
Published as a conference paper at ICLR 2020

STRUCTURED OBJECT-AWARE PHYSICS PREDICTION
FOR VIDEO MODELING AND PLANNING

Jannik Kossen∗1, Karl Stelzner∗2, Marcel Hussing3, Claas Voelcker3 & Kristian Kersting2
1Department of Physics and Astronomy, Heidelberg University
1kossen@stud.uni-heidelberg.de
2,3Department of Computer Science, TU Darmstadt
2{stelzner,kersting}@cs.tu-darmstadt.de
3{marcel.hussing,c.voelcker}@stud.tu-darmstadt.de

ABSTRACT

When humans observe a physical system, they can easily locate objects, under-
stand their interactions, and anticipate future behavior. For computers, however,
learning such models from videos in an unsupervised fashion is an unsolved re-
search problem. In this paper, we present STOVE, a novel state-space model
for videos, which explicitly reasons about objects and their positions, velocities,
and interactions. It is constructed by combining an image model and a dynam-
ics model in compositional manner and improves on previous work by reusing the
dynamics model for inference, accelerating and regularizing training. STOVE pre-
dicts videos with convincing physical behavior over thousands of timesteps, out-
performs previous unsupervised models, and even approaches the performance of
supervised baselines. We further demonstrate the strength of our model as a sim-
ulator for sample efficient model-based control in a task with heavily interacting
objects.

1 INTRODUCTION

Obtaining structured knowledge about the world from unstructured, noisy sensory input is a key
challenge in artificial intelligence. Of particular interest is the problem of identifying objects from
visual input and understanding their interactions. One longstanding approach to this is the idea of
vision as inverse graphics (Grenander, 1976), which postulates a data generating graphics process
and phrases vision as posterior inference in the induced distribution. Despite its intuitive appeal,
vision as inference has remained largely intractable in practice due to the high-dimensional and
multimodal nature of the inference problem. Recently, however, probabilistic models based on deep
neural networks have made promising advances in this area. By composing conditional distributions
parameterized by neural networks, highly expressive yet structured models have been built. At the
same time, advances in general approximate inference, particularly variational techniques, have put
the inference problem for these models within reach (Zhang et al., 2019).

Based on these advances, a number of probabilistic models for unsupervised scene understanding in
single images have recently been proposed. The structured nature of approaches such as AIR (Es-
lami et al., 2016), MONet (Burgess et al., 2019), or IODINE (Greff et al., 2019) provides two key
advantages over unstructured image models such as variational autoencoders (Kingma & Welling,
2014) or generative adversarial networks (Goodfellow et al., 2014). First, it allows for the specifica-
tion of inductive biases, such as spatial consistency of objects, which constrain the model and act as
regularization. Second, it enables the use of semantically meaningful latent variables, such as object
positions, which may be used for downstream reasoning tasks.

Building such a structured model for videos instead of individual images is the natural next chal-
lenge. Not only could such a model be used in more complex domains, such as reinforcement learn-
ing, but the additional redundancy in the data can even simplify and regularize the object detection
problem (Kosiorek et al., 2018). To this end, the notion of temporal consistency may be leveraged

∗Both authors contributed equally to this work.

1

Published as a conference paper at ICLR 2020

STsample

Object
SPN

BG
SPN

GenerativeIn
fe
re
nc
e

predict σ fix σ

Dynamics Model – GNN

Image Model – SuPAIRInference

Legend

Generative

LSTM

Axes

Tim
e

Computation

to next
timestep

from
previous
timestep

Input
Image

Figure 1: Overview of STOVE’s architecture. (Center left) At time t, the input image xt is processed
by an LSTM in order to obtain a proposal distribution over object states q(zt | xt). (Top) A separate
proposal q(zt | zt−1) is obtained by propagating the previous state zt−1 using the dynamics model.
(Center) The multiplication of both proposal distributions yields the final variational distribution
q(zt | zt−1, xt). (Right) We sample zt from this distribution to evaluate the generative distribution
p(zt | zt−1)p(xt | zt), where p(zt | zt−1) shares means – but not variances – with q(zt | zt−1), and
p(xt | zt) can be obtained by direct evaluation of xt in the sum-product networks. Not shown is
the dependence on xt−1 in the inference routine which allows for the inference of velocities. (Best
viewed in color.)

as an additional inductive bias, guiding the model to desirable behavior. In situations where inter-
actions between objects are prevalent, understanding and explicitly modeling these interactions in
an object-centric state-space is valuable for obtaining good predictive models (Watters et al., 2017).
Existing works in this area, such as SQAIR (Kosiorek et al., 2018), DDPAE (Hsieh et al., 2018), R-
NEM (Van Steenkiste et al., 2018), and COBRA (Watters et al., 2019) have explored these concepts,
but have not demonstrated realistic long term video predictions on par with supervised approaches
to modeling physics.

To push the limits of unsupervised learning of physical interactions, we propose STOVE, a struc-
tured, object-aware video model. With STOVE, we combine image and physics modeling into a
single state-space modelwhich explicitly reasons about object positions and velocities. It is trained
end-to-end on pure video data in a self-supervised fashion and learns to detect objects, to model
their interactions, and to predict future states and observations. To facilitate learning via variational
inference in this model, we provide a novel inference architecture, which reuses the learned gen-
erative physics model in the variational distribution. As we will demonstrate, our model generates
convincing rollouts over hundreds of time steps, outperforms other video modeling approaches, and
approaches the performance of the supervised baseline which has access to the ground truth object
states.

Moving beyond unsupervised learning, we also demonstrate how STOVE can be employed for
model-based reinforcement learning (RL). Model-based approaches to RL have long been viewed

2

Published as a conference paper at ICLR 2020

zt−1 zt

xt−1 xt

at−1 rt

zot,velo

zot,size

zot,pos

zot,latent

q(zot,pos | zt−1) · q(zot,pos | xt)

q(zot,velo | zt−1) · q(zot,velo | xt, xt−1)

q(zot,size | xt)

q(zot,latent | zt−1)

Figure 2: (Left) Depiction of the graphical model underlying STOVE. Black arrows denote
the generative mechanism and red arrows the inference procedure. The variational distribution
q(zt | zt−1, xt, xt−1) is formed by combining predictions from the dynamics model p(zt | zt−1)
and the object detection network q(zt | xt). For the RL domain, our approach is extended by action
conditioning and reward prediction. (Right) Components of zot and corresponding variational distri-
butions. Note that the velocities are estimated based on the change in positions between timesteps,
inducing a dependency on xt−1.

as a potential remedy to the often prohibitive sample complexity of model-free RL, but obtaining
learned models of sufficient quality has proven difficult in practice (Sutton & Barto, 2011). By con-
ditioning state predictions on actions and adding reward predictions to our dynamics predictor, we
extend our model to the RL setting, allowing it to be used for search or planning. Our empirical evi-
dence shows that an actor based on Monte-Carlo tree search (MCTS) (Coulom, 2007) on top of our
model is competitive to model-free approaches such as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), while only requiring a fraction of the samples.

We proceed by introducing the two main components of STOVE: a structured image model and a
dynamics model. We show how to perform joint inference and training, as well as how to extend the
model to the RL setting. We then present our experimental evaluation, before touching on further
related work and concluding.

2 STRUCTURED OBJECT-AWARE VIDEO MODELING

We approach the task of modeling a video with frames x1, . . . , xT from a probabilistic perspective,
assuming a sequence of Markovian latent states z1, . . . , zT , which decompose into the properties of
a fixed number O of objects, i.e. zt = (z1t , . . . , z

O
t). In the spirit of compositionality, we propose

to specify and train such a model by explicitly combining a dynamics prediction model p(zt+1 | zt)
and a scene model p(xt | zt). This yields a state-space model, which can be trained on pure video
data, using variational inference and an approximate posterior distribution q(z | x). Our model
differs from previous work that also follows this methodology, most notably SQAIR and DDPAE,
in three major ways:

• We propose a more compact architecture for the variational distribution q(z | x), which
reuses the dynamics model p(zt+1 | zt), and avoids the costly double recurrence across
time and objects which was present in previous work.

• We parameterize the dynamics model using a graph neural network, taking advantage of
the decomposed nature of the latent state z.

• Instead of treating each zot as an arbitrary latent code, we explicitly reserve the first six slots
of this vector for the object’s position, size, and velocity, each in x, y direction, and use this
information for the dynamics prediction task. We write zot = (zot,pos, z

o
t,size, z

o
t,velo, z

o
t,latent).

We begin by briefly introducing the individual components before discussing how they are combined
to form our state-space model. Fig. 1 visualises the computational flow of STOVE’s inference and
generative routines, Fig. 2 (left) specifies the underlying graphical model.

3

Published as a conference paper at ICLR 2020

2.1 OBJECT-BASED MODELING OF IMAGES USING SUM-PRODUCT ATTEND-INFER-REPEAT

A variety of object-centric image models have recently been proposed, many of which are derivatives
of attend-infer-repeat (AIR) (Eslami et al., 2016). AIR postulates that each image consists of a set of
objects, each of which occupies a rectangular region in the image, specified by positional parameters
zowhere = (zopos, z

o
size). The visual content of each object is described by a latent code zowhat. By

decoding zowhat with a neural network and rendering the resulting image patches in the prescribed
location, a generative model p(x | z) is obtained. Inference is accomplished using a recurrent neural
network, which outputs distributions over the latent objects q(zo | x), attending to one object at a
time. AIR is also capable of handling varying numbers of objects, using an additional set of latent
variables.

Sum-Product Attend-Infer-Repeat (SuPAIR) (Stelzner et al., 2019) utilizes sum-product networks
(SPNs) instead of a decoder network to directly model the distribution over object appearances. The
tractable inference capabilities of the SPNs used in SuPAIR allow for the exact and efficient com-
putation of p(x | zwhere), effectively integrating out the appearance parameters zwhat analytically.
This has been shown to drastically accelerate learning, as the reduced inference workload signifi-
cantly lowers the variance of the variational objective. Since the focus of SuPAIR on interpretable
object parameters fits our goal of building a structured video model, we apply it as our image model
p(xt | zt). Similarly, we use a recurrent inference network as in SuPAIR to model q(zt,where | xt).
For details on SuPAIR, we refer to Stelzner et al. (2019).

2.2 MODELING PHYSICAL INTERACTIONS USING GRAPH NEURAL NETWORKS

In order to successfully capture complex dynamics, the state transition distribution p(zt+1 | zt) =
p(z1t+1, . . . , z

O
t+1 | z1t , . . . , zOt) needs to be parameterized using a flexible, non-linear estimator. A

critical property that should be maintained in the process is permutation invariance, i.e., the output
should not depend on the order in which objects appear in the vector zt. This type of function is
well captured by graph neural networks, cf. (Santoro et al., 2017), which posit that the output should
depend on the sum of pairwise interactions between objects. Graph neural networks have been
extensively used for modeling physical processes in supervised scenarios (Battaglia et al., 2016;
2018; Sanchez-Gonzalez et al., 2018; Zhou et al., 2018).

Following this line of work, we build a dynamics model of the basic form

ẑot+1,pos, ẑ
o
t+1,velo, ẑ

o
t+1,latent = f

g(zot) + ∑
o′ 6=o

α(zot , z
o′

t)h(zot , z
o′

t)

 (1)

where f, g, h, α represent functions parameterized by dense neural networks. α is an attention mech-
anism outputting a scalar which allows the network to focus on specific object pairs. We assume a
constant prior over the object sizes, i. e., ẑot+1,size = zot,size. The full state transition distribution is
then given by the Gaussian p(zot+1 | zot) = N (ẑot+1, σ), using a fixed σ.

2.3 JOINT STATE-SPACE MODEL

Next, we assemble a state-space model from the two separate models for image modeling and
physics prediction. The interface between the two components are the latent positions and velocities.
The scene model infers them from images and the physics model propagates them forward in time.
Combining the two yields the state-space model p(x, z) = p(z0)p(x0 | z0)

∏
t p(zt | zt−1)p(xt |

zt). To initialize the state, we model p(z0, z1) using simple uniform and Gaussian distributions.
Details are given in Appendix C.3.

Our model is trained on given video sequences x by maximizing the evidence lower bound (ELBO)
Eq(z|x) [log p(x, z)− log q(z | x)]. This requires formulating a variational distribution q(z | x) to
approximate the true posterior p(z | x). A natural approach is to factorize this distribution over
time, i.e. q(z | x) = q(z0 | x0)

∏
t q(zt | zt−1, xt), resembling a Bayesian filter. The distribution

q(z0 | x0) is then readily available using the inference network provided by SuPAIR.

The formulation of q(zt | zt−1, xt), however, is an important design decision. Previous work,
including SQAIR and DDPAE, have chosen to unroll this distribution over objects, introducing a

4

Published as a conference paper at ICLR 2020

Figure 3: Visualisation of object positions from the real environment and predictions made by our
model, SQAIR, and the supervised baseline, for the billiards and gravity environment after the
first 8 frames were given. Our model achieves realistic behaviour, outperforms the unsupervised
baselines, and approaches the quality of the supervised baseline, despite being fully unsupervised.
For full effect, the reader is encouraged to watch animated versions of the sequences in repository
github.com/jlko/STOVE. (Best viewed in color.)

costly double recurrence over time and objects, requiring T · O sequential recurrence steps in total.
This increases the variance of the gradient estimate, slows down training, and hampers scalability.
Inspired by Becker-Ehmck et al. (2019), we avoid this cost by reusing the dynamics model for the
variational distribution. First, we construct the variational distribution q(zot,pos | zot−1) by slightly ad-
justing the dynamics prediction p(zot,pos | zot−1), using the same mean values but separately predicted
standard deviations. Together with an estimate for the same object by the object detection network
q(zot,pos | xt), we construct a joint estimate by multiplying the two Gaussians and renormalizing,
yielding another Gaussian:

q(zot,pos | zt−1, xt) ∝ q(zot,pos | zt−1) · q(zot,pos | xt). (2)

Intuitively, this results in a distribution which reconciles the two proposals. A double recurrence
is avoided since q(zt | xt) does not depend on previous timesteps and may thus be computed in
parallel for all frames. Similarly, q(zt | zt−1) may be computed in parallel for all objects, leading
to only T + O sequential recurrence steps total. An additional benefit of this approach is that the
information learned by the dynamics network is reused for inference — if q(zt | xt, zt−1) were
just another neural network, it would have to essentially relearn the environment’s dynamics from
scratch, resulting in a waste of parameters and training time. A further consequence is that the
image likelihood p(xt | zt) is backpropagated through the dynamics model, which has been shown
to be beneficial for efficient training (Karl et al., 2017; Becker-Ehmck et al., 2019). The same
procedure is applied to reconcile velocity estimates from the two networks, where for the image
model, velocities zot,velo are estimated from position differences between two consecutive timesteps.
The object scales zot,scale are inferred solely from the image model. The latent states zot,latent increase
the modelling capacity of the dynamics network, are initialised to zero-mean Gaussians, and do
not interact with the image model. This then gives the inference procedure for the full latent state
zot = (zot,pos, z

o
t,size, z

o
t,velo, z

o
t,latent), as illustrated in Fig. 2 (right).

Despite its benefits, this technique has thus far only been used in environments with a single object
or with known state information. A challenge when applying it in a multi-object video setting is to
match up the proposals of the two networks. Since the object detection RNN outputs proposals for
object locations in an indeterminate order, it is not immediately clear how to find the corresponding
proposals from the dynamics network. We have, however, found that a simple matching procedure
results in good performance: For each zt, we assign the object order that results in the minimal
difference of ||zt,pos−zt−1,pos||, where || · || is the Euclidean norm. The resulting Euclidean bipartite
matching problem can be solved in cubic time using the classic Hungarian algorithm (Kuhn, 1955).

2.4 CONDITIONING ON ACTIONS

In reinforcement learning, an agent interacts with the environment sequentially through actions at to
optimize a cumulative reward r. To extend STOVE to operate in this setting, we make two changes,
yielding a distribution p(zt, rt | zt−1, at−1).
First, we condition the dynamics model on actions at, enabling a conditional prediction based on
both state and action. To keep the model invariant to the order of the input objects, the action
information is concatenated to each object state zot−1 before they are fed into the dynamics model.
The model has to learn on its own which of the objects in the scene are influenced by the actions.
To facilitate this, we have found it helpful to also concatenate appearance information from the

5

http://github.com/jlko/STOVE

Published as a conference paper at ICLR 2020

Figure 4: Mean test set performance of our model compared to baselines. Our approach (STOVE)
clearly outperforms all unsupervised baselines and is almost indistinguishable from the supervised
dynamics model on the billiards task. (Top) Mean squared errors over all pixels in the video pre-
diction setting (the lower, the better). (Bottom) Mean Euclidean distances between predicted and
true positions (the lower, the better). All position and pixel values are in [0, 1]. In all experiments,
the first eight frames are given, all remaining frames are then conditionally generated. The shading
indicates the max and min values over multiple training runs with identical hyperparameters. (Best
viewed in color.)

extracted object patches to the object state. While this patch-wise code could, in general, be obtained
using some neural feature extractor, we achieved satisfactory performance by simply using the mean
values per color channel when given colored input.

The second change to the model is the addition of reward prediction. In many RL environments, re-
wards depend on the interactions between objects. Therefore, the dynamics prediction architecture,
presented in Eq. 1, is well suited to also predict rewards. We choose to share the same encoding
of object interactions between reward and dynamics prediction and simply apply two different out-
put networks (f in Eq. 1) to obtain the dynamics and reward predictions. The total model is again
optimized using the ELBO, this time including the reward likelihood p(rt | zt−1, at−1).

3 EXPERIMENTAL EVIDENCE

In order to evaluate our model, we compare it to baselines in three different settings: First, pure
video prediction, where the goal is to predict future frames of a video given previous ones. Second,
the prediction of future object positions, which may be relevant for downstream tasks. Third, we
extend one of the video datasets to a reinforcement learning task and investigate how our physics
model may be utilized for sample-efficient, model-based reinforcement learning. With this paper,
we also release a PyTorch implementation of STOVE.1

3.1 VIDEO AND STATE MODELING

Inspired by Watters et al. (2017), we consider grayscale videos of objects moving according to
physical laws. In particular, we opt for the commonly used bouncing billiards balls dataset, as well
as a dataset of gravitationally interacting balls. For further details on the datasets, see Appendix D.
When trained using a single GTX 1080 Ti, STOVE converges after about 20 hours. As baselines, we
compare to VRNNs (Chung et al., 2015), SQAIR (Kosiorek et al., 2018), and DDPAE (Hsieh et al.,
2018). To allow for a fair comparison, we fix the number of objects predicted by SQAIR and DDPAE

1 The code can be found in the GitHub repository github.com/jlko/STOVE. It also contains animated ver-
sions of the videos predicted by our model and the baselines.

6

http://github.com/jlko/STOVE

Published as a conference paper at ICLR 2020

0 10
Frame number

0.00

0.01

0.02

0.03

0.04

E
ne

rg
y

0 100
Frame number

0 70000
Frame number

STOVE
SQAIR
DDPAE
real

Figure 5: Comparison of the kinetic energies of the rollouts predicted by the models, computed based
on position differences between successive states. Only STOVE’s predictions reflect the conserva-
tion of total kinetic energy in the billiards data set. This is a quantitive measure of the convincing
physical behavior in the rollout videos. (Left, center) Averages are over 300 trajectories from the
test set. Shaded regions indicate one standard deviation. STOVE correctly predicts trajectories with
constant energy, whereas SQAIR and DDPAE quickly diverge. (Right) Rolling average over a sin-
gle, extremely long-term run. We conjecture that STOVE predicts physical behavior indefinitely.
(Best viewed in color.)

to the correct amount. Furthermore, we compare to a supervised baseline: Here, we consider the
ground truth positions and velocities to be fully observed, and train our dynamics model on them,
resembling the setting of Battaglia et al. (2016). Since our model needs to infer object states from
pixels, this baseline provides an upper bound on the predictive performance we can hope to achieve
with our model. In turn, the size of the performance gap between the two is a good indicator of
the quality of our state-space model. We also report the results obtained by combining our image
model with a simple linear physics model, which linearly extrapolates the objects’ trajectories. Since
VRNN does not reason about object positions, we only evaluate it on the video prediction task.
Similarly, the supervised baseline does not reason about images and is considered for the position
prediction task only. For more information on the baselines, see Appendix E.

Fig. 4 depicts the reconstruction and prediction errors of the various models: Each model is given
eight frames of video from the test set as input, which it then reconstructs. Conditioned on this input,
the models predict the object positions or resulting video frames for the following 92 timesteps.
The predictions are evaluated on ground truth data by computing the mean squared error between
pixels and the Euclidean distance between positions based on the best available object matching.
We outperform all baselines on both the state and the image prediction task by a large margin.
Additionally, we perform strikingly close to the supervised model.

For the gravitational data, the prediction task appears easier, as all models achieve lower errors
than on the billiards task. However, in this regime of easy prediction, precise access to the object
states becomes more important, which is likely the reason why the gap between our approach and
the supervised baseline is slightly more pronounced. Despite this, STOVE produces high-quality
rollouts and outperforms the unsupervised baselines.

Table 1 underlines these results with concrete numbers. We also report results for three ablations
of STOVE, which are obtained by (a) training a separate dynamics networks for inference with the
same graph neural network architecture, instead of sharing weights with the generative model as
argued for in section 2.3, (b) no longer explicitly modelling velocities zvelo in the state, and (c)
removing the latent state variables zlatent. The ablation study shows that each of these components
contributes positively to the performance of STOVE. See Appendix F for a comparison of training
curves for the ablations.

Fig. 3 illustrates predictions on future object positions made by the models, after each of them was
given eight consecutive frames from the datasets. Visually, we find that STOVE predicts physically
plausible sequences over long timeframes. This desirable property is not captured by the rollout er-
ror: Due to the chaotic nature of our environments, infinitesimally close initial states diverge quickly
and a model which perfectly follows the ground truth states cannot exist. After this divergence has

7

Published as a conference paper at ICLR 2020

Table 1: Predictive performance of our approach, the baselines, and ablations (lower is better, best
unsupervised values are bold). STOVE outperforms all unsupervised baselines and is almost indis-
tinguishable from the supervised model on the billiards task. The values are computed by summing
the prediction errors presented in Fig. 4 in the time interval t ∈ [9, 18], i.e., the first ten predicted
timesteps. In parentheses, standard deviations across multiple training runs are given.

Billiards (pixels) Billiards (positions) Gravity (pixels) Gravity (positions)

STOVE (ours) 0.240(14) 0.418(20) 0.040(3) 0.142(7)
VRNN 0.526(14) – 0.055(12) –
SQAIR 0.591 0.804 0.070 0.194
DDPAE 0.405 0.482 0.120 0.298
Linear 0.844(5) 1.348(15) 0.196(2) 0.493(4)
Supervised – 0.232(37) – 0.013(2)
Abl: Double Dynamics 0.262 0.458 0.042 0.154
Abl: No Velocity 0.272 0.460 0.053 0.174
Abl: No Latent 0.338 0.050 0.089 0.235

occurred, the rollout error no longer provides any information on the quality of the learned phys-
ical behavior. We therefore turn to investigating the total kinetic energy of the predicted billiards
trajectories. Since the collisions in the training set are fully elastic and frictional forces are not
present, the initial energy should be conserved. Fig. 5 shows the kinetic energies of trajectories pre-
dicted by STOVE and its baselines, computed based on the position differences between consecutive
timesteps. While the energies of SQAIR and DDPAE diverge quickly in less than 100 frames, the
mean energies of STOVE’s rollouts stay constant and are good estimates of the true energy. We have
confirmed that STOVE predicts constant energies – and therefore displays realistic looking behavior
– for at least 100 000 steps. This is in stark contrast to the baselines, which predict teleporting,
stopping, or overlapping objects after less than 100 frames. In the billiards dataset used by us and
the literature, the total energy is the same for all sequences in the training set. See Appendix B for a
discussion of how STOVE handles diverse energies.

3.2 MODEL-BASED CONTROL

To explore the usefulness of STOVE for reinforcement learning, we extend the billiards dataset into
a reinforcement learning task. Now, the agent controls one of the balls using nine actions, which
correspond to moving in one of the eight (inter)cardinal directions and staying at rest. The goal
is to avoid collisions with the other balls, which elastically bounce off of each other, the walls,
and the controlled ball. A negative reward of −1 is given whenever the controlled ball collides
with one of the others. To allow the models to recognize the object controlled by the agents we
now provide it with RGB input in which the balls are colored differently. Starting with a random
policy, we iteratively gather observations from the environment, i. e. sequences of images, actions,
and rewards. Using these, we train our model as described in Sec. 2.4. To obtain a policy based
on our world model, we use Monte-Carlo tree search (MCTS), leveraging our model as a simulator
for planning. Using this policy, we gather more observations and apply them to refine the world
model. As an upper bound on the performance achievable in this manner, we report the results
obtained by MCTS when the real environment is used for planning. As a model-free baseline, we
consider PPO (Schulman et al., 2017), which is a state-of-the-art algorithm on comparable domains
such as Atari games. To explore the effect of the availability of state information, we also run PPO
on a version of the environment in which, instead of images, the ground-truth object positions and
velocities are observed directly.

Learning curves for each of the agents are given in Fig. 6 (left), reported at intervals of 10 000
samples taken from the environment, up to a total of 130 000. For our model, we collect the first
50 000 samples using a random policy to provide an initial training set. After that, the described
training loop is used, iterating between collecting 10 000 observations using an MCTS-based policy
and refining the model using examples sampled from the pool of previously seen observations. After
130 000 samples, PPO has not yet seen enough samples to converge, whereas our model quickly
learns to meaningfully model the environment and thus produces a better policy at this stage. Even
when PPO is trained on ground truth states, MCTS based on STOVE remains comparable.

8

Published as a conference paper at ICLR 2020

10 20 30 40 50 60 70 80 90 100 110 120 130
Real environment samples (x1000)

14

12

10

8

6

4

2

0

C
um

ul
at

iv
e

re
w

ar
d

ov
er

 1
00

 s
te

ps

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

C
um

ul
at

iv
e

re
w

ar
d

af
te

r
co

nv
er

ge
nc

e

MCTS on STOVE (ours)
MCTS on real env
PPO on env state
PPO on env images
Random baseline

Figure 6: Comparison of all models on sample efficiency and final performance. (Left) Mean
cumulative reward over 100 steps on the environment, averaged over 100 environments, using the
specified policy. The shaded regions correspond to one-tenth of a standard deviation. In addition
to the training curves, two constant baselines are shown, one representing a random policy and one
corresponding to the MCTS based policy when using the real environment as a simulator. (Right)
Final performance of all approaches, after training each model to convergence. The shaded region
corresponds to one standard deviation. (Best viewed in color.)

After training each model to convergence, the final performance of all approaches is reported in
Fig. 6 (right). In this case, PPO achieves slightly better results, however it only converges after
training for approximately 4 000 000 steps, while our approach only uses 130 000 samples. After
around 1 500 000 steps, PPO does eventually surpass the performance of STOVE-based MCTS.
Additionally, we find that MCTS on STOVE yields almost the same performance as on the real
environment, indicating that it can be used to anticipate and avoid collisions accurately.

4 RELATED WORK

Multiple lines of work with the goal of video modeling or prediction have emerged recently. Promi-
nently, the supervised modeling of physical interactions from videos has been investigated by
Fragkiadaki et al. (2015), who train a model to play billiards with a single ball. Similarly, graph
neural networks have been trained in a supervised fashion to predict the dynamics of objects from
images (Watters et al., 2017; Sanchez-Gonzalez et al., 2018; Sun et al., 2018; 2019) or ground truth
states (Kipf et al., 2018; Wang et al., 2018; Chang et al., 2017). A number of works learn object
interactions in games in terms of rules instead of continuous dynamics (Guzdial et al., 2017; Ersen
& Sariel, 2014). Janner et al. (2019) show successful planning based on learned interactions, but
assume access to image segmentations. Several unsupervised approaches address the problem by
fitting the parameters of a physics engine to data (Jaques et al., 2019; Wu et al., 2016; 2015). This
necessitates specifying in advance which physical laws govern the observed interactions. In the fully
unsupervised setting, mainly unstructured variational approaches have been explored (Babaeizadeh
et al., 2017; Chung et al., 2015; Krishnan et al., 2015). However, without the explicit notion of ob-
jects, their performance in scenarios with interacting objects remains limited. Nevertheless, unstruc-
tured video models have recently been applied to model-based RL and have been shown to improve
sample efficiency when used as a simulator for the real environment (Oh et al., 2015; Kaiser et al.,
2020).

Only a small number of works incorporate objects into unsupervised video models. Xu et al. (2019)
and Ehrhardt et al. (2018) take non-probabilistic autoencoding approaches to discovering objects in
real-world videos. COBRA (Watters et al., 2019) represents a model-based RL approach based on
MONet, but is restricted to environments with non-interacting objects and only uses one-step search
to build its policy. Closest to STOVE are a small number of probabilistic models, namely SQAIR
(Kosiorek et al., 2018), R-NEM (Van Steenkiste et al., 2018; Greff et al., 2017), and DDPAE (Hsieh
et al., 2018). R-NEM learns a mixture model via expectation-maximization unrolled through time
and handles interactions between objects in a factorized fashion. However, it lacks an explicitly

9

Published as a conference paper at ICLR 2020

structured latent space, and requires noise in the input data to avoid local minima. Both DDPAE
and SQAIR extend the AIR approach to work on videos using standard recurrent architectures.
As discussed, this introduces a double recurrence over objects and time, which is detrimental for
performance. However, SQAIR is capable of handling a varying number of objects, which is not
something we consider in this paper.

5 CONCLUSION

We introduced STOVE, a structured, object-aware model for unsupervised video modeling and plan-
ning. It combines recent advances in unsupervised image modeling and physics prediction into a
single compositional state-space model. The resulting joint model explicitly reasons about object po-
sitions and velocities, and is capable of generating highly accurate video predictions in domains fea-
turing complicated non-linear interactions between objects. As our experimental evaluation shows,
it outperforms previous unsupervised approaches and even approaches the performance and visual
quality of a supervised model.

Additionally, we presented an extension of the video learning framework to the RL setting. Our ex-
periments demonstrate that our model may be utilized for sample-efficient model-based control in a
visual domain, making headway towards a long standing goal of the model-based RL community. In
particular, STOVE yields good performance with more than one order of magnitude fewer samples
compared to the model-free baseline, even when paired with a relatively simple planning algorithm
like MCTS.

At the same time, STOVE also makes several assumptions for the sake of simplicity. Relaxing
them provides interesting avenues for future research. First, we assume a fixed number of objects,
which may be avoided by performing dynamic object propagation and discovery like in SQAIR.
Second, we have inherited the assumption of rectangular object masks from AIR. Applying a more
flexible model such as MONet (Burgess et al., 2019) or GENESIS (Engelcke et al., 2020) may
alleviate this, but also poses additional challenges, especially regarding the explicit modeling of
movement. Finally, the availability of high-quality learned state-space models enables the use of
more sophisticated planning algorithms in visual domains (Chua et al., 2018). In particular, by com-
bining planning with policy and value networks, model-free and model-based RL may be integrated
into a comprehensive system (Buckman et al., 2018).

Acknowledgments. The authors thank Adam Kosiorek for his assistance with the SQAIR experi-
ments and Emilien Dupont for helpful discussions about conservation laws in dynamics models. KK
acknowledges the support of the Rhine-Main universities’ network for “Deep Continuous-Discrete
Machine Learning” (DeCoDeML).

REFERENCES

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey Levine.
Stochastic variational video prediction. In Proceedings of ICLR, 2017.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Proceedings of NeurIPS, pp. 4502–4510,
2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Philip Becker-Ehmck, Jan Peters, and Patrick Van Der Smagt. Switching linear dynamics for varia-
tional bayes filtering. In Proceedings of ICML, 2019.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Proceedings of
NeurIPS, pp. 8224–8234, 2018.

10

Published as a conference paper at ICLR 2020

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
tation. arXiv preprint arXiv:1901.11390, 2019.

Michael Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. In Proceedings of ICLR, 2017.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Proceedings of NeurIPS,
pp. 4754–4765, 2018.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Ben-
gio. A recurrent latent variable model for sequential data. In Proceedings of NeurIPS, pp. 2980–
2988, 2015.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Computers
and Games, pp. 72–83. Springer Berlin Heidelberg, 2007.

Sebastien Ehrhardt, Aron Monszpart, Niloy Mitra, and Andrea Vedaldi. Unsupervised intuitive
physics from visual observations. In Proceedings of ACCV, pp. 700–716, 2018.

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative
scene inference and sampling with object-centric latent representations. In Proceedings of ICLR,
2020.

Mustafa Ersen and Sanem Sariel. Learning behaviors of and interactions among objects through
spatio–temporal reasoning. IEEE TCIAIG, 7(1):75–87, 2014.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hin-
ton, et al. Attend, infer, repeat: Fast scene understanding with generative models. In Proceedings
of NeurIPS, pp. 3225–3233, 2016.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive
models of physics for playing billiards. arXiv preprint arXiv:1511.07404, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of NeurIPS,
pp. 2672–2680, 2014.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems, pp. 6691–6701, 2017.

Klaus Greff, Raphaël Lopez Kaufmann, Rishab Kabra, Nick Watters, Chris Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning
with iterative variational inference. In Proceedings of ICML, 2019.

U. Grenander. Lectures in Pattern Theory: Vol. 2 Pattern Analysis. Springer-Verlag, 1976.

Matthew Guzdial, Boyang Li, and Mark O Riedl. Game engine learning from video. In Proceedings
of IJCAI, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos Niebles. Learning to
decompose and disentangle representations for video prediction. In Proceedings of NeurIPS, pp.
517–526, 2018.

Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn, and
Jiajun Wu. Reasoning about physical interactions with object-centric models. In Proceedings of
ICLR, 2019.

Miguel Jaques, Michael Burke, and Timothy Hospedales. Physics-as-inverse-graphics: Joint unsu-
pervised learning of objects and physics from video. arXiv preprint arXiv:1905.11169, 2019.

11

Published as a conference paper at ICLR 2020

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In Proceedings of ICLR, 2020.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep Variational
Bayes Filters: Unsupervised Learning of State Space Models from Raw Data. In Proceedings of
ICLR, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
ICLR, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of ICLR,
2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In Proceedings of ICML, 2018.

Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer, repeat:
Generative modelling of moving objects. In Proceedings of NeurIPS, pp. 8606–8616, 2018.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1812.08434, 2015.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. In Proceedings of NeurIPS, pp. 2845–2853,
2015.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In Proceedings of ICML, 2018.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Proceedings of NeurIPS, pp. 4967–4976, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Karl Stelzner, Robert Peharz, and Kristian Kersting. Faster attend-infer-repeat with tractable proba-
bilistic models. In Proceedings of ICML, pp. 5966–5975, 2019.

Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Murphy, Rahul Sukthankar, and Cordelia
Schmid. Actor-centric relation network. In Proceedings of ECCV, 2018.

Chen Sun, Abhinav Shrivastava, Carl Vondrick, Rahul Sukthankar, Kevin Murphy, and Cordelia
Schmid. Relational action forecasting. In Proceedings of CVPR, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press,
Cambridge, 2011.

Sjoerd Van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural ex-
pectation maximization: Unsupervised discovery of objects and their interactions. In Proceedings
of ICLR, 2018.

Antonio Vergari, Robert Peharz, Nicola Di Mauro, Alejandro Molina, Kristian Kersting, and Flo-
riana Esposito. Sum-product autoencoding: Encoding and decoding representations using sum-
product networks. In Proceedings of AAAI, 2018.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In Proceedings of ICLR, 2018.

12

Published as a conference paper at ICLR 2020

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. In Proceedings
of NeurIPS, pp. 4539–4547, 2017.

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P Burgess, and Alexander Lerchner.
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven
exploration. arXiv preprint arXiv:1905.09275, 2019.

Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum. Galileo: Perceiving
physical object properties by integrating a physics engine with deep learning. In Proceedings of
NeurIPS, pp. 127–135, 2015.

Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B Tenenbaum, and William T Freeman. Physics
101: Learning physical object properties from unlabeled videos. In Proceedings of BMVC, 2016.

Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T. Freeman, Joshua B. Tenenbaum, and
Jiajun Wu. Modeling parts, structure, and system dynamics via predictive learning. In Proceed-
ings of ICLR, 2019.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
inference. IEEE TPAMI, 2019.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

13

Published as a conference paper at ICLR 2020

A RECONSTRUCTIONS: SPRITES DATA

SuPAIR does not need a latent description of the objects’ appearances. Nevertheless, object recon-
structions can be obtained by using a variant of approximate MPE (most probable explanation) in
the sum-product networks as proposed by Vergari et al. (2018). We follow the AIR approach and
reconstruct each object separately and paste it into the canvas using spatial transformers. Unlike
AIR, SuPAIR explicitly models the background using a separate background SPN. A reconstruction
of the background is also obtained using MPE.

To demonstrate the capabilities of our image model, we also trained our model on a variant of the
gravity data in which the round balls were replaced by a random selection of four different sprites of
the same size. Fig. 7 shows the reconstructions obtained from SuPAIR when trained on these more
complex object shapes.

B STUDY OF ENERGIES

As discussed in Sec. 3.1, the energies of the ground truth data were constant for all sequences during
the training of STOVE. However, initial velocities are drawn from a random normal distribution.
This is the standard procedure of generating the bouncing balls data set as used by previous pub-
lications. Under these circumstances, STOVE does indeed learn to discover and replicate the total
energies of the system, while SQAIR and DDPAE do not. Even if trained on constant energy data,
STOVE does to some extent generalise to unseen energies. Observed velocities and therefore to-
tal energies are highly correlated with the true total kinetic energies of the sequences. However as
prediction starts, STOVE quickly regresses to the energy of the training set, see Fig. 8 (left). If
trained on a dataset of diverse total energies, the performance of modelling sequences of different
energies increases, see Fig. 8 (right). Rollouts now initially represent the true energy of the observed
sequence, although this estimate of the true energy diverges over a time span of around 500 frames
to a constant but wrong energy value. This is an improvement over the model trained on constant
energy data, where the regression to the training data energy happens much quicker within around
10 frames. Note that this does not drastically decrease the visual quality of the rollouts as the change
of total energy over 500 frames is gradual enough. We leave the reliable prediction of rollouts with
physically valid constant energy for sequences of varying energies for future work.

C MODEL DETAILS

Here, we present additional details on the architecture and hyperparameters of STOVE.

C.1 INFERENCE ARCHITECTURE

The object detection network for q(zt,where | xt) is realised by an LSTM (Hochreiter & Schmidhuber,
1997) with 256 hidden units, which outputs the mean and standard deviation of the objects’ two-
dimensional position and size distributions, i.e. q(zot,pos, size | xt) with 2 · 2 · 2 = 8 parameters per
object. Given such position distributions for two consecutive timesteps q(zt−1,pos | xt−1), q(zt,pos |
xt), with parameters µzo

t−1,pos
, σzo

t−1,pos
, µzo

t,pos
, σzo

t,pos
, the following velocity estimate based on the

difference in position is constructed:

q(zot,velo | xt, xt−1) = N (µzo
t,pos
− µzo

t−1,pos
, σ2

zo
t,pos

+ σ2
zo
t−1,pos

).

As described in Sec. 2.3, positions and velocities are also inferred from the dynamics model as
q(zot,pos | zt−1) and q(zot,velo | zt−1). A joint estimate, including information from both image model
and dynamics prediction, is obtained by multiplying the respective distributions and renormalizing.
Since both q-distributions are Gaussian, the normalized product is again Gaussian, with mean and

14

Published as a conference paper at ICLR 2020

R
ea

l
R

ec
on

st
ru

ct
io

n

Figure 7: Reconstructions obtained from our image model when using more varied shapes.

standard deviation are given by

q(zt | xt, zt−1) ∝ q(zt | xt) · q(zt | zt−1)
= N (zt;µt,i, σ

2
t,i) · N (zt;µt,d, σ

2
t,d)

= N (zt;µt, σ
2
t)

µt =
σ2
t,d µt,i + σ2

t,i µt,d

σ2
t,d + σ2

t,i

1

σ2
t

=
1

σ2
t,d

+
1

σ2
t,i

,

where we relax our notation for readability zt ∈ [zot,pos, z
o
t,velo] and the indices i and d refer to the

parameters obtained from the image and dynamics model. This procedure is applied independently
for the positions and velocities of each object.

For zot,latent, we choose dimension 12, such that a full state zot = (zot,pos, z
o
t,size, z

o
t,velo, z

o
t,latent) is

18-dimensional.

C.2 GRAPH NEURAL NETWORK

The dynamics prediction is given by the following series of transformations applied to each input
state of shape (batch size,number of objects, l), where l = 16, since currently, size
information is not propagated through the dynamics prediction.

• S1: Encode input state with linear layer [l, 2l].

• S2: Apply linear layer [2l, 2l] to S1 followed by ReLU non-linearity.

• S3: Apply linear layer [2l, 2l] to S2 and add result to S2. This gives the dynamics prediction
without relational effects, corresponding to g(zot) in Eq. 1.

• C1: The following steps obtain the relational aspects of dynamics pre-
diction, corresponding to h(zot , z

o′

t) in Eq. 1. Concatenate the encoded
state So

1 pairwise with all state encoding, yielding a tensor of shape
(batch size,number of objects,number of objects, 4l).

• C2: Apply linear layer [4l, 4l] to C1 followed by ReLU.

• C3: Apply linear layer [4l, 2l] to C2 followed by ReLU.

• C4: Apply linear layer [2l, 2l] to C3 and add to C3.

• A1: To obtain attention coefficients α(zot , z
o′

t), apply linear layer [4l, 4l] to C1 followed by
ReLU.

• A2: Apply linear layer [4l, 2l] to A1 followed by ReLU.

• A3: Apply linear layer [2l, 1] to A2 and apply exponential function.

• R1: Multiply C4 withA3, where diagonal elements ofA3 are masked out to ensure thatR1

only covers cases where o 6= o′.

• R2: Sum over R1 for all o′, to obtain tensor of shape (batch size, number of
objects, 2l). This is the relational dynamics prediction.

15

Published as a conference paper at ICLR 2020

0.00 0.01 0.02 0.03 0.04
True Energy

0.00

0.02

0.04
M

ea
n

Pr
ed

ic
te

d
E

ne
rg

y Trained on Constant Energy

0.00 0.01 0.02 0.03 0.04
True Energy

Trained on Diverse Energies
Constant Energy
Short Prediction
Long Prediction
Observed

Figure 8: Mean kinetic energy observed/predicted by STOVE over true energy of the sequences.
(left) STOVE is trained on sequences of constant kinetic energy. As can be seen from the blue
scatter points, STOVE manages to predict sequences of arbitrary lengths which, on average, preserve
the constant energy of the test set. When STOVE is applied to sequences of different energies, it
manages to infer these energies from observed frames fairly well, with inaccuracies compounding
at larger energies (red). In the following prediction, however, the mean predicted energies diverge
quickly to the energy value of the training set (orange and green). (right) STOVE is now trained on
sequences of varying energies. Compared to the constant energy training, energies from observed
as well as predicted energies improve drastically. The predictions no longer immediately regress
towards a specific value (orange). However after 100 frames, the quality of the predicted energies
still regresses to a wrong value (green). (all) The observed values refers to energies obtained as the
mean energy value over the six initially observed frames. The short (long) time frame refers to an
energy obtained as the mean energy over the first 10 (100) frames of prediction. (Best viewed in
color.)

• D1: Sum relational dynamics R2 and self-dynamics S3, obtaining the input to f in Eq. 1.

• D2: Apply linear layer [2l, 2l] to D1 followed by tanh non-linearity.

• D3: Apply linear layer [2l, 2l] to D2 followed by tanh non-linearity and add result to D2.

• D4: Concatenate D3 and S1, and apply linear layer [4l, 2l] followed by tanh.

• D5: Apply linear layer [2l, 2l] to D4 and add result to D4 to obtain final dynamics predic-
tion.

The output D5 has shape (batch size,number of objects, 2l), twice the size of means
and standard deviations over the next predicted state.

For the model-based control scenario, the one-hot encoded actions (batch size, action
space) are transformed with a linear layer [action space, number of objects ·
encoding size] and reshaped to (action space, number of objects, encoding
size). The action embedding and the object appearances (batch size, number of
objects, 3) are then concatenated to the input state. The rest of the dynamics prediction follows
as above. The reward prediction consists of the following steps:

• H1: Apply linear layer [2l, 2l] to D1 followed by ReLU.

• H2: Apply linear layer [2l, 2l] to H1.

• H3: Sum over object dimension to obtain tensor of shape (batch size, l).

• H4: Apply linear layer [l, l/2] to H3 followed by ReLU.

• H5: Apply linear layer [l/2, l/4] to H4 followed by ReLU.

• H5: Apply linear layer [l/4, l] to H4 followed by a sigmoid non-linearity.

H5 then gives the final reward prediction.

16

Published as a conference paper at ICLR 2020

C.3 STATE INITIALIZATION

In the first two timesteps, we cannot yet apply STOVE’s main inference step q(zt | zt−1, xt, xt−1) as
described above. In order to initialize the latent state over the first two frames, we apply a simplified
architecture and only use a partial state at t = 0.

At t = 0, z0 ∼ q(z0,(pos, size) | x0) is given purely by the object detection network, since no previous
states, which could be propagated, exist. z0 is incomplete insofar as it does not contain velocity
information or latents. At t = 1, q(z1,pos, size | x1, x0) is still given purely based on the object detec-
tion network. Note that for a dynamics prediction of z1, velocity information at t = 0 would need
to be available. However, at t = 1, velocities can be constructed based on the differences between
the previously inferred object positions. We sample z1,latent from the prior Gaussian distribution to
assemble the first full initial state z1. At t ≥ 2, the full inference network can be run: States are
inferred both from the object detection network q(zt | xt, xt−1) as well as propagated using the
dynamics model q(zt | zt−1).
In the generative model, similar adjustments are made: p(z0,pos, size) is given by a uniform prior,
velocities and latents are omitted. At t = 1, velocities are sampled from a uniform distribution in
planar coordinates p(z1,velo) and positions are given by a simple linear dynamics model p(z1,pos |
z0,pos, z1,velo) = N (z0,pos + z1,velo, σ). Latents z1,latent are sampled from a Gaussian prior. Starting
at t = 2, the full dynamics model is used.

C.4 TRAINING PROCEDURE

Our model was trained using the Adam optimizer (Kingma & Ba, 2015), with a learning rate of
2× 10−3 exp(−40× 10−3 · step) for a total of 83 000 steps with a batch size of 256.

D DATA DETAILS

For the billiards and gravitational data, 1000 sequences of length 100 were generated for training.
From these, subsequences of lengths 8 were sampled and used to optimize the ELBO. A test dataset
of 300 sequences of length 100 was also generated and used for all evaluations. The pixel resolution
of the dataset was 32 × 32 for the billiards data and 50 × 50 for the gravity data. All models for
video prediction were learned on grayscale data, with objects of identical appearance. The O = 3
balls were initialised with uniformly random positions and velocities, rejecting configurations with
overlap. They are rendered using anti-aliasing. The billiards data models the balls as circular objects,
which perform elastic collision with each other or the walls of the environment. For the gravity
data, the balls are modeled as point masses, where, following Watters et al. (2017), we clip the
gravitational force to avoid slingshot effects. Also, we add an additional basin of attraction towards
the center of the canvas and model the balls in their center off mass system to avoid drift. Velocities
here are initialised orthogonal to the center of the canvas for a stabilising effect. For full details we
refer to the file envs.py in the provided code.

E BASELINES FOR VIDEO MODELING

Following Kosiorek et al. (2018), we experimented with different hyperparameter configurations
for VRNNs. We varied the sizes of the hidden and latent states [h, z], experimenting with the val-
ues [256, 16], [512, 32], [1024, 64], and [2048, 32]. We found that increasing the model capacity
beyond [512, 32] did not yield large increases in performance, which is why we chose the configura-
tion [512, 32] for our experiments. Our VRNN implementation is written in PyTorch and based on
https://github.com/emited/VariationalRecurrentNeuralNetwork.

SQAIR can handle a variable number of objects in each sequence. However, to allow for a fairer
comparison to STOVE, we fixed the number of objects to the correct number. This means that in
the first timestep, exactly three objects are discovered, which are then propagated in all following
timesteps, without further discoveries. Our implementation is based on the original implementation
provided by the authors at https://github.com/akosiorek/sqair.

17

https://github.com/emited/VariationalRecurrentNeuralNetwork
https://github.com/akosiorek/sqair

Published as a conference paper at ICLR 2020

0 20000 40000 60000
Step

0.2

0.3

0.4

0.5

Po
si

tio
n

E
rr

or

Billiards

0 20000 40000 60000
Step

0.1

0.2

0.3

0.4
Gravity

STOVE
Abl: Double Dynamics
Abl: No velocity
Abl: No Latent

Figure 9: Displayed is the mean predicted position error over a rollout length of 8 frames as
training progresses for the billiards (left) and gravity (right) scenario for STOVE and its ablations.
(Best viewed in color.)

The DDPAE experiments were performed using the implementation available at https://
github.com/jthsieh/DDPAE-video-prediction. Default parameters for training
DDPAE with billiards datasets are provided with the code. However, the resolution of our bil-
liards (32 pixels) and gravity (64 pixels) datasets is different to the resolution DDPAE expects (64
pixels). While we experimented with adjusting DDPAE parameters such as the latent space dimen-
sion to fit our different resolution, best results were obtained when bilinearly scaling our data to the
resolution DDPAE expects. DDPAE was trained for 400 000 steps, which sufficed for convergence
of the models’ test set error.

The linear baseline was obtained as follows: For the first 8 frames, we infer the full model state
using STOVE. We then take the last inferred positions and velocities of each object and predict
future positions by assuming constant, uniform motions for each object. We do not allow objects to
leave the frame, i. e. when objects reach the canvas boundary after some timesteps, they stick to it.

Since our dynamics model requires only object positions and velocities as input, it is trivial to
construct a supervised baseline for our physics prediction by replacing the SuPAIR-inferred states
with real, ground-truth states. On these, the model can then be trained in supervised fashion.

F TRAINING CURVES OF ABLATIONS

In Fig. 9 we display learning curves for STOVE and presented ablations. As mentioned in the main
text, the ablations demonstrate the value of the reuse of the dynamics model, the explicit inclusion of
a velocity value, and the presence of unstructured latent space in the dynamics model. (Best viewed
in color.)

G DETAILS ON THE REINFORCEMENT LEARNING MODELS

Our MCTS implementation uses the standard UCT formulation for exploration/exploitation. The
c parameter is set to 1. in all our experiments. Since the environment does not provide a natural
endpoint, we cut off all rollouts at a depth of 20 timesteps. We found this to be a good trade-off
between runtime and accuracy.

When expanding a node on the true environment, we compute the result of the most promising
action, and then start a rollout using a random policy from the resulting state. For the final evaluation,
a total of 200 nodes are expanded. To better utilize the GPU, a slightly different approach is used for
STOVE. When we expand a node in this setting, we predict the results of all actions simultaneously,
and compute a rollout from each resulting position. In turn, only 50 nodes are expanded. To estimate
the node value function, the average reward over all rollouts is propagated back to the root and each
node’s visit counter is increased by 1. Furthermore, we discount the reward predicted STOVE with
a factor of 0.95 per timestep to account for the higher uncertainty of longer rollouts. This is not done
in the baseline running on the real environment, since it behaves deterministically.

18

https://github.com/jthsieh/DDPAE-video-prediction
https://github.com/jthsieh/DDPAE-video-prediction

Published as a conference paper at ICLR 2020

For PPO, we employ a standard convolutional neural network as an actor-critic for the evaluation on
images and a MLP for the evaluation on states. The image network consists of two convolutional
layers, each using 32 output filters with a kernel size of 4 and 3 respectively and a stride of 2. The
MLP consists of two fully connected layers with 128 and 64 hidden units. In both cases, an addi-
tional fully connected layer links the outputs of the respective base to an actor and a critic head. For
the convolutional base, this linking layer employs 512 hidden units, for the MLP 64. All previously
mentioned layers use rectified linear activations. The actor head predicts a probability distribution
over next actions using a softmax activation function while the critic head outputs a value estimation
for the current state using a linear prediction. We tested several hyperparameter configurations but
found the following to be the most efficient one. To update the actor-critic architecture, we sample
32 trajectories of length 16 from separate environments in every batch. The training uses an Adam
optimizer with a learning rate of 2× 10−4 and and ε value of 1× 10−5. The clipping parameter of
PPO is set to 1× 10−1. We update the network for 4 epochs in each batch using 32 mini-batches
of the sampled data. The value loss is weighted at 5× 10−1 and the entropy coefficient is set to
1× 10−2.

19

	Introduction
	Structured Object-Aware Video Modeling
	Object-based Modeling of Images using Sum-Product Attend-Infer-Repeat
	Modeling Physical Interactions using Graph Neural Networks
	Joint State-Space Model
	Conditioning on Actions

	Experimental Evidence
	Video and State Modeling
	Model-Based Control

	Related Work
	Conclusion
	Reconstructions: Sprites Data
	Study of Energies
	Model Details
	Inference Architecture
	Graph Neural Network
	State Initialization
	Training Procedure

	Data Details
	Baselines for Video Modeling
	Training Curves of Ablations
	Details on the Reinforcement Learning Models

