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the1079

data done(e.g., discretization or bucketing, tok-1080

enization, part-of-speech tagging, SIFT feature1081

extraction, removal of instances, processing of1082

missing values)?1083

There were two preprocessing steps applied to1084

the dataset. Firstly, after creating a video and1085

question-answer pair, we applied simple pertur-1086

bations by changing certain values of dynamic1087

objects slightly at the start of the simulation1088

and re-simulated the video. If the answer to the1089

question is changed in any of the variations, then1090

we removed the video and the question pair from1091

the dataset. Secondly, in order to obtain a dataset1092

which is uniform as possible in all dimensions,1093

we removed video and question pairs whose an-1094

swers are dominant after the first perturbation filter.1095

1096

By collecting this dataset, we had the chance1097

to observe that although the artificial systems1098

have demonstrated incredible progress in the1099

past decade, there are still areas that should be1100

investigated for them. Therefore, CRAFT can be1101

considered as a sample dataset which will facilitate1102

the research in closing the gap between humans1103

and artificial systems.1104

1105

Preprocessing steps achieve two main aims of1106

ours. Firstly, we wanted to eliminate video and1107

question pairs whose answers are inconsistent 1108

between different variations of the same video with 1109

small perturbations. We observed that these were 1110

the cases for which humans subjects had some 1111

troubles. Secondly, we wanted to make CRAFT 1112

difficult enough for machine reasoning models by 1113

aiming at avoiding learning shortcuts by selecting 1114

the most frequent answers in answering questions. 1115

The second step of preprocessing procedure mostly 1116

achieves this aim. 1117

1118

Was the “raw” data saved in addition to the pre- 1119

processed/cleaned/labeled data (e.g., to support 1120

unanticipated future uses)? 1121

The raw data were saved, but were not made public. 1122

1123

Is the software used to preprocess/clean/label 1124

the instances available? 1125

We plan to publicly release the software used to 1126

generate the scenes and the questions. 1127

1128

Distribution
Has the dataset been used for any tasks al- 1129

ready? 1130

We have used the dataset to train unimodal and 1131

multimodal baselines described in the paper. 1132

1133

Is there a repository that links to any or all pa- 1134

pers or systems that use the dataset? 1135

Links to the related papers will be listed in the 1136

project website. 1137

1138

What (other) tasks could the dataset be used 1139

for? 1140

Since the sample videos in our dataset include 1141

interactions between the objects themselves and 1142

the environment, they can be used in problems such 1143

as future state prediction and video generation. 1144

1145

Is there anything about the composition of the 1146

dataset or the way it was collected and pre- 1147

processed/cleaned/labeled that might impact fu- 1148

ture uses? 1149

No. 1150

1151

Are there tasks for which the dataset should not 1152

be used? 1153

No. 1154

1155
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Uses
Will the dataset be distributed to third parties1156

outside of the entity (e.g., company, institution,1157

organization) on behalf of which the dataset1158

was created?1159

CRAFT will be made publicly available at the1160

project website.1161

1162

How will the dataset will be distributed (e.g.,1163

tarball on website, API, GitHub)?1164

The dataset will be available through our project1165

website and GitHub. Large dataset files will be1166

stored on Zenodo.1167

1168

What license (if any) is it distributed under?1169

The dataset will be released under MIT license.1170

1171

Maintenance
Who is supporting/hosting/maintaining the1172

dataset?1173

CRAFT will be supported and maintained by the1174

prime authors.1175

1176

Will the dataset be updated (e.g., to correct1177

labeling errors, add new instances, delete in-1178

stances)?1179

Extending CRAFT in different directions is1180

planned. All versions of CRAFT will be available1181

at the project website.1182
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